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Abstract: Sample size and power calculations are often based on a two-group
comparison. However, in some instances the group membership cannot be
ascertained until after the sample has been collected. In this situation,
the respective sizes of each group may not be the same as those prespeci-
fied due to binomial variability, which results in a difference in power from
that expected. Here we suggest that investigators calculate an “expected
power” taking into account the binomial variability of the group member-
ship, and adjust the sample size accordingly when planning such studies.
We explore different scenarios where such an adjustment may or may not be
necessary for both continuous and binary responses. In general, the number
of additional subjects required depends only slightly on the values of the
(standardized) difference in the two group means or proportions, but more
importantly on the respective sizes of the group membership. We present
tables with adjusted sample sizes for a variety of scenarios that can be read-
ily used by investigators at the study design stage. The proposed approach
is motivated by a genetic study of cerebral malaria and a sleep apnea study.
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1. Introduction

In study design investigators often wish to determine the sample size necessary
to provide a specified power. Clinical studies without a sufficient sample size
can fail to detect a significant effect when it exists. This consideration must
be balanced with the high cost of recruiting and evaluating large samples of
subjects, thus making sample size (power) calculations a crucial step in designing
clinical research studies. To conduct sample size calculations for the two-group
case, an investigator needs to specify the group means (i.e., proportions for a
binary response), the group variances, the desired power, the type I error rate,
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the number of sides of the test, and the ratio of the two-group sizes (Bland,
2000). However, sometimes an individual’s group membership is only available
after the data have been collected. This may occur due to cost, time, and other
considerations and is most common in non-randomized trials and observational
studies.

For example, HIV studies often result in group membership that is subject
to binomial variability. Often patients are recruited at STD or drug clinics and
are categorized by their HIV status or CD4 count (< 200, 200− 500, and ≥ 500).
Patients with and without HIV may be compared to gain insight on potential
risk factors for HIV in different settings, and HIV-positive subjects may then be
followed over time to assess their disease progression. Persons with lower CD4
counts are usually sicker, more at risk for opportunistic infection, and may be at
an advanced stage of disease. However, the HIV tests must be sent to a laboratory
making it difficult to recruit patients into the study before their status or CD4
count is known.

Sample surveys also often result in data where group membership may not
be ascertained until after the sample is selected. For example, sample surveys
are often conducted in sub-Sarahan Africa to assess the effectiveness of malaria
prevention techniques in different settings, such as insecticide-treated bednets or
indoor residual spraying, and the impediments to such use (Rowe et al., 2006).
In some cases households are selected from a census or surveillance list and in
other cases households are randomly selected when the interviewers enter a village
when no such list exists. In either case, bednet use or indoor residual spraying is
not assessed until after the household has been selected and visited.

Here we describe two specific studies where group membership is subject to
binomial variability, one with a continuous outcome and the other with a bi-
nary one. An example of a study with a continuous outcome is a malaria study
that plans to test the role of a biological factor (BF) to protect against cerebral
malaria. This study will attempt to determine if polymorphism in the BF gene
influences BF levels and cases of cerebral malaria among malaria endemic popu-
lations. The genetic testing and measurement of BF levels will be conducted on
stored blood samples from a previous study and will be costly and time consum-
ing. We can assume that approximately 10% of the population has the genotype
associated with low production of BF. The remaining 90% of the population has
the genotype associated with normal or high production of BF. We are interested
in testing the hypothesis that there is a statistically significant difference in mean
BF levels between the two genotype groups.

Several studies among adults have shown that sleep-disordered breathing
(SDB) is significantly associated with metabolic disorders (Punjabi and Polot-
ski, 2005; Vgontzas, Bixler, and Chrousos, 2005). However, little is known about
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the impact of SDB among children. The Penn State Children Cohort (PSCC)
was designed as a population-based study of the prevalence and correlates of SDB
among young children (i.e., kindergarten to fifth grade). Previous estimates in-
dicate that approximately 25% of these children have a mild to moderate form of
SDB, defined as an apnea/hypopnea index (AHI)≥ 1. We are interested in testing
the hypothesis that children with SDB have increased risk of insulin resistance,
a major metabolic disorder. Following Cruz and Goran (2004), abnormal waist
circumference (WC) was used in this study as a surrogate for increased insulin
resistance. The percentages of abnormal WC in the pilot data study were 30%
and 19% among those with and without SDB, respectively.

