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Abstract: A Bayesian hierarchical model is developed for multiple com-
parisons in mixed models with missing values where the population means
satisfy a simple order restriction. We employ the Gibbs sampling and
Metropolis-within-Gibbs sampling techniques to obtain parameter estimates
and estimates of the posterior probabilities of the equality of the mean pairs.
The latter estimates are used to test whether any two means are significantly
different, and to test the global hypothesis of the equality of all means. The
performance of the model is investigated in simulations by means of both
multiple imputations and ignoring missingness. We also illustrate the utility
of the model in a real data set. The results show that the proposed hierarchi-
cal model can effectively unify parameter estimation, multiple imputations,
and multiple comparisons in one setting.
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1. Introduction

The two-way ANOVA balanced mixed model (or repeated measures model)
is defined as

yij = µi + bj + εij , i = 1, . . . , k, j = 1, . . . ,m, (1.1)

where yij , µi, bj , and εij are all scalars. Here, yij denotes the response observed
on the jth subject in the ith treatment, µi is a fixed treatment effect for the ith
treatment, bj is a random subject effect, and εij is an error term. Note that the
overall sample size is m×k. We assume that the bj ’s are distributed as N (0, σ2τ ),
that the εij ’s are distributed as N (0, σ2τ ), and that the m(k+ 1) variables bj and
εij , i = 1, . . . , k and j = 1, . . . ,m, are all independent.

The problem of a simple order restriction may exist in quite a few applications.
For instance, in a drug efficacy experiment, investigators might study the effect of
different dose levels of a compound on a response variable, such as blood pressure
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or toxicity. For the dosages considered, the mean response is believed to be a
nonincreasing or nondecreasing function of the dose level. Therefore, the simple
order assumption (i.e., µ1 ≤ · · · ≤ µk) is rational and realistic. Other orders
such as a tree order or a loop order may also be considered, but here we restrict
attention to a simple order.

For treatment means that satisfy a simple order restriction, i.e., µ1 ≤ · · · ≤ µk,
both frequentist and Bayesian methods have been proposed for multiple compar-
isons. In the Bayesian paradigm, Gelfand et al. (1990) provided Bayesian esti-
mates of order-restricted normal means with arbitrary variances. Gelfand et al.
(1992) extended these results to other types of inequality constraints. Pauler et al.
(1999) used Bayes factors to test hypotheses involving inequality constraints. In
life-testing models, Kim and Sun (2001) considered the use of intrinsic priors and
Bayes factors to choose between the model specified by homogeneity of means and
that determined by an order restriction on the means. Molitor and Sun (2002)
considered situations in which means and variances simultaneously satisfy order
restrictions and provided Bayesian estimates of the relevant parameters.

Mukerjee (1988) and Singh and Wright (1990) discussed frequentist results
for a mixed model with a simple ordering on the treatment effects. Mukerjee’s
results showed that multiple comparison techniques for the one-way ANOVA lead
to such techniques for a mixed ANOVA model provided there are no missing data.

However, in practice, the experimental designs often yield the data set with
missing values because of subject mortality, non-response, etc. Mukerjee’s results
only consider the situations without missing data. In a Bayesian context, since
repeated measures models with missing data involve the random effects, choosing
the priors on the variance components poses a challenge if we need to find the
marginal posterior in a close form. To liberate this challenge, this paper pro-
poses a hierarchical model where the parameter estimates and estimates of the
posterior probabilities can be obtained by the Gibbs sampling and Metropolis-
within-Gibbs sampling algorithms. The model incorporates simple order restric-
tion, parameter estimation, missing value approaches, and multiple comparisons
in the same setting. Specifically, a Bayesian hierarchical model is developed for
multiple comparisons in mixed models based on a fixed treatment effect and a
random subject effect with missing data in the format of (1.1). The successive
nonnegative differences of the population means are treated as parameters, for
which we choose independent prior distributions that are mixtures of an expo-
nential distribution and a discrete distribution with its entire mass at zero. We
employ the Gibbs sampling and Metropolis-within-Gibbs sampling techniques to
obtain parameter estimates and estimates of the posterior probabilities of the
equality of the mean pairs. The latter estimates are used to test whether any two
means are significantly different, and to test the global hypothesis of the equality
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of all means.

This paper is arranged as follows. Section 2 introduces the mixed models
with missing values and presents the priors and the derived full conditional pos-
terior distributions for the hierarchical model. Section 3 outlines approaches to
hypothesis testing for the hierarchical model. In Section 4, based on the missing
value mechanisms and patterns, the details of the computations for the hierar-
chical model are presented. For the mixed models with missing values, we do
multiple imputations or simply ignore the missingness within the Gibbs sam-
pling. In the situations where it is not convenient to sample directly from the
conditional distributions, we use the Metropolis-within-Gibbs sampling algorithm
to update the parameters. In Section 5, we investigate the performance of the
model-based inferences with simulated data sets, focusing on parameter estima-
tion and successive-mean comparisons using the posterior probabilities. We then
illustrate the utility of the model in an application based on data from a study
designed to reduce lead blood concentrations in children with elevated levels.
Some concluding remarks and discussion are given in Section 6.

2. A Bayesian Approach to Multiple Comparisons for the Mixed Model
with Missing Values

2.1 The Mixed Model with Missing Values

Consider the model (1.1) in conjunction with the simple order restriction for
the population (treatment) means µ1 ≤ · · · ≤ µk. We may parameterize each of
the means µ2, . . . , µk based on the difference between the preceding mean and
itself. Specifically, with δi−1 = µi−µi−1 (2 ≤ i ≤ k), the mean µ2 can be denoted
as µ1+δ1, the mean µ3 as µ1+δ1+δ2, etc. In general, the ith mean µi (2 ≤ i ≤ k)
can be denoted as µ1 + δ1 + · · ·+ δi−1.

