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Abstract: To identify the stand attributes that best explain the variability in
wood density, Pinus radiata plantations located in the Chilean coastal sector
were studied and modeled. The study area corresponded to stands located in
sedimentary soil between the zones of Constitución and Cobquecura. Within
each sampling sector, individual tree variables were recorded and the most
relevant stand parameters were estimated. Fifty trees were sampled in each
sector, obtaining from each one six wood discs from different stem heights.
Each disc was weighed in green and then dried to anhydrous weight, and
its basic density was calculated. The profile identification to classify basic
density according to stand characteristics was performed through regres-
sion trees, a technique based in the use of predictor variables to partition
the database using recursive algorithms in regions with similar responses.
The objective of the regression tree method is to obtain highly homogenous
groups (branches), which are identified using pruning techniques that suc-
cessively eliminate the branches that least contribute to the classification of
the variable of interest. The results found that the stand attributes that
contributed significantly to basic density classification were the basal area,
the number of trees per hectare, and the mean height.
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1. Introduction

Forestry modeling has commonly been based in attribute quantification and
prediction at the stand and individual tree level. Due to the increased inten-
sity of stand management, with the goal of increasing both wood production and
quality under different management conditions, more and better information with
respect to forest growth and performance is also necessary. Growth simulators are
a valuable decision-making tool in the forestry sector. These are based in models
that estimate future tree growth over a certain time period, and consequently
make forecasts on the wood resources to be produced, evaluate silvicultural pre-
scriptions, and economically analyze different management alternatives (Vanclay,
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1994). However, these simulators are not capable of predicting wood quality un-
der different silvicultural options (Tassisa and Burkhart, 1998). Of the wood
properties that affect quality, basic density is one of the most important because
it determines its utilization in saw mills, manufacturing factories, cellulose plants,
and as planks. Due to this relation with the final product quality, saw mills and
paper industries are interested in both density and its variability (Tian et al.,
1995). Haygreen and Bowyer (1996) found several factors that affect the vari-
ability in basic density, such as the site, climate, geographic location, species,
age, and silviculture. Valencia and López (1999) indicate that the value of basic
density and its variation depends to a great degree on the height and tree section
where the sample is extracted. In general, the majority of the studies on wood
properties are based in the description and evaluation of the variability and its
causal factors without providing tools to estimate these properties.

Wood property estimation is commonly performed within specific zones and
using traditional statistical tools such as regression models. Other non-traditional
model construction methods are the so-called classification and regression trees
(CART) (Breiman et al., 1984), whose objective is to obtain highly homogenous
groups (branches), which are achieved using pruning techniques that consist in
successively eliminating the branches that contribute least to the classification
of variable of interest (Larsen and Speckman, 2002; Skinner et al., 2002; Moisen
and Frescino, 2003; Tamminen et al., 2003). The decision trees can be used to
define wood use in function of stand characteristics, identifying wood production
areas with defined characteristics and according to market specifications.

Due to the need of more disaggregated information with respect to the wood
density of Pinus radiata (radiate pine) in Chile, the general objective of this
study is to identify the stand attributes that best explain wood variability in this
species. The specific objectives are to identify profiles that classify wood density
according to its most relevant stand characteristics.

2. Materials and Methods

Study Area

The study area corresponded to radiata pine tree plantations, aged between
20 and 28 years, established in the Chilean coastal sector between Constitución
and Cobquecura (34◦50′ a 36◦25′ S) in predominantly sedimentary-origin soils.

Description of Sampling Sector

The sampling sector was characterized at three levels: site, stand, and in-
dividual tree. At site level, the soil type was recorded; at stand level, the
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site index (dominant and codominant trees height), age, density (trees/hectare),
height, mean diameter, and basal area (occupation area tree) were recorded. The
breast height diameter, total height, and crown initiation height (first live branch
height), crown class, and height at which the wood discs were obtained were
recorded for each tree sampled. The table 1 shows the main statistics of stand
characteristics for sampled trees.

Table 1: Stand characteristics for sampled trees

Age Site Stand Basal Mean Mean
(years) Index Density Area height diameter

(m) (tree/ha) (m2/ha) (m) (cm)

Average 26 26.7 627 39.4 30.7 26.8
Minimum 20 22.9 440 21.2 27.7 23.2
Maximum 28 30.4 867 77.1 32.9 32.6
Deviation 3 2.5 196 21.5 1.8 3.2

Sampling and Laboratory Procedures to Basic Wood Density Determination

In the tree selection process, the diameter classes that were principally rep-
resented in the distribution that characterized the stand structure (regular, with
classes 22 to 32 cm diameter) were considered, choosing stems that were cylindri-
cal, straight, and free of bifurcations and defects. Eighty two trees were sampled
on five stands (standard deviation of 5 kg/m3 and a confidence level of 95%).
From each sampled tree, six discs were extracted: at the stump, at 5% (Dap),
25%, 50%, and 75% of the tree’s commercial height as well as at the utilization
limit diameter (ULD) 8 cm (sample total: 82 trees×6 disc/tree = 492). Each one
of the samples (wood disc) were weighed and measured green, following Chilean
Standards NCh 176/1 and 176/2 (INN, 1985, 1986), and subsequently dried in
a stove at 103 ± 2◦ until obtaining anhydrous weight. The basic density was
calculated relating the sample’s anhydrous weight with respect to its green state
volume.