In the first phase of this study, questionnaires were sent to the parents to iden-
tify some of the signs and symptoms of their childrens’ sleep disorder, such as
snoring, breath cessation or difficulty breathing, restless sleep, daytime sleepiness,
and school or behavior problems. However, it was not possible to confirm the
presence of clinically diagnosed SDB based solely upon parental reports. There-
fore, the study required a second phase which involved the selection of a subset
of children from those parents who returned the questionnaire. These children
then spent one night in the sleep laboratory, and only then could SDB status and
WC be ascertained. The objective of the sample size calculation is to determine
the number of children to participate in the phase II study.

In each of the above examples, preliminary sample size calculations may be
misleading because group membership is subject to uncertainty and can only be
ascertained only after the sample is collected. Methods for correcting sample
sizes for testing group mean differences with random predictors or estimated
population parameters have been proposed. The focus has been on a normally-
distributed quantitative trait that can be described by an univariate linear model.
Jayakar (1970) proposed tests for the detection of linkage between a marker locus
and a locus influencing a quantitative trait. Methods for evaluating the power
of F-tests based on an ANOVA model used for assessing the linkage have been
presented (Soller and Genizi, 1978; Genizi and Soller, 1979). In this situation,
group differences could assume a few discrete values with prescribed probabilities.
The above authors note that there will be variation in the number of offspring
with a particular genotype and that sample size calculations may have to be
slightly inflated.

Fay et al. (2007) considered two sources of variability when conducting
sample-size calculations for testing differences in means between two samples.
The first source of variability is nonadherence (noncompliance). They assumed
that the proportion of subjects who will adhere to their treatment regimen is
not known before the study but is a stochastic variable with known distribution.
They derive closed form sample size calculations based on asymptotic normality
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taking this assumption into account. Secondly, the authors account for the vari-
ability in parameter estimates (i.e., effect size and variances) that are estimated
from prior data by using a slightly larger nominal power in the usual sample size
calculation. The first scenario of Fay et al. (2007) is similar to our problem in
that the final sample size in each group may not be the same as initially planned.

In Section 2, we demonstrate how the preliminary sample size calculated
in such circumstances may not achieve the power prespecified because of the
binomial variability in the group sizes. We propose a method for sample size
correction in these situations to account for this variability and investigate various
scenarios for both continuous and binary responses where the method is required
or not. We focus on the situation where group membership is ascertained after
the entire sample has been collected. If group membership is being ascertained
sequentially or in batches then a sequential or adaptive method might be used as
suggested by a reviewer. We illustrate our approach with the above examples in
Section 3. We conclude with a short discussion and make recommendations on
when such sample size adjustments are necessary.

2. Methods

2.1 Overview

Let w denote the weight for group 1, that is the probability that an individual
will belong to group 1. Assume that w is fixed throughout the study period.
Further assume that N individuals will be randomly selected from the study
population. Usually investigators are able to select n1 and n2 individuals from
groups 1 and 2, respectively. However, in our situation group membership is not
ascertained until after sample selection, resulting in varying n1 and n2 group sizes.
In the two examples previously described, individuals need to be enrolled prior to
the group membership determination. Therefore, calculating n1 and n2 during the
design stage requires an assumption concerning the proportion of the population
classified in group 1. This leads to a potential problem in the sample size
calculation; after the study is conducted and the group membership is ascertained
for each individual, the actual size of each group may not be the same as what
was prespecified because of binomial variability. As a result, the actual power
based on the calculated sample size is different from that targeted. Thus, we
distinguish between three types of power. Targeted power is the power specified
for the study during the design stage (1 − β where β is the type II error rate),
and is also referred to as nominal power (e.g., Fay et al., 2007). Initial-N power
is the power given the initially calculated sample size N . Here we define expected
power as a weighted average of power estimates across the range of possible n1
and n2 values. This is the probability of rejecting the null hypothesis given the
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study design that yields a total sample size of N with the assumption that the
probability of being in group 1 equals w.