Suppose that some of the yij ’s in the model (1.1) are missing. We can conve-
niently illustrate this missingness by using a two-way table.

Consider, for instance, an incomplete data set with k = 4 treatment groups
described by the mixed model (1.1). The layout for such a data set is featured in
Table 1. Our goal is to eventually compare the treatments means. Let symbol ⊗
denote the absence of an observation in a cell. Thus, Table 1 illustrates a setting
where y21, y32, etc., are missing.

Intuitively, one may question whether any of the observed responses could
serve as a surrogate for a missing response, in the sense that the missing response
and its observed surrogate are generated by a common mechanism under (1.1).
However, the observations in each column correspond to a different mean. If the
simple order restriction holds with µ1 < µk, then at least some of the means are
increasing, and the observations would therefore tend to increase as we move from
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left to right across each row. Moreover, the observations in each row correspond
to a different subject. The model thereby imposes that observations within a
row are correlated, yet observations between rows are uncorrelated. Simply put,
since each observation yij corresponds to a different conditional mean µi+bj , the
observations are not exchangeable, and an observed response cannot be viewed
as providing a meaningful replacement for a missing value. However, due to
the additive structure of the model, a missing value yij can be predicted once
estimates of the fixed effect µi and the random effect bj are obtained. Ideally, such
estimates are obtained using a procedure that incorporates the order restriction.

In the setting of the mixed model under missingness, let kj denote an index
set which contains the integers denoting the treatment indices for the observed
responses corresponding to the jth subject. Thus, for the data illustrated in
Table 1, we would have k1 = {1, 3, 4}, k2 = {1, 2, 4}, and k3 = {1, 2, 3}, etc.
Furthermore, we let nj denote the number of integers in kj , i.e., the number of
observations corresponding to the jth subject.

Table 1: Data layout for the mixed model with missing values (k = 4)

treatments
subject (k = 4)

i = 1 2 3 4

j = 1 y11 ⊗y21 y31 y41
2 y12 y22 ⊗y32 y42
3 y13 y23 y33 ⊗y43
4 ⊗y14 y24 y34 y44
5 ⊗y15 y25 ⊗y35 y45
6 y16 y26 y36 ⊗y46
...

...
...

...
...

Let yj denote a k × 1 vector of responses observed on the jth subject, j =
1, · · · ,m, and let Y = (y′1, . . . , y

′
m)′, and define δ0 = 0. Given that the subject-

specific vectors yj are independent, we have the joint density function for the
data vector Y

[Y | µ1, {δi}, σ2τ , σ2]

∝
m∏
j=1

{
(σ2)−

nj−1

2 (njσ
2
τ + σ2)−

1
2 exp

{
− 1

2σ2

[
s1(j)−

σ2τ
njσ2τ + σ2

s2(j)

]}}
, (2.1)

where

s1(j) =
∑
i∈kj

(
yij − µ1 −

i−1∑
l=0

δl

)2
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and

s2(j) =

∑
i∈kj

(yij − µ1 −
i−1∑
l=0

δl)

2

.

Next, we need to specify prior distributions and to obtain the full conditional
posterior distributions for the parameters.

2.2 Priors and Full Conditional Posterior Distributions

In what follows, we will choose the priors and hyperpriors for the hierarchical
model and present the full conditional posterior distributions for the parameters
and hyperparameters.

Because each successive mean difference δi is positive (µi+1 > µi) or zero
(µi+1 = µi), we choose a prior distribution for δi that is a mixture of an exponen-
tial distribution and a discrete distribution with its entire mass at δi = 0. The
discrete component of the mixture allows the difference between two successive
means to be zero. If we define A = [δi > 0] and B = [δi = 0], with IA and IB
denoting the indicator functions corresponding to events A and B, respectively,
the density function for δi can be represented as

[δi | ρi, ηi] = ρiIB + ∆IA, (2.2)

where ∆ = (1 − ρi) 1
ηi

exp
{
− δi
ηi

}
. Note that ρi denotes the probability of event

B and ηi denotes the mean of δi with the probability density 1
ηi

exp
{
− δi
ηi

}
for

δi > 0.

For i = 1, · · · , k− 1, we multiply the density function in (2.1) by the prior of
δi in (2.2), then we focus on and re-organize the terms involving δi to derive its
full conditional posterior distribution. First, we can easily have

[δi | Y, µ1, σ2, σ2τ , {δ1, · · · , δi−1, δi+1, · · · , δk−1}, ρi, ηi]

∝ exp

− δ2i
2σ2

 m∑
j=1

s4(i, j)−
m∑
j=1

σ2τ
njσ2τ + σ2

s24(i, j)


× exp

 δi
σ2

 m∑
j=1

s3(i, j)−
m∑
j=1

(
σ2τ

njσ2τ + σ2
s3(i, j)s4(i, j)

)
×
[
ρiIB + (1− ρi)

1

ηi
exp

(
− δi
ηi

)
IA

]
,
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where

s3(i, j) =
∑
p∈kp

ypj − µ1 − p−1∑
q=1

δq + δi


and

s4(i, j) =
k∑

p=i+1

Ikj (p).