Statistical Analysis

Regression Trees Construction

With the descriptive stand variables for the study area (Table 1), regression
trees were constructed using software S-PLUS 2000 (Mathsoft, 2000). The process
is the following: Consider the multiple regression problem yi = f(xi1, · · · , xip) +
εi, i = 1, · · · , n, where f is unknown and not easily parameterized; xij are
independent known variables, and εi are random error terms with zero mean. A
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node N is a subgroup of indexes {1, · · · , n}. The deviance of node N is defined
as:

D (N) =
∑
i∈N

(yi − ȳ (N))2, (1)

Where ȳ(N) is the mean of the observations in node N . The root node consists
in all the observations, and in each step, the parental node is divided recursively
in two child nodes: a left node (NL) and a right node (NR) in order to minimize
(NL)+D(NR). Node partition is performed considering, in the case of continuous
variables, all the divisions of the formula NLj = {i ∈ N : xij ≤ t}, NRj = {i ∈
N : xij > t} for constant t.

For each independent variable, all the possible partitions are considered, cal-
culating the deviance for the following node to be divided D(NL) +D(NR). The
candidate partitions are calculated for each independent variable, and variables
that produce the best divisions (with less deviance) are selected to partition node
N . The algorithm proceeds recursively until the next partition cannot be per-
formed according to predetermined criteria. Normally, a number of nodes or
stops is specified a priori when the deviance of the node is above a certain level
(Larsen and Speckman, 2002).

The selection of one tree with respect to another will generally depend on the
estimation of its error rate R(T ). This rate can be estimated in several manners,
where the most notable is cross validation. This estimation method consists in
estimating R(T ) to the estimator by validation sample in a reiterate and analo-
gous manner. Each time, a fraction k−1 of the total sample size is removed from
the tree construction sample. In this way, k estimates R(1)(T ), · · · , R(k)(T ) are
obtained and averaged in using the following formula:

Rcv(T ) =
R(1)(T ) + · · ·+R(k)(T )

k
, (2)

where Rcv(T ) means R cross-validation. In the case that the tree constructed for
each one of the sub-samples is different from the others, the previous expression
would not be valid.

A basic technique in tree construction suggests the construction of leafy trees,
arriving to the maximum possible tree Amáx without considering error rates,
and pruning can be performed after their construction by choosing the tree that
provides the lowest error rate. Once the entire tree Amáx has been constructed,
and is adjusted to fit the data, a pruning algorithm is applied to obtain a sequence
of sub-trees through the successive suppression of the branches that provide less
information in terms of discrimination between the class of the response variable
Y. Tree pruning is a procedure that is analogous to the “Backward” selection in
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regression: removes some of the terminal nodes. Finally, the sub-tree A∗ that
provides the lowest error rate is selected (Puerta, 2002).

According to Larsen and Speckman (2002), a bonding criterion for adjustment
of tree T with {Nk} terminal nodes is defined as:

D(T ) =
∑∗D(Nk), (3)

where
∑∗ means summing over all the terminal nodes Nk. If a tree T ′ is a sub-

tree of T , clearly D(T ) ≤ D(T ′). The pruning algorithm successively removes
pairs of terminal nodes corresponding to the partition with the least deviance.
In other words, if T has terminal nodes {Nk}, then each pair {N2j , N2j+1} is the
result of the division of a larger node N j with D(N j) ≥ D(N2j)+D(N2j+1). The
totality of the terminal node pairs are examined, and the pair with the lowest
D(N j)−D(N2j)−D(N2j+1) is removed to create a new sub-tree T ′. This method
is analogous to removing the least significant variable in the “backward” selection
process. The process is repeated to create a nestled set of trees Tm ⊂ · · · ⊂ T 0,
where T 0 is the entire tree and Tm corresponds to the tree with only a root node.

To select the quantity of tree sequences, Breiman et al. (1984) propose a
measure of cost-complexity for the tree T ,

Dα(T ) = D(T ) + α× size(T ), (4)

Where α is a parameter chosen to adjust for cost-complexity. For a certain α,
there is at least one tree that minimizes Dα(T ). Where α = 2σ2, it corresponds to
the automatic information criterion (AIC). The deviance of the nestled sequence
is a decreasing function of α.

Breiman et al. (1984) suggests that an optimal tree should be one with the
least possible quantity of terminal nodes, with a standard minimum error, and
with the lowest cost from the point of view of the information that it should
contribute.