Consider the following hypothetical example in which a study plans to recruit
individuals with the assumption that 10% (w) of the individuals will belong to
group 1 and 90% of the individuals will belong to group 2. We assume the
outcome is normally distributed and that the two groups have a common standard
deviation (σ = 1). The hypothesis of interest is: H0: µ1- µ2 = 0 versus H1: µ1-
µ2 6= 0. The total sample size of 50 is calculated based on a significance level
of 0.05, a two-sided t-test with 90% power, and a mean group difference of 1.56.
After recruitment group membership is ascertained; of the 50 recruited subjects,
the number of individuals belonging to group 1 may not be exactly 5. Because of
binomial variability, n1 can range from 0 to 50, with the largest probabilities near
5. If n1 = 5 or 45, the initial-N power is 90%, as planned. However, if n1 = 4,
then the initial-N power is 83%. In the extreme situation in which n1 = 0 or
50, the initial-N power is 0% because for the two-sample comparison n1 and n2
must both be at least 1 (or 2 when the variances are estimated separately). Here
we define expected power (EP) as the weighted average of power over all possible
values of n1 from 0 to N with the weights being the corresponding probabilities
obtained from the binomial distribution:

EP =
N∑
y=0

(
N

y

)
wy(1− w)N−y(Powery,N ), (1)

in which Powery,N is the power given that y individuals are in group 1 and
N − y in group 2. In Appendix 1, we present the power functions that we use
for the t-test (O’Brien and Muller, 1993, pp. 297-344), the continuity-corrected
Pearson chi-square test, and Fisher’s exact test (Fisher, 1934). In particular,
power for the two-sided two-sample t-test is based on the F distribution. Power
for the two-sided Pearsons chi-square test is computed by adding the lower- and
upper-sided powers each with α/2 size, where one-sided power is computed as
suggested by Diegert and Diegert (1981). Then the sample sizes for the two-
sided two-sample t-test and Pearsons chi-square test are obtained by numerically
inverting the power formulas. For Fisher’s exact test, power and sample size
computations are based on the continuity-adjusted arcsine test (Walters, 1979;
also see SAS PROC POWER, 2004). Because n1 and n2 are random variables
during the planning stage, the initial-N power may be different from the targeted
power and the expected power. In this example with w = 0.1 and N = 50 the
expected power is 84.0%, which is less than the targeted 90%. In Appendix 2, we
present the binomial probability for n1 with w = 0.1 and N = 50, the initial-N
power, and the cumulative expected power for all possible combinations of n1 and
n2. Note that while n1 can technically range from 1 to 49, the practical range of



160 Hung-Mo Lin, Shannon K. McClintock and John M. Williamson

values given the assumptions is from 1 to 16.

2.2 Comparison of Two Independent Groups

Now we propose a method to correct the sample size when comparing two
independent means or two independent proportions. The correction is made to
ensure that the expected power equals the targeted power.

Step 1: Perform the usual sample size calculation for comparing two groups.
(For example, the total sample size reported for the previous hypothetical
example is 50, implying that n1 and n2 are 5 and 45, respectively.)

Step 2: Calculate the expected power given N ,w, and the other relevant param-
eters using formula (1) where power is calculated via the methods discussed
in sections 2.4 and 2.5. (The expected power for the example is 84.0%, which
is less than the targeted power of 90%. See Appendix 2.)

Step 3: If the expected power is less than the targeted power, increase the total
sample size by 1.

Step 4: Repeat Steps 2 and 3 until the expected power achieves the targeted
power. (The required sample size is 61 to achieve 90% expected power.)

In practice, investigators are likely to specify the ratio between n1 and n2 when
calculating sample size following the assumption made of the two-group propor-
tions in the population of interest. Therefore in a two-group design, all group
sizes are adjusted to be multiples of the corresponding group weights. Here we
advocate that, in the context of uncertain group membership at the design stage,
the need to force the n1 and n2 ratio to be fixed should be relaxed because the
ratio itself is an estimate as n1 and n2 are subject to binomial variability. Forc-
ing the ratio of n1 and n2 to remain as specified can potentially result in a very
conservative estimate of N yielding more power than desired. Different software
packages have different methods for specifying n1 and n2 or their ratio. For the
purpose of illustration, in Appendix 3 we show how the NFRACTIONAL option
in SAS PROC POWER can affect the sample size calculation using the previous
example.