Here, we define the set kp = {p ∈ kj | p ≥ i+1}. The full conditional distribution
of δi can therefore be summarized as a mixture of a discrete part and a continuous
part, and is expressed as

[δi | · ]=


cρif(δi | · ), δi = 0,
c(1− ρi) 1

ηi
f(δi | · ), δi > 0,

0, δi < 0,

where

f(δi | · ) =
1√

2π( 1
ai

)
exp

− 1

2( 1
ai

)

(
δi −

gi − IA
ηi

ai

)2
 exp


(
gi − IA

ηi

)2
2ai

 , (2.3)

with

ai =
1

σ2

 m∑
j=1

s4(i, j)−
m∑
j=1

σ2τ
njσ2τ + σ2

s24(i, j)

 ,
gi =

1

σ2

 m∑
j=1

s3(i, j)−
m∑
j=1

(
σ2τ

njσ2τ + σ2
s3(i, j)s4(i, j)

) ,
c =

1

ρif(0 | · ) + (1− ρi) 1
ηi

∫∞
0 f(δi | · )dδi

.

Note that in the preceding notation, the | · represents the condition given the
data and all the other parameters except δi. Therefore, the f(δi | · ) represents
the kernel full conditional posterior distribution of δi given the data and all the
other parameters except δi. Since the full conditional posterior distribution of δi
relies on its prior and the prior is defined in the format of (2.2) involving the two
cases δi > 0 and δi = 0, the f(δi | · ) has different expressions with respect to
δi > 0 and δi = 0. The expression of the f(δi | · ) therefore accommodates the
indicator function IA.
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Prior to the continuity of the next derivation, we may comment on this prior.
Due to the simple order restriction held between the means, i.e., µ1 ≤ · · · ≤ µk,
the utility of a discrete-continuous mixture prior can effectively reflect this rela-
tionship and limit the difference between any two successive means to two possible
values, zero or a positive number (see Gottardo and Raftery (2008), Shang et al.
(2008), and Nashimoto and Wright (2008)). Therefore, from this point of view,
the proposed mixture prior will play an important role in contributing to han-
dling the problem of multiple comparisons for the simple order restricted means
in the mixed modeling setting.

For the mean µ1, we choose a normal prior. Specifically, we let µ1 ∼ N (µ0, τ
2
0 ).

With this prior, we can express the full conditional posterior distribution of µ1
as

[µ1 | Y, σ2, σ2τ , {δi}]

∝ exp

−µ212
 1

τ20
+

∑m
j=1 nj

σ2
−

m∑
j=1

n2jσ
2
τ

σ2(njσ2τ + σ2)


+ µ1

µ0
τ20

+
m∑
j=1

1

njσ2τ + σ2
s5(i, j)

 (2.4)

= exp

−µ212
 1

τ20
+

m∑
j=1

nj
njσ2τ + σ2

+ µ1

µ0
τ20

+
m∑
j=1

1

njσ2τ + σ2
s5(i, j)

 ,

where

s5(i, j) =
∑
p∈kj

(yij −
i−1∑
l=0

δl).

Setting

u =
µ0
τ20

+
m∑
j=1

1

njσ2τ + σ2
s5(i, j)

and

v =
1

τ20
+

m∑
j=1

nj
njσ2τ + σ2

,

and completing the square in (2.4) with respect to µ, one can show that the full
conditional posterior distribution of µ1 is

[µ1 | Y, σ2, σ2τ , {δi}] = N

(
u

v
,

1

v

)
.



318 Junfeng Shang

We choose an improper noninformative prior π(σ2τ , σ
2) ∝ 1

σ2(σ2
τ+σ

2)
, which is

used in Chaloner (1987), for the variance components, σ2τ and σ2. Then we have
the joint posterior full conditional distribution of the variance components as

[σ2τ , σ
2 | Y, µ1, {δi}]

∝
m∏
j=1

{
(σ2)−

nj−1

2 (njσ
2
τ + σ2)−

1
2

}

×
m∏
j=1

{
exp

[
− 1

2σ2

(
s1(j)−

σ2τ
njσ2τ + σ2

s2(j)

)]
1

σ2(σ2τ + σ2)

}
. (2.5)

Unfortunately, the full conditional posterior distributions of the individual vari-
ance components σ2τ and σ2 are not in a form which is conducive to sampling.
Thus, as outlined in Section 4, we will use the Metropolis algorithm to update
the estimates of σ2τ and σ2 within the iterations of the Gibbs sampling.

Employing the hyperprior ρi ∼ Beta(α0, β0), the full conditional posterior
distribution of ρi can be expressed as

[ρi | δi, ηi] =

{
Beta(α0 + 1, β0), δi = 0,
Beta(α0, β0 + 1), δi > 0.

With α0 = β0 = 1 (uniform), we have

[ρi | δi, ηi] =

{
Beta(2, 1), δi = 0,
Beta(1, 2), δi > 0.

In Section 3, we will see how we can regulate the Type 1 error rate by adjusting
the parameters α0 and β0 for the hyperprior on ρi.

We choose an inverse-gamma hyperprior IG(a0, b0) for ηi, the parameter for
the exponential distribution used in the mixture prior for δi in (2.2). The full
conditional posterior distribution of ηi is then given by

[ηi | δi, ρi] =

 IG(a0, b0), δi = 0,

IG

(
a0 + 1,

[
δi + 1

b0

]−1)
, δi > 0.

Because the full conditional posterior distribution for ηi is improper when
based on a noninformative prior, we choose a flat informative prior for ηi.