3. Results and Discussion

The constructed regression tree found that the stand variables that principally
contribute to the wood density classification are in their order of importance in
the discriminatory process: the basal area per hectare, the mean height, stand
density, and site index (Figure 1). The tree’s left branch has grouped the stands
with low average basic density (415.7 kg/m3), corresponding to those stands with
a basal area below 22.1 m2/ha. The right branch has grouped the stands with
higher basic density defined by the variables mean height, stand density, and site
index. The stands with the highest basic density (482.3 kg/m3) are found at a
mean height lower than 32.2 m and a stand density below 455 trees/ha (Figure
1).
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Figure 1: Complete tree with five terminal nodes using only stand characteris-
tics. The sample sizes of each node are indicated by “n”.

Since the complete regression tree is usually generated by the CART method,
the model is over-adjusted. Consequently, pruning methods need to be used
to eliminate the terminal nodes that least contribute to the classification of the
variable of interest. For this reason, the tree was pruned using the cross-validation
method (Breiman et al., 1984). Figure 2 shows the deviance behavior considering
several tree sizes (number of terminal nodes), indicating that with three nodes it
is possible to diminish model deviance, reducing the dimensionality of the original
tree from five to only three terminal nodes, avoiding in this way over-adjusting
the model.

After pruning, the regression tree was constituted by only two stand variables
(basal area per hectare and mean height), and with which the model could ade-
quately discriminate the stands according to wood density. The highest average
basic density (477.5 kg/m3) is given by stands with a mean height lower than
32.2 m and a basal area larger than 22.1 m2/ha (Figure 3).

If the stand’s mean height is considered as a quality predictor variable, given
its close relation with the site index, then it reasonable to think that the stands
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Figure 2: Fitted deviance reduction of the complete tree model, using a tree
with three terminal nodes.

Figure 3: Final tree after pruning to three terminal nodes. The sampling sizes
of each node are indicated by “n”

that presented a higher basic density corresponded to those with lower mean
height. With respect to this point, numerous authors have demonstrated that
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wood density increases as site quality diminishes. Schutz et al. (1991), in a study
of Pinus patula in different sites, demonstrated that the site influenced 61% of the
total variation in basic density. Morales (1968) found for radiata pine in Chile that
the wood’s specific weight increased as the site’s quality diminished, increasing
21% between a good and a bad site. This result can be explained considering
that the specific weight is a function of the ratio that exists between the volume
occupied by the cellular walls and the volume of empty spaces. Logically, if
the length of the tracheids is lower in poor sites, then the volume occupied by
the cellular walls will grow, translating into an increase of wood density because
less space would be occupied by cellular cavities (Haygreen and Bowyer, 1996).
Several authors have demonstrated as well that ring width is relatively important
in the specific weight. Consequently, if growth velocity decreases in a lower quality
site, this will translate into a diminishment of ring width, increasing wood density
(DeBell et al., 1994).

With respect to the basal area, as the first discriminatory variable of wood
density and given that it corresponds to a measure of stand density, it is logical
to conclude that at higher basal area values, the basic density will be higher.
According to González and Molina (1989), a forest’s growth rate will be affected
by the quantity of trees per surface unit since the growth potential is distributed
on these. With less individual per surface unit, and consequently lower basal
area, growth will be faster, generating wider rings, and consequently less den-
sity. According to Larocque and Marshall (1995), stand density closely affects
wood density in Pinus resinosa, generally presenting a decreasing tendency in
wood density as tree spacing increases. With respect to this point, Cown and
McConchie (1982) signal that the principal factor affecting wood’s intrinsic prop-
erties is tree age, which closely controls wood density and the development of
later wood development. The growth rate per se has been demonstrated to have
a minimal effect on wood density, although several studies have demonstrated
that stand density levels and the wood density are negatively correlated (Cown
and McConchie, 1982).

4. Conclusions

Considering the complete regression tree, the stand attributes that signifi-
cantly contribute to the classification of basic density are: basal area, number of
trees per hectare, mean height, and site index.

The regression tree reduced by cross validation diminishes the dimensionality
of the final model, incorporating the basal area and mean height as the only stand
variables in the classification of basic wood density.
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Available in: http://www.eustat.es/documentos/datos/ct 04 c.pdf
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Tecnoloǵıa de la Madera, Universidad de Chile. Santiago.



270 Eduardo Navarrete and Miguel Espinosa

Schutz, C., Christie, S. and Herman, B. (1991). Site relationship for some wood
properties of pine species in plantation forests of southern Africa. South
Africa Forestry Journal 156, 1-6.

Skinner K., Montgomery, D., Runger, G., Fowler, J., McCarville, D., Reed, T.
and Stanley, J. (2002). Multivariate statistical methods for modeling and
analysis of wafer probe test data. IEEE Transactions on Semiconductor
Manufacturing 15(4), 523-530.
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