2.3 Sample Size Correction for Comparing Two Means

Define N∗ as the corrected sample size that takes into account the binomial
variability of group membership, and define the correction factor (CF ) as the
ratio between the corrected sample size and the original calculated sample size,
that is CF = N∗/N . When comparing two means, one can express the means



Sample Size Correction for Two-Group Comparison 161

and variances together in terms of the standardized effect size (assuming equal
variances). Here we focus on the relationships of the sample size correction factor
and the difference N∗−N with power and the standardized effect size, assuming
the type I error rate is 0.05 with a two-sided test. We calculated the initial N
and followed Steps 2, 3, and 4 until the expected power was at least the targeted
power for each scenario.

Table 1 shows the unadjusted sample size N , the difference between the ad-
justed N∗ and N , and the correction factor as a function of targeted power (90%
and 80%) and standardized effect size (Std ES= 0.2 to 3) for different group 1
weights (w = 0.05, 0.1). In general, the CF is largest for small group 1 weights
and large effect sizes. However, the additional sample size required is more ap-
preciable when w approaches 0.1 or less. For w = 0.2, 2 to 4 extra subjects
are needed and no more than 2 extra subjects are needed for w ≥ 0.3 across all
effect sizes (results not shown). Interestingly, the difference between N∗ and N
remains similar across a wide range of standardized effect sizes. Furthermore, a
larger standardized effect size or a one-sided test (results not shown) alone does
not always correspond to a larger CF.

Table 1: The unadjusted sample size N , the additional sample required (N∗

−N), and the correction factor (CF) as a function of targeted power, standard-
ized effect size (Std ES) and group 1 weight (w). A two-sided two-sample t-test
was used for hypothesis testing at the α = 0.05 level.

80% Targeted Power 90% Targeted Power

Std w = 0.05 w = 0.1 w = 0.05 w = 0.1

ES N N∗ −N CF N N∗ −N CF N N∗ −N CF N N∗ −N CF

0.2 4133 16 1.00 2183 7 1.00 5533 23 1.00 2921 10 1.00
0.4 1035 15 1.01 547 7 1.01 1385 23 1.02 732 10 1.01
0.6 461 16 1.03 245 7 1.03 617 23 1.04 327 10 1.03
0.8 261 15 1.06 139 7 1.05 348 23 1.07 185 10 1.05
1.0 168 15 1.09 90 7 1.08 224 23 1.10 119 11 1.09
1.2 117 16 1.14 63 7 1.11 156 24 1.15 84 10 1.12
1.4 87 15 1.17 47 7 1.15 115 24 1.21 62 11 1.18
1.6 67 16 1.24 37 7 1.19 89 24 1.27 48 11 1.23
1.8 53 16 1.30 29 7 1.24 71 24 1.34 39 10 1.26
2.0 44 16 1.36 24 7 1.29 58 24 1.41 32 11 1.34
2.2 37 16 1.43 21 7 1.33 48 25 1.52 27 11 1.41
2.4 31 17 1.55 18 7 1.39 41 25 1.61 23 11 1.48
2.6 27 17 1.63 16 7 1.44 35 26 1.74 20 11 1.55
2.8 24 17 1.71 14 7 1.50 31 26 1.84 18 11 1.61
3.0 21 17 1.81 12 8 1.67 27 27 2.00 16 11 1.69

We also investigated the above relationships when using the Satterthwaite t-
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test assuming unequal variances for groups 1 and 2. Exact solutions for power for
the two-sided case are presented by Moser, Stevens, and Watts (1989). To illus-
trate, we continue our hypothetical example assuming various σ1 (= 0.5, 1, 1.5)
and σ2 (= 0.5, 1, 1.5) values. The results for power= 90% and w = 0.1 are pre-
sented in Table 2. Many of the observations noted in the equal variance case are
applicable here (results for power= 80% and w = 0.3 and 0.5 not shown). Specif-
ically, the relative increase in sample size caused by binomial variability (i.e., CF)
is greater when the study’s sample size is smaller and when a greater difference
exists between the two groups’ weights. In general, a larger targeted power also,
but not always, corresponds to a larger CF. Given the same standard deviation
for one group, the CF and N*−N decrease as the standard deviation for the
other group increases. In most cases, a larger CF corresponds to the situation in
which the smaller standard deviation is associated with the smaller group weight.
For instance, with weights= 0.1 and 0.9 for groups 1 and 2, respectively, the CF
is 1.72 when σ1 = 0.5 and σ2 = 1, as compared to 1.26 when σ1 = 1 and σ2 = 0.5.