With the preceding independent priors, most of the full conditional posterior
distributions are standard distributions, such as normal, inverse-gamma, and
beta. The exceptions are the full conditional posterior distributions for the δi
and the variance components σ2 and σ2τ .
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The Gibbs sampling is employed to estimate the parameters and posterior
probabilities of the successive-mean differences. However, as mentioned previ-
ously, since it is not convenient to sample directly from the full conditional pos-
terior distributions of σ2τ and σ2, we use the Metropolis algorithm to update the
estimates of σ2τ and σ2 within the Gibbs sampling iterations. In Section 4, we
provide a brief overview of this algorithm, and discuss its implementation in our
setting.

3. Hypothesis Testing via the Posterior Probability

Consider the hypotheses for successive pairwise comparisons of the means,
H0i : µi = µi + δi versus H1i : µi < µi + δi, or H0i : δi = 0 versus H1i : δi > 0
for i = 1, . . . , k − 1, and consider the global test, H0 : µ1 = µ2 = · · · = µk versus
H1 : µ1 ≤ · · · ≤ µk with µ1 < µk.

Under the proposed hierarchical model, using the magnitude of the posterior
probabilities of δi > 0 and of δi = 0 (1 ≤ i ≤ k−1) in conjunction with a decision
rule, we can conduct the hypothesis testing for the means.

Following the intuitive rule proposed by Westfall et al. (1997), in order to
obtain the probability of the null hypothesis for the global test denoted by Pr{H0}
to be 0.5 for the model with a total of k− 1 mutually independent priors for the
δi’s. Let Pr{H0i} denote the prior probabilities for the null hypotheses H0i, then
we calibrate Pr{H0i} via Pr{H0i} = 0.51/(k−1).

We observe that

Pr{H0i} = Pr{δi = 0}=E(E(IB | ρi, ηi))

=E(ρi) =
α0

α0 + β0
.

Thus, if one wants the initial prior probabilities of Pr{H0i} = 0.5, then one
could choose α0 = β0 and select 1 as the common value. Note that for any
given k, there exist an infinite number of choices for α0 and β0 that satisfy
Pr{H0i} = 0.51/(k−1) = α0/(α0 + β0).

We adopt the conventional scheme of using 0.5 (or a cutoff value based on
a concrete context) as the deciding criterion for the posterior probability. For
pairwise comparisons, we declare H1i if

Pr{δi = 0 | Y } < 0.5, (3.1)

where Pr{δi = 0 | Y } is the posterior probability of the null hypothesis resulting
from the utility of Pr{H0i}.

For the global test, we declare H1 if at least one of the pairwise tests declares
H1i, i.e., if

min
1≤i≤k−1

{Pr{δi = 0 | Y }} < 0.5. (3.2)
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We emphasize that the preceding rules for the pairwise and global tests are
formulated to be consistent. By employing these rules, the test results are coher-
ent.

Let Pr{
∑k−1

i=1 δi = 0 | Y } denote the joint posterior probability that all δi’s are
simultaneously zero. One could use the global test based on the joint posterior
probability of the δi’s, that is, the test that rejects H0 if

Pr

{
k−1∑
i=1

δi = 0 | Y

}
< 0.5. (3.3)

However, we recommend the test based on (3.2). First, note the test based on
(3.3) is not compatible with the tests in (3.1). That is, using (3.3) and the pairwise
comparisons in (3.1) may lead to inconsistent decisions. Second, we found that
the global test based on (3.3) may be too liberal, i.e., it tends to reject H0 more
often than the test based on (3.2). In particular, our Monte Carlo study showed
a strong tendency for the left-hand inequality in the following and the right-hand
inequality clearly holds:

Pr

{
k−1∑
i=1

δi = 0 | Y

}
<

k−1∏
i=1

Pr {δi = 0 | Y } ≤ min
1≤i≤k−1

{Pr{δi = 0 | Y }}

(See Shang et al. (2008)).
Thus, the test based on (3.2) has smaller Type I error and power than the

test based on (3.3). However, the results of our simulation study (not presented
here) suggest the procedure based on (3.1) and (3.2) has reasonable power.

4. Details of Computations in the Gibbs Sampling

4.1 The Metropolis-within-Gibbs Algorithm

In our setting, the Metropolis-within-Gibbs algorithm will be utilized to sam-
ple from the full conditional posterior distributions for σ2τ and σ2 since the forms
of the distributions are not conducive to sampling. We provide a brief overview
of the Metropolis algorithm, and then discuss its implementation in our context.

Suppose we wish to simulate θ from a posterior density g(θ | Y ). For sim-
plification, we write the density simply as g(θ). Beginning with an initial value
θ(0), the Metropolis-Hasting algorithm simulates the tth value in the sequence θ(t)

given the (t − 1)th value in the sequence θ(t−1). A candidate value is simulated
from a proposal density, and an acceptance probability P is computed as the
probability that the candidate value is accepted. The algorithm is outlined as
follows.
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• Simulate a candidate value θ∗ from a proposal density p(θ∗ | θ(t−1)).
• Compute the ratio

g(θ∗)p(θ(t−1) | θ∗)
g(θ(t−1))p(θ∗ | θ(t−1))

.

• Compute the acceptance probability P = min{R, 1}.
• Sample a value θ(t) such that θ(t) = θ∗ with the probability P . Otherwise

θ(t) = θ(t−1).
Under suitable regularity conditions on the proposal density p(θ∗|θ(t−1)), the

sequence of simulated values θ(1), θ(2), · · · will converge to a random variable that
is distributed according to the posterior distribution g(θ).

