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We congratulate Wang et al. for their nice work on the COVID-19 epidemic in China. As
of April 16, 2020, COVID-19 has become a pandemic and is affecting over 200 countries and
regions in all continents except Antarctica. Modeling of COVID-19 data is of great importance,
because it can provide insight into the dynamics of the spread of SARS-COV-2, the virus that
causes the COVID disease, and the effects of mitigation policies. Such insight is helpful for
health workers and policy makers to evaluate potential interventions and make forecast about
the future trend of the virus spread. This is exactly the aim of Wang et al. In addition, we
appreciate the authors’ effort in providing an R package eSIR, which facilitates the data analysis
using the proposed model. In what follows, we comment on the modeling approach taken by
Wang et al. and suggest future directions for this area of research.

1 The Proposed State-space SIR Model

Generally speaking, epidemic models can be categorized as deterministic models and stochastic
models. Most epidemic models consider a partition of the population into different compartments.
These compartments correspond to individuals at different stages of a disease epidemic, such as
susceptible individuals (who do not have the disease but can be infected), infectious individuals
(who have the disease and can infect others), and removed individuals (who had the disease and
cannot be infected again or infect others). Each individual precisely belongs to one of these
compartments, i.e., the compartments are mutually exclusive and exhaustive. The spread of the
disease is described by the flow of people across different compartments.

Deterministic models characterize disease transmission through a set of differential equa-
tions. For example, the classical susceptible-infectious-removed (SIR) model (Kermack and
McKendrick, 1927) is given by the following equations:

dθSt
dt

= −βθSt θIt ,
dθIt
dt

= βθSt θ
I
t − γθIt , and

dθRt
dt

= γθIt . (1)

Here, following the notations in Wang et al., θt = (θSt , θ
I
t , θ

R
t )
> denotes the prevalences of

susceptible, infectious and removed individuals in the entire population at time t, and β and γ
are the transmission and removal rates, respectively. Given the initial prevalences of the three
compartments and the parameter values, the trajectory of θt over time is fully determined by
Equations (1).

In practice, the spread of disease is rarely a deterministic process. Furthermore, it is likely
that the prevalences of some compartments are observed with error or may not be observed at all.
As a result, stochastic/statistical modeling is needed to take these considerations into account.
The state-space SIR model developed by Osthus et al. (2017) incorporates measurement errors
by modeling the observed prevalences as random variables centered at values indicated by a
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deterministic SIR model. Specifically,

Y c
t | θt ∼ Beta(λcθct , λ

c(1− θct )), and θt | θt−1 ∼ Dirichlet(κf(θt−1, β, γ)). (2)

Here, Y c
t is the observed proportion of compartment c ∈ {S, I,R} at time t, and f(·) is the

deterministic SIR curve indicated by Equations (1). The deviation of Y c
t from the deterministic

SIR trajectory is captured by additional variance parameters λc and κ. Model (2) was originally
developed in Osthus et al. (2017) for modeling seasonal influenza. The idea of model (2) is quite
general and has also been used in other applications such as Osthus et al. (2019). Wang et al.
extended this modeling framework, specifically for the analysis of COVID-19 data, by considering
(i) a time-varying transmission rate, β = β(t), or (ii) a quarantine compartment θQt in the model.
In addition, the Runge-Kutta approximation of f(·), first proposed in Osthus et al. (2017) and
then adopted by Wang et al., facilitates posterior computation.

In model (2), it can be seen that θt is a (latent) discrete-time Markov process. An alternative
way of specifying the process {θt, t ≥ 0} is through a stochastic SIR model directly. See, for
example, Andersson and Britton (2000). Specifically, one may assume that the times each
infectious individual has contacts with a given susceptible individual follows a Poisson process
of rate β. Suppose any of these contacts can result in the susceptible individual being infectious
immediately. Furthermore, suppose the time between the infection and removal of an infectious
individual follows an exponential distribution of rate γ. Assume all those Poisson processes and
exponential distributions are independent of each other. Then, θt is a continuous-time Markov
process. This direction may be considered in the future.

2 Posterior Inference for the State-space SIR Model

Wang et al. used a Markov chain Monte Carlo algorithm to obtain draws from the posterior
distribution of the parameters. Specifically, the R package rjags (Plummer et al., 2019) was
used for posterior simulation. We note that since model (2) is essentially a dynamic model,
online and sequential algorithms such as sequential Monte Carlo (Doucet et al., 2001) may be
considered in the future to improve the efficiency of posterior sampling. In that way, when data
at more time points become available, one can update the posterior in an efficient way rather
than re-fitting the model to the complete data.

It is also worth noting that parameter estimations of model (2) may be sensitive to the
choice of hyperparameters. Wang et al. specified the hyperparameters in a sensible way using
SARS data.

3 Concluding Remarks

The work by Wang et al. illustrates the potential and power of statistical modeling for infectious
diseases like COVID-19. The work was focused on the COVID-19 outbreak in China, but the
proposed model is also applicable to the data analysis for other countries like Italy or the United
States. The COVID-19 pandemic is still affecting many countries and may not end in the near
future. We hope to see more data-driven and model-based inference for the dynamics of the
spread of COVID-19 and hope such inference could be helpful for policy makers and health
workers.
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