Table 2: Sample Size Calculations for Testing H0: µ1 − µ2 = 0 versus H1:
µ1 − µ2 6= 0, assuming µ1 − µ2 = 1.56 with w = 0.1.

Targeted Expected
Power σ1 σ2 N Power N∗ CFa N∗ −N

90% 1.0 0.5 66 80.3% 83 1.26 17
1.0 1.0 67 81.1% 83 1.24 16
1.0 1.5 70 82.6% 85 1.21 15
0.5 1.0 32 59.6% 55 1.72 23
1.0 1.0 67 81.1% 83 1.24 16
1.5 1.0 122 86.4% 135 1.11 13

Note:
Unequal variances are assumed with α = 0.05 and a two-sided test.

a The correction factor is N∗/N .

2.4 Sample Size Correction for Comparing Two Proportions

Here we investigate the relationship between the sample size correction factor
for a two-sided Pearson chi-square test with a significance level of 0.05, power of
80% and 90%, group 1 weight (w = 0.05 and 0.1), and the outcome proportions
for groups 1 and 2, P1 (= 0.1 to 0.5) and P2 (= 0.1 to 0.9). We calculated an
initial sample size N for a test of a difference in proportions using Pearson’s chi-
square test, or Fisher’s exact test when the assumption of expected cell counts
greater or equal to 5 is violated. Then we followed Steps 2, 3, and 4 until the
expected power achieved the targeted power. Results are presented in Table 3.
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Table 3: The unadjusted sample size N , the additional sample required (N*-
N), and the correction factor (CF) as a function of targeted power, proportions
of outcome of interest for groups 1 and 2 (P1 and P2), and group 1 weight (w).
Pearson’s chi-square test, or Fisher’s exact test (bold) when the assumption of
all expected cell counts ≥ 5 does not hold, was used for hypothesis testing at
the α = 0.05 level.

80% Targeted Power 90% Targeted Power

w = 0.05 w = 0.1 w = 0.05 w = 0.1

P1 P2 N N∗ −N CF N N∗ −N CF N N∗ −N CF N N∗ −N CF

0.1 0.2 2251 18 1.01 1182 8 1.01 2875 26 1.01 1516 12 1.01
0.3 746 10 1.01 393 0 1.00 958 19 1.02 505 3 1.01
0.4 399 14 1.04 210 3 1.01 507 22 1.04 267 7 1.03
0.5 257 15 1.06 135 5 1.04 324 24 1.07 171 8 1.05
0.6 181 17 1.09 96 5 1.05 227 26 1.11 120 9 1.08
0.7 134 17 1.13 71 6 1.08 167 27 1.16 88 11 1.13
0.8 102 17 1.17 54 6 1.11 126 27 1.21 67 10 1.15
0.9 77 17 1.22 41 6 1.15 94 28 1.30 50 11 1.22

0.2 0.1 1836 13 1.01 987 6 1.01 2584 20 1.01 1381 8 1.01
0.3 3202 16 1.00 1685 7 1.00 4189 24 1.01 2209 11 1.00
0.4 886 17 1.02 467 8 1.02 1146 25 1.02 606 11 1.02
0.5 476 12 1.03 251 2 1.01 526 26 1.05 280 11 1.04
0.6 289 14 1.05 152 4 1.03 368 23 1.06 194 8 1.04
0.7 194 15 1.08 102 5 1.05 245 24 1.10 129 9 1.07
0.8 136 16 1.12 72 5 1.07 171 25 1.15 90 10 1.11
0.9 97 16 1.16 52 5 1.10 120 26 1.22 64 10 1.16