In implementing our method, we estimate the variance components, σ2τ and
σ2, using the Metropolis-within-Gibbs algorithm. Suppose that θ(t−1) represents
the current value of θ, and θ refers to a vector consisting of σ2τ and σ2. Let g(θ)
represent the joint conditional posterior distribution of σ2τ and σ2, as shown in
(2.5). A candidate value for θ is given by θ∗ = θ(t−1) + cZ, where Z is a bivariate
normal variate with mean vector 0 and variance-covariance matrix Σ, and c is a
fixed positive scale parameter. That is, the proposal density for θ∗ is bivariate
normal having the form p(θ∗ | θ(t−1)) = h(θ∗ − θ(t−1)), where h is a symmetric

density about the origin. Therefore, the ratio R has the simple form R = g(θ∗)
g(θ(t−1))

.

We incorporate the preceding Metropolis-within-Gibbs algorithm after ap-
plying a log transformation to each variance, thereby extending the range of the
parameters to the entire set of real numbers. Let Z1 and Z2 represent a pair of
bivariate normal variates with zero means, unit variances, and a covariance of 0.5.

The equations log(σ2τ )∗ = log(σ2τ )(t−1) + cZ1 and log(σ2)∗ = log (σ2)
(t−1)

+ cZ2

are used to separately update the variance components σ2τ and σ2. We choose c
so that the acceptance probability is in the 25− 50% range.

4.2 Multiple Imputations within the Gibbs Sampling

It is well known that Little and Rubin (1987) introduced specific missing
data terminology as a standard framework to deal with missing data mechanisms
and their effect on data analysis. For the situation where the missing values
are completely at random (MCAR) or at random (MAR), imputations can be
completed while the Gibbs sampling is executed to obtain the required results
for the hierarchical model; that is, in the same setting, we can do both multiple
imputations and multiple comparisons.

We first describe the multiple imputation algorithm for parametric Bayesian
models in general. Suppose that the complete data, Y = (Yobs, Ymis), follows a
parametric model P (Y | θ) where θ is the parameter vector and has a prior distri-
bution, and then we have P (Ymis | Yobs) =

∫
P (Ymis | Yobs, θ)P (θ | Yobs)dθ. The
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starting value for Ymis can be created by first simulating a random draw of the
unknown parameters from their observed-data posterior θ∗ ∼ P (θ | Yobs) followed
by a random draw of the missing values from their conditional predictive distri-
bution Y ∗mis ∼ P (Ymis | Yobs, θ∗). Consider an iterative, two-step process in which
we alternately sample missing values from their conditional predictive distribu-

tion Y
(t)
mis ∼ P (Ymis | Yobs, θ(t−1)) and then sample unknown parameters from a

simulated complete-data posterior θ(t) ∼ P (θ | Yobs, Y
(t)
mis). Given the initial val-

ues for θ, this defines a Markov chain {Y (t)
mis, t = 2, 3, · · · , T}. Under quite general

conditions, this chain converges to the stationary distribution P (Ymis, θ | Yobs).
We execute these steps a large number of times (T = 20, 000, burn-in=5,000).
After the burn-in, this process produces a draw from its observed data posterior
and a draw of Ymis from P (Ymis | Yobs), the distribution from which multiple
imputations are generated (Schafer, 1999). For each iteration of a Markov chain,
a complete data set is constructed and the estimation of the parameters can be
executed based on it.

In the framework of the mixed models, the conditional predictive distribution
for a missing observation (yijmis | bj , θ) is N (µi+bj , σ

2). Note that yijmis denotes
a missing observation in Ymis.

Given the prior (bj | σ2τ ) ∼ N (0, σ2τ ), the full conditional distribution of bj ,
j = 1, · · · ,m, is obtained as

bj | yj , µ1, {δi}, σ2τ , σ2 ∼ N

(
σ2τz

′V −1(yj − µ),

(
k

σ2
+

1

σ2τ

)−1)
,

where V = zσ2τz
′ + σ2I.

At the first iteration of the Gibbs sampling, the initial values for θ are given,
bj ’s are drawn from the prior distributionN (0, σ2τ ), and then missing observations
are drawn from N (µi + bj , σ

2). The complete data is therefore constructed by
Y = (Yobs, Ymis). According to the complete data set and the full conditional
posterior distributions in Section 2.2, we can update the parameters and calculate
the posterior probabilities of δi = 0 for multiple comparisons.

5. Simulations and Application

5.1 Brief Description of Simulations

As previously mentioned, we compute the posterior probabilities for the mixed
models with missing values by multiple imputations in the Metropolis-within-
Gibbs algorithm or by discarding the missing values. Since the convergence is
not slow, the number of burn-in samples is taken to be 5,000, and the subsequent
10,000 iterations are used to estimate the parameters. In the iterations after burn-
in, the frequency of the event δi = 0 is recorded, leading to the approximation
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of Pr(δi = 0 | Y ). Three population means (k = 3) will be compared in the
simulations.

For the prior of µ1, the hyperparameters µ0 and τ20 do not have much effect
on the results provided that the normal prior distribution is relatively flat, i.e.,
τ20 is very large. In our simulations, µ0 = 0 and τ20 = 100. To make the prior
of ηi flat, hyperparameters a0 = 2.2 and b0 = 0.05 are used. To make the
equal prior probability of Pr{H0i} with k = 3, the probability Pr{H0i} will
be Pr{H0i} = 0.51/(3−1) = 0.707. This is closely approximated by the choice
ρi ∼ Beta(2.4, 1), which gives Pr{H0i} = E(ρi) = 0.706.

For the simulated data, we choose the mean parameters µ = (12, 14, 16)′.
Small variances (σ2τ = 10 and σ2 = 2) are specified. We generate a large-size
sample (m = 100). The simulations with large variances (σ2τ = 50 and σ2 = 30)
are also completed, yet the conclusions are quite similar to the setting with the
small variances, so the results are not presented here.

