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Abstract: Central composite design (CCD) is widely applied in many fields to
construct a second-order response surface model with quantitative factors to
help to increase the precision of the estimated model. When an experiment
also includes qualitative factors, the effects between the quantitative and
qualitative factors should be taken into consideration. In the present paper,
D-optimal designs are investigated for models where the qualitative factors
interact with, respectively, the linear effects, or the linear effects and 2-factor
interactions or quadratic effects of the quantitative factors. It is shown that,
at each qualitative level, the corresponding D-optimal design also consists
of three portions as CCD, i.e. the cube design, the axial design and center
points, but with different weights. An example about a chemical study is
used to demonstrate how the D-optimal design obtained here may help to
design an experiment with both quantitative and qualitative factors more
efficiently.

Key words: Central composite design, approximate design, dispersion func-
tion, equivalence theorem, flue gas desulfurization.

1. Introduction

The second-order response surface model is applied widespreadly in many
research fields through the central composite design (CCD). A chemical study
of flue gas desulfurization published by Zainudin et al. (2005), for illustration,
deals with an adsorbent for removing the sulfur dioxide (SO2) in the flue gas.
The experiment including a total of 40 runs with three quantitative factors and
one 2-level qualitative factor was performed to fit a second-order response surface
model. At each qualitative level, the settings of the quantitative factors form a 20-
run CCD including a 23 full factorial design, six axial points and six center points
for three quantitative factors. Detailed description of the experiment including
the factors, design settings and data are given in the Appendix. Their purpose
is to find out the optimal treatment combinations yielding the maximal response
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according to the estimated model. However, if the qualitative factor is treated as
quantitative as a coded variable xk+1 to fit the model

E
[
y
(
xT , xk+1

)]
= α0 +

k+1∑
i=1

αixi +
k+1∑
i<j

αijxixj +
k∑

i=1

αiix
2
i , (1)

some estimatable effects are naturally absent in model (1), such as the two-factor
interactions of the quantitative factors interacting with the qualitative factor,
even if those are statistically significant.

A general model of the mean response at the j-th level of a J-level qualitative
factor with k quantitative factors described as follows is more adequate to be
considered,

E
[
y
(
j,xT

)]
= fT1 (x)βj + fT2 (x)γ, x ∈ X , (2)

where f1 (x) and f2 (x) are p1- and p2-dimension vectors containing the quanti-
tative effects, respectively, such that f1 (x) is the part of the regression functions
having interaction with the qualitative factor but f2 (x) is the part invariant at
each qualitative level,

{
βj , j = 1, . . . , J

}
and γ are the corresponding vectors of

unknown parameters, and X ⊆ Rk is the design region of the quantitative fac-
tors. The responses are assumed to be independent of each other as well as with
constant variance. If the interactions between qualitative and quantitative fac-
tors are assumed to be negligible, one can express the quantitative effects under
second-order regression model as

E
[
y
(
j,xT

)]
= βj +

[
fTL (x) , fTI (x) , fTQ (x)

]
γ(S), (3)

where

fL (x) = (x1, . . . , xk)T ,

fI (x) = (x1x2, x1x3, . . . , xk−1xk)T ,

and

fQ (x) =
(
x2

1, . . . , x
2
k

)T
,

which are associated with the linear effects, 2-factor interactions and quadratic
effects of the quantitative factors. Model (1) with the linear effects of the quan-
titative factors interacting with the qualitative factor xk+1 can be rewritten as

E
[
y
(
j,xT

)]
=
[
1, fTL (x)

]
β

(L)
j +

[
fTI (x) , fTQ (x)

]
γ(IQ). (4a)

From the analysis of variance table shown in the Appendix, it presents that not
only the linear effects but also the interactions between the quantitative factors
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are influenced by the qualitative factor. Therefore, an appropriate model for the
example of SO2 removal is described by

E
[
y
(
j,xT

)]
=
[
1, fTL (x) , fTI (x)

]
β

(LI)
j + fTQ (x)γ(Q). (4b)

When the quadratic effects of the quantitative factors are of interest at each
qualitative level, one can consider the following model,

E
[
y
(
j,xT

)]
=
[
1, fTL (x) , fTQ (x)

]
β

(LQ)
j + fTI (x)γ(I). (4c)

The saturated model where f1 includes all effects such as constant, linear, inter-
actions and quadratic effects and f2 being zero can be taken into account as well
and expressed as

E
[
y
(
j,xT

)]
=
[
1, fTL (x) , fTI (x) , fTQ (x)

]
β

(S)
j .

However, there is no difference between fitting such a model and fitting the
second-order response surface model for quantitative factors at individual level
of the qualitative factor. In this work, design problems for estimation of the
unknown parameters will be considered where it is assumed to have one quali-
tative factor with J levels, which is corresponding to the total number of level
combinations if there are more than one qualitative factor.

Qualitative and quantitative factors considered simultaneously in one experi-
ment perplex the response surface designs if some quantitative effects of interest
are varied at the qualitative levels. An approximate design is a probability mea-
sure on the design region Ω having finite support points with positive weights.
More specifically, an N -run exact design should maintain that each weight times
N to be an integer. The quality of a design τ associated with the assumed model
that E [y (z)] = hT (z)θ can be measured by the corresponding information ma-
trix

Mh (τ) :=

∫
Ω
h (z)hT (z) τ (dz) .

A design is defined to be D-optimal if it maximizes the determinant of the infor-
mation matrix. When there is no interaction between qualitative and quantita-
tive factors, D-optimal design can be constructed as a product of those designs
which are D-optimal in the corresponding single-factor models, see Schwabe and
Wierich (1995). This product design is also D-optimal for the model in which all
quantitative effects interact with the qualitative factor.

Draper and John (1988) presented the original idea to construct exact de-
signs with certain objectives. A systematic approach of design constructions was
proposed by Wu and Ding (1998) with objectives such as (i) the design can be
partitioned into two parts, one for fitting the main effects of all factors and the



142 Chuan-Pin Lee and Mong-Na Lo Huang

other for estimating the interactions and quadratic effects; (ii) the design col-
lapsed over the qualitative levels forms an efficient design for the second-order
response surface design for quantitative factors. The resulting designs in both
articles are based on the support points of CCD. Atkinson and Donev (1989)
proposed the BLKL-exchange algorithm to search for exact optimal designs with
specified block sizes according to the D-criterion. Theoretical verifications of ex-
act D-optimal designs as well as the construction method are provided by Huang
et al. (2008) for model (3) and the settings of the quantitative factors are selected
within the unit circle. In the present work, approximate D-optimal designs for
models (4a), (4b) and (4c) are investigated.

In Section 2, some properties are derived about the relationships of informa-
tion matrices between model (2) and the model with only quantitative factors.
For models (4a), (4b) and (4c), the D-optimal designs constructed through CCD
are shown in Section 3. Section 4 concludes the paper, and the proofs of D-
optimality are left in Appendix.

2. Preliminaries

Let the general model (2) be rewritten as

E
[
y
(
j,xT

)]
=

[
eTj ⊗ fT1 (x) , fT2 (x)

] (
βT

1 , . . . ,β
T
J ,γ

T
)T

= gT (j,x)θ,

where ej ∈ RJ is the unit vector whose j-th component is equal to 1 and all others
are zero, and ⊗ is used to denote the Kronecker product