0.3 0.1 520 12 1.02 285 5 1.02 748 19 1.03 405 8 1.02
0.2 2905 14 1.00 1546 6 1.00 3981 21 1.01 2112 10 1.00
0.4 3810 16 1.00 2009 7 1.00 5042 24 1.00 2661 11 1.00
0.5 984 16 1.02 521 7 1.01 1298 24 1.02 687 11 1.02
0.6 429 15 1.03 228 8 1.04 566 24 1.04 302 10 1.03
0.7 297 13 1.04 157 3 1.02 380 22 1.06 201 7 1.03
0.8 189 15 1.08 100 4 1.04 240 24 1.10 127 8 1.06
0.9 125 14 1.11 66 5 1.08 156 25 1.16 83 9 1.11

0.4 0.1 373 9 1.02 139 5 1.04 362 18 1.05 199 7 1.04
0.2 767 14 1.02 412 6 1.01 1063 21 1.02 568 9 1.02
0.3 3632 15 1.00 1925 7 1.00 4917 23 1.00 2603 10 1.00
0.5 4084 15 1.00 2156 7 1.00 5447 23 1.00 2877 10 1.00
0.6 997 16 1.02 529 7 1.01 1334 23 1.02 707 10 1.01
0.7 409 15 1.04 219 7 1.03 553 22 1.04 295 10 1.03
0.8 281 12 1.04 149 2 1.01 271 21 1.08 147 9 1.06
0.9 167 13 1.08 89 3 1.03 211 23 1.11 112 7 1.06

0.5 0.1 237 12 1.05 126 2 1.02 212 18 1.08 118 8 1.07
0.2 350 14 1.04 190 6 1.03 486 20 1.04 261 9 1.03
0.3 925 15 1.02 493 7 1.01 1256 22 1.02 668 9 1.01
0.4 4024 16 1.00 2129 7 1.00 5405 23 1.00 2857 10 1.00

In general, the CF is larger for smaller group 1 weights (w). As the difference
between P1 and P2 increases, the sample size N decreases and the CF increases.
As with the two means comparison, the additional sample size required is more
appreciable when w approaches 0.1 or less. For w = 0.2 and 0.3, 0 to 4 extra
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subjects are needed, and no more than 2 extra subjects are needed for w >
0.3 across all combinations of P1 and P2 (results not shown). The difference
between N∗ and N depends only slightly on the values of P1and P2 but more
importantly on the value of w. In general use of Fisher’s exact test in the sample
size calculation will result in a larger total sample size, as expected. However, the
need for sample size correction due to the binomial variability of the membership
assignment is negligible for w > 0.1 and can be totally ignored for w ≥ 0.2.
Table 3 provides guidance on how many additional subjects are required. Similar
to the two-sample means comparison, larger targeted power or a one-sided test
(not shown) does not always correspond to a larger CF. In all the scenarios
investigated in sections 2.3 and 2.4, the expected power was always less than the
targeted power.

3. Examples

3.1 Cerebral Malaria Study

For the cerebral malaria example presented in the Introduction, we are in-
terested in testing the null hypothesis that there is no statistically significant
difference in mean BF levels between the two genotype groups. We assume that
the two groups comprise 10% (low BF levels) and 90% (normal or high BF lev-
els) of the population, respectively. We assume that the BF levels are normally
distributed with means of 250 and 500 for the respective groups with a common
standard deviation of 100. A t-test will be conducted to evaluate the null hy-
pothesis. We will need a sample of 21 to achieve 90% power based on the usual
sample size calculations without taking into account the binomial variability of
the group sizes. However, the expected power is only 76% with this sample size.
One would need a sample of size 32 to ensure that the expected power is at least
90%.

3.2 Children Sleep Disorder Study

The main hypothesis of the Penn State Children Cohort was that children with
SDB, defined as an apnea/hypopnea index (AHI)≥ 1 and estimated to be 25%
(w) of the population, have increased risk of metabolic disorder. The abnormal
waist circumference (WC) was used as a surrogate for insulin resistance, a major
metabolic disorder (Cruz and Goran, 2004). The percentages of abnormal WC
in the pilot data study were 30% and 19% among those with and without SDB,
respectively. The objective of the sample size calculation is to determine the
number of children needed to participate in the phase II study to detect an 11%
difference in the abnormal WC rates between the SDB and no SDB groups that
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was found in the pilot study.