For the generated sample, two incomplete data sets are randomly produced by
applying 10% and 20% missing rates, respectively. The parameter estimates and
the posterior probabilities are then computed for each complete or incomplete
sample. For reference purposes, we also compute the unrestricted maximum
likelihood estimates (MLEs) of the model parameters via the EM algorithm. For
the incomplete data sets, multiple imputations and disregard of the missing values
are respectively applied in each iteration of the Gibbs sampling chain.

5.2 Simulation Results

For the generated complete samples, Table 2 features the parameter esti-
mates, their variances, and the posterior probabilities of δi = 0. Note that the
unrestricted MLE of δi (i = 1, 2) is the difference between the unrestricted MLEs
of the mean µi+1 and the preceding mean µi.

Table 2: Posterior parameter estimates and MLEs for complete data sets

µ = (12, 14, 16)′, σ2
τ = 10, σ2 = 2

parameter mean variance MLE

µ1 12.32 0.27 12.28
δ1 1.37 0.27 1.40
δ2 2.39 0.18 2.37
σ2
τ 9.87 2.51 10.20
σ2 2.10 0.10 1.93

posterior probability
P (δ1 = 0|Y ) 0.04
P (δ2 = 0|Y ) 0.01
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For the sample with σ2τ = 10 and σ2 = 2, the mean parameter estimates are
(12.32, 13.69, 16.08)′, and the variance estimates are 9.87 and 2.10, respectively.
These estimates are quite close to the MLEs computed by the EM algorithm,
which are µ̂ = (12.28, 13.68, 16.05)′, σ̂2τ = 10.20, and σ̂2 = 1.93. Among the vari-
ances of the parameter estimates, the variance of the σ2τ estimate is the largest.
Based on the posterior probabilities, the pairwise tests favor H11 and H12, indi-
cating that there exist significant differences between µ1 and µ2 and between µ2
and µ3.

Note that the posterior parameter estimates are evaluated under the simple
order restriction, whereas the unrestricted MLEs are not. The MLEs could violate
the simple order restriction, yet the posterior estimates obey the restriction.

It is of interest to compare the preceding conclusions to the results of the the
frequentist approach (See details in Singh and Wright, 1990). For the sample
with σ2τ = 10 and σ2 = 2, under the frequentist approach, the likelihood ratio
test (LRT) statistic for testing H0 : µ1 = µ2 = µ3 is 373.47 (df = 198). Based on
198 degree of freedom, with α = 0.01, the critical value is 6.940 from Table A.6
of Robertson et al. (1988). The LRT therefore rejects H0. Thus, the Bayesian
and frequentist methods both reject H0.

Table 3 features the results for the incomplete samples with σ2τ = 10 and σ2 =
2 by multiple imputations and by simply ignoring the missing values. Comparing
the corresponding results from the complete to incomplete data sets by multiple
imputations, one can observe that the parameter estimates and their variances
are very close although differences do exist. Moreover, the posterior probabilities
vary between the complete and incomplete data sets, yet the conclusions for
multiple comparisons are identical.

Comparing the corresponding results from the complete to incomplete data
sets, one can find that the differences of the parameter estimates and their vari-
ances are much greater than those between the complete and incomplete data sets
by multiple imputations. For instance, for the complete data set in Table 2 with
σ2τ = 10 and σ2 = 2, Pr{δ1 = 0 | Y } = 0.04 and Pr{δ2 = 0 | Y } = 0.01; for the
incomplete data sets in Table 3 with 10% missing values, Pr{δ1 = 0 | Y } = 0.36
and Pr{δ2 = 0 | Y } = 0.01; with 20% missing values, Pr{δ1 = 0 | Y } = 0.55
and Pr{δ2 = 0 | Y } = 0.01. For the complete data set and the incomplete data
set with 10% missing values, the pairwise tests reject H01 implying that there
is significant difference between µ1 and µ2. However, the incomplete data set
with 20% missing values keeps the null hypothesis supporting that µ1 and µ2 are
equal.

The results of applying the hierarchical model in the simulated data show
that the parameter estimates for the imputed data sets are not the same as those
for the complete data set. Since the imputed values are simply not the real
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Table 3: Posterior parameter estimates for incomplete data sets

µ = (12, 14, 16)′, σ2
τ = 10, σ2 = 2

By Imputations 10% missing 20% missing

parameter mean variance mean variance

µ1 12.32 0.32 12.35 0.33
δ1 1.26 0.32 1.25 0.40
δ2 2.41 0.19 2.44 0.22
σ2
τ 10.76 3.44 10.68 2.29
σ2 2.01 0.10 2.10 0.13

posterior probability
P (δ1 = 0|Y ) 0.08 0.09
P (δ2 = 0|Y ) 0.01 0.01

With Missingness 10% missing 20% missing

parameter mean variance mean variance

µ1 12.61 0.31 12.65 0.30
δ1 0.67 0.38 0.46 0.35
δ2 2.72 0.22 3.05 0.24
σ2
τ 10.03 1.82 10.20 2.78
σ2 2.45 0.17 3.06 0.29

posterior probability
P (δ1 = 0|Y ) 0.36 0.55
P (δ2 = 0|Y ) 0.01 0.01

observations, this can be explained by uncertainty rooted in imputed values.
However, it appears that multiple imputations are an effective and flexible tool
for dealing with missing values in the proposed hierarchical model.