The first row of Table 4 shows the original and adjusted sample sizes for the
scenario under consideration. There was a little difference between N and N∗. We
also performed several sensitivity analyses for different values of w, P1, and P2

because the prevalence rates of SDB and WC were estimated based on minimal
preliminary data. In this particular example, the study required a large phase 2
sample size N in general, and it is quite sensitive to the specification of w, P1, and
P2. This example illustrates a situation in which sample size correction is not
needed because the expected power for the initial sample size is approximately
the same as the targeted power for all the scenarios displayed in Table 4.

Table 4: Sample Size Calculations for the Penn State Children Cohort Study

Targeted Expected
Power wa P1 P2 N Power N∗ CFb

90% 0.25 0.3 0.19 835 89.9% 837 1.002
0.25 0.3 0.20 1028 89.9% 1031 1.003
0.25 0.3 0.15 415 89.9% 418 1.007
0.2 0.3 0.19 973 89.9% 977 1.004
0.3 0.3 0.19 749 89.9% 751 1.003

a The proportion of subjects in group 1.
b The correction factor equal to N∗/N .

4. Discussion

Two SAS macros that calculate the minimum sample size needed to achieve
an expected power greater than or equal to the targeted power for a two-group
comparison with a continuous and a binary response, respectively, are available
from the authors upon request. One must specify w and 1 − w (the weights
of the two groups), the targeted power, the type I error rate, and the number
of sides of the test. For a continuous response, one must additionally specify
the expected means µ1 and µ2 for groups 1 and 2 and their respective standard
deviations (whether assumed equal or unequal). For the binary response, one
must additionally specify the expected probabilities P1and P2 of the outcome
of interest for groups 1 and 2. The macros output the unadjusted sample size
N without taking into account the uncertainty of the group membership, the
initial-N power, the expected power for N , the adjusted sample size N∗, the
expected power for N∗, and the correction factor. The program will search for and
return the required sample size without requiring the user to manually increase
or decrease the sample size iteratively.
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There may be instances when a simpler (or cheaper), although imperfect, test
may be available for ascertaining group membership. As noted by a referee, if
the probabilities of correctly identifying subjects from each group are known or
can be estimated, then a study may achieve its specified power with a sample
size less than the adjusted sample size N∗, or even the initial sample size N , by
refusing more subjects with a higher probability of belonging to group 2. This
new sample size will of course be related to the misclassification probabilities of
the imperfect test.

To account for binomial variability in group sizes, we encourage investigators
to calculate expected power when designing a study that compares two groups in
which the group membership is not defined until the data have been collected.
The tables and macros provided by the authors can be used by an investigator to
verify (in any particular trial) if ignoring the sample size correction will impact
the power of the study. Although the increased sample size that results from
taking into account the binomial variability will ensure, on average, adequate
power to detect an effect, it will not guarantee it because a great imbalance
between the two group sizes is still possible. In general, the relative increase in
sample size (CF) caused by binomial variability is greater for larger differences
in the group weights for both continuous and binary outcomes. The CF also
increases as the standardized effect size increases for continuous outcomes or as
the difference in proportions increases for binary outcomes. More importantly, the
difference between N∗ and N depends only slightly on the values of standardized
effect size (or P1 and P2 when the response is binary), but more noticeably on
the value of w, the probability of group 1 membership. However, the difference
should be negligible unless the group weights are fairly dissimilar (0.1 or less).
These methods can be extended when there are more than two groups subject to
uncertain group membership.
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Appendix 1. Power Functions for Comparing Two Means and Two
Proportions

Notation
α significance level
N total sample size
wi allocation weight for ith group (standardized to sum to 1)
µdiff mean difference
µ0 null mean
σ common standard deviation
pi proportion of successes in group i
p0 null proportion of successes
zp the pth quantile from the standard normal distribution
F (v1, v2, λ) F distribution with numerator d.f. v1, denominator d.f. v2,

and noncentrality parameter λ
Φ(·) cumulative distribution function of the standard normal

distribution

For the two-sample, two-sided t-test assuming equal variances, the exact
power function is given by O’Brien and Muller, 1993:

δ=N
1
2 (w1w2)

1
2

(
µdiff − µ0

σ

)
,

power=P
(
F (1, N − 2, δ2) ≥ F1−α(1, N − 2)

)
.