5.3 Application

In this section, we consider a data set from a study described in a 2000
article from Pediatric Research written by the TLC (Treatment of Lead-Exposed
Children) Trial Group. The data is provided and analyzed in Fitzmaurice et al.
(2004). This data has been utilized in Shang et al. (2008) for demonstrating
the performance of a similar hierarchical model in balanced mixed models. Here,
we apply the proposed hierarchical model to the data for the illustration of its
effectiveness.

The study is designed to reduce lead blood concentrations in children with
elevated levels. At the outset of the study, all participants were provided with
a month’s supply of vitamin and mineral supplements, and their homes were
inspected and cleaned based on a TLC regimen designed to suppress exposure to
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leaded dust. The participants (children) were randomly assigned to two groups.
Participants in the “treatment” group were then provided with succimer capsules,
whereas those in the “control” group were provided with a placebo. We consider
blood lead levels collected for 50 of the children who did not receive the succimer
capsules. Blood lead levels were measured at baseline (week 0), week 1, week 4,
and week 6. If we put these four time points in a reverse order, and let µ1, µ2,
µ3, and µ4 denote the lead level means corresponding to week 6, week 4, week 1,
and baseline, respectively. Since the homes of these children were cleaned using
an established TLC regimen, one might expect that the mean blood lead levels
satisfy the simple order restriction, i.e., µ1 ≤ µ2 ≤ µ3 ≤ µ4.

In the context of model (1.1), yij will denote the blood lead level for child j
(j = 1, · · · , 50) at time i (i = 1, · · · , 4).

Our preliminary analyses shows that the compound symmetric structure ad-
equately describes the control subject measurements. Model (1.1) also assumes
normality. At each time period, the blood lead levels are slightly skewed right, yet
the skewness does not appear to be strong enough to warrant a transformation.

To adjust the prior probability of Pr{H0} = 0.5 with k = 4, the prior prob-
ability of H0i must be 0.51/(4−1) = 0.7937. The choice ρi ∼ Beta(4, 1) gives
Pr{H0i} = E(ρi) = 0.80.

The results of our data analysis are listed in Table 4. Based on the pos-
terior estimates µ̂1, δ̂1, δ̂2, and δ̂3, the estimates for the mean blood lead lev-
els (µ1, µ2, µ3, µ4)

′ are (23.9097, 24.1833, 24.5793, 26.0028)′. For comparison,
the MLEs obtained by the EM algorithm are µ̂ = (23.6211, 24.0451, 24.6352,
26.2472)′. Both sets of estimates are reasonably close to the sample means ȳ =
(23.6460, 24.0700, 24.6600, 26.2720)′, and all satisfy the simple order restriction.

The posterior probabilities and the δi estimates in Table 4 suggest that δ3 > 0
(µ4 > µ3), yet imply that δ2 = 0 (µ3 = µ2) and that δ1 = 0 (µ2 = µ1). Thus,
the baseline mean is significantly higher than the week 1 mean, yet the week 1,
week 4, and week 6 means are not significantly different. It seems logical that
the most dramatic decrease in the blood lead level should occur during a period
of time immediately following the cleaning of the home. Over time, the lead level
should stabilize.

Table 4: Posterior parameter estimates for blood lead level data

sample means: ȳ = (23.6460, 24.0700, 24.6600, 26.2720)′

parameter µ1 σ2
τ σ2 δ1 δ2 δ3

mean 23.9097 23.2996 9.3633 0.2736 0.3960 1.4235
variance 1.2530 43.5819 3.642 0.4521 0.5712 1.3298

posterior probability
0.8210 0.7360 0.3043

P (δi = 0|Y )
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For the frequentist test, the value of the test statistic is 36.2550 (df = 147),
and the α = 0.01 critical value is 7.858. Hence, the frequentist method also
strongly favors rejecting the null hypothesis.

Table 5 features the results of the incomplete data sets by multiple impu-
tations. The incomplete data are randomly created. One can observe that the
parameter estimates and their variances are quite close. Moreover, the posterior
probabilities are quite close to those for the complete data set. Therefore, the
multiple comparison conclusions are similar.

Table 5: Posterior parameter estimates for incomplete data sets of blood lead
level data

By Imputations 10% missing 20% missing

parameter mean variance mean variance

µ1 23.8877 1.2457 24.0572 1.3399
δ1 0.3299 0.5758 0.3483 0.6470
δ2 0.3830 0.5364 0.3352 0.4867
δ3 1.2667 1.3209 1.4101 1.5159
σ2
τ 23.8824 44.2309 24.1760 25.2496
σ2 10.6002 5.1022 11.3082 7.3371

posterior probability
P (δ1 = 0|Y ) 0.7860 0.7844
P (δ2 = 0|Y ) 0.7314 0.7627
P (δ2 = 0|Y ) 0.3546 0.3300

With Missingness 10% missing 20% missing

parameter mean variance mean variance

µ1 23.9965 1.1589 23.9905 1.1740
δ1 0.2561 0.4294 0.2560 0.4212
δ2 0.3776 0.5237 0.3973 0.5419
δ3 1.3381 1.2764 1.3251 1.2994
σ2
τ 22.3255 17.7588 22.5531 28.1866
σ2 9.0079 3.4079 8.9905 2.9235

posterior probability
P (δ1 = 0|Y ) 0.8307 0.8308
P (δ2 = 0|Y ) 0.7403 0.7282
P (δ2 = 0|Y ) 0.3294 0.3357

Table 5 also shows the results of the incomplete data sets for ignoring the
missingness and the results are quite similar to those for the complete data set.