Power function for the two-sample Pearson chi-square test for two proportions:

power = Φ

(
(p2 − p1 − p0)(Nw1w2)

1
2 − z1−α

2
[(w1p1 + w2p2)(1− w1p1 − w2p2)]

1
2

[w2p1(1− p1) + w1p2(1− p2)]
1
2

)

+Φ

(
−(p2 − p1 − p0)(Nw1w2)

1
2 − z1−α

2
[(w1p1 + w2p2)(1− w1p1 − w2p2)]

1
2

[w2p1(1− p1) + w1p2(1− p2)]
1
2

)
.

Power function for Fisher Exact Test for two proportions:

δ = (4Nw1w2)
1
2

[
arcsin

([
p2 +

1

2Nw2
(I{p2<p1} − I{p2>p1})

] 1
2

)

− arcsin

([
p1 +

1

2Nw1
(I{p1<p2} − I{p1>p2})

] 1
2

)]
,

power = Φ
(
δ − z1−α

2

)
+ Φ

(
−δ − z1−α

2

)
.
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Appendix 2. Binomial Probability for w = 0.1 and N = 50, the Initial-
N Power, and the Cumulative Expected Power

Initial-N Power Initial-N Power Cumulative
Binomial (n1, 0.1) given ×Binomial expected

n1 n2 pdf (n1, n2) pdf power

0 50 0.00515 0.00000 0.00000 0.00000
1 49 0.02863 0.32787 0.00939 0.00939
2 48 0.07794 0.56290 0.04387 0.05326
3 47 0.13857 0.72808 0.10089 0.15415
4 46 0.18090 0.83454 0.15097 0.30512
5 45 0.18492 0.90015 0.16646 0.47158
6 44 0.15410 0.93967 0.14481 0.61639
7 43 0.10763 0.96327 0.10367 0.72006
8 42 0.06428 0.97735 0.06282 0.78288
9 41 0.03333 0.98580 0.03286 0.81574
10 40 0.01518 0.99092 0.01505 0.83079
11 39 0.00613 0.99407 0.00610 0.83688
12 38 0.00222 0.99603 0.00221 0.83909
13 37 0.00072 0.99728 0.00072 0.83981
14 36 0.00021 0.99808 0.00021 0.84002
15 35 0.00006 0.99861 0.00006 0.84007
16 34 0.00001 0.99897 0.00001 0.84009
17 33 0.00000 0.99921 0.00000 0.84009
18 32 0.00000 0.99937 0.00000 0.84009
19 31 0.00000 0.99949 0.00000 0.84009
20 30 0.00000 0.99957 0.00000 0.84009
...

...
...

...
...

...
49 1 0.00000 0.32787 0.00000 0.84009
50 0 0.00000 0.00000 0.00000 0.84009

Appendix 3. NFRACTIONAL Option in SAS

In SAS PROC POWER, there are two methods available to specify group
weights. For the first method you may specify integer values for the two group
weights with the GROUPWEIGHTS option. For the second method you may
specify decimal values for group weights with the NFRACTIONAL option. When
specifying integer values with the GROUPWEIGHTS option the total sample
size must be a multiple of the sum of the two weight integers. However, when
specifying decimal values in conjunction with the NFRACTIONAL option this
no longer applies. For example, suppose our pre-specified group weights were
10% for group 1 and 90% for group 2. Using option 1 with group weights 1 and
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9, a sample size of 50 yields a initial-N power of 90%. Using option 2 with group
weights 0.1 and 0.9 and the NFRACTIONAL option we obtained the same result.
However, if we slightly changed our pre-specified group weights to 11% for group
1 and 89% for group 2, then using option 1 a sample size of 100 yields an initial-
N power of 0.998, which is much higher than the targeted power. Using option
2, a sample size of 47 yields an initial-N power of 0.906. Note that SAS only
produces the total sample size, but not the sample sizes for each group. In the
above example with initial-N= 47 and pre-specified group weight 11% for group
1, the rounded-down n1is 5 and the rounded-up n1 is 6. Note that in either case
the percent of subjects in group 1 is not exactly equal to w, which is in accordance
to our previous assumption of binomial variability.
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