It should be mentioned that in this application, the joint probability Pr{Σ3
i=1δi

= 0 | Y } for the complete data is 23.17%. For the incomplete data with 10% miss-
ing values, the probability Pr{Σ3

i=1δi = 0 | Y } is 20.42% by multiple imputations
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and 24.73% by discarding the missing values, respectively; for the incomplete
data with 20% missing values, the probability Pr{Σk−1

i=1 δi = 0 | Y } is 22.75%
by multiple imputations and 24.95% by discarding the missing values, respec-
tively. Therefore, for the global test, all approaches result in rejecting the null
hypothesis.

6. Conclusions and Discussion

We have focused on a Bayesian hierarchical model for multiple comparisons
in unbalanced mixed models with a simple order restriction. The Gibbs sampling
and Metropolis-within-Gibbs sampling techniques are utilized to obtain param-
eter estimates and estimates of the posterior probabilities of the equality of the
mean pairs. The simulation and application results demonstrate that the model
is an effective tool for multiple comparisons. Furthermore, by employing the
model, estimation of parameters, multiple imputations, and multiple compar-
isons are unified. In the situation where the missing values are MCAR or MAR,
multiple imputations and multiple comparisons can be bonded in one setting and
it can perform more effectively than just discarding the missing values. However,
these are just examples, thus general conclusions may not be assumed.

With respect to Type I errors for the hypothesis testing in the mixed models
with missing values, our simulation results (not presented here) demonstrate that
using the proposed hierarchical mixed model with the decision rules in (3.1) and
in (3.2) can generally keep pairwise Type I errors and experimentwise error rate
(EER) quite small (below 0.05) and smaller than pairwise Type I errors and EER
via the frequentist method. Meanwhile, this proposed test procedure can retain
test powers appropriately large.

Informative prior distributions for the variance components can affect the
results of multiple comparisons although the further research about informative
priors are not carried out here. The discussion and theoretical results of Hill
(1965) indicated that in some settings the likelihood contributes very little to
the posterior distribution of the variance components, and the applicability of
informative prior distributions for σ2τ and σ2 was indicated in Chaloner (1987).
In situations where a researcher is very confident that the informative priors more
closely reflect the true conditions than noninformative ones, the use of informative
priors may lead to superior results.

To extend this methodology in our future research, we plan to modify the
hierarchical model for the other order-restricted assumptions or to extend the
proposed hierarchical model in additional mixed modeling frameworks of practical
interest.

Acknowledgments



A Multiple Comparison Procedure for Mixed Models with Missing Values 329

The author would like to express her appreciation to the referee for providing
thoughtful and insightful comments which helped to improve the original version
of this manuscript.

References

Chaloner, K. (1987). A Bayesian approach to the estimation of variance com-
ponents for the unbalanced one-way random model. Technometrics 29,
323-337.

Fitzmaurice, G., Laird, N. and Ware, J. (2004). Applied Longitudinal Analysis.
New York: John Wiley & Sons.

Gelfand, A. E., Hills, S. E., Racine-Poon, A. and Smith, A. F. M. (1990). Illus-
tration of Bayesian inference in normal data models using Gibbs sampling.
Journal of the American Statistical Association 85, 972–985.

Gelfand, A. E., Smith, A. F. M. and Lee, T. (1992). Bayesian analysis of
constrained parameter and truncated data problems using Gibbs sampling.
Journal of the American Statistical Association 87, 523–532.

Gottardo, R. and Raftery, A. E. (2008). Markov Chain Monte Carlo with mix-
tures of mutually singular distributions. Journal of Computational and
Graphical Statistics 17, 949–975.

Hill, B. M. (1965). Inference about variance components in the one-way model.
Journal of the American Statistical Association 60, 806–825.

Kim, S. and Sun, D. (2001). Intrinsic priors for model selection using an en-
compassing model. Lifetime Data Analysis 6, 251–269.

Little, R. and Rubin, D. B. (1987). Statistical Analysis with Missing Data. John
Wiley & Sons, New York.

Molitor, J. and Sun, D. (2002). Bayesian analysis under order functions of
parameters. Environmental and Ecological Statistics 9, 179–193.

Mukerjee, H. (1988). Order restricted inference in a repeated measures model.
Biometrika 75, 616–617.

Nashimoto, K. and Wright, F. T. (2008). Bayesian multiple comparisons of sim-
ply ordered means using priors with a point mass. Computational Statistics
and Data Analysis 52, 5143–5153.



330 Junfeng Shang

Pauler, D. K., Wakefield, J. C. and Kass, R. E. (1999). Bayes factors and
approximations for variance component models. Journal of the American
Statistical Association 94, 1242–1253.

Robertson, T, Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Sta-
tistical Inference. New York: John Wiley & Sons.

Schafer, J. L. (1999). Multiple imputation: a primer. Statistical Methods in
Medical Research 8, 3–15.

Shang, J., Cavanaugh, J.E. and Wright, F.T. (2008). A Bayesian multiple com-
parison procedure for order-restricted mixed models. International Statis-
tical Review 76, 268-284.

Singh, B. and Wright, F. T. (1990). Testing for and against an order restriction
in mixed-effects models. Statistics and Probability Letters 9, 195–200.

TLC Trial Group. (2000). Safety and efficacy of succimer in toddlers with blood
levels of 20-44 µg/dL. Pediatric Research 48, 593–599.

Westfall, P. H., Johnson, W. O. and Utts, J. M. (1997). A Bayesian perspective
on the Bonferroni adjustment. Biometrika 84, 419–427.

Receied November 18, 2009; accepted May 18, 2010.

Junfeng Shang
Department of Mathematics and Statistics
Bowling Green State University
450 Math Science Building, Bowling Green, OH 43403, USA
jshang@bgsu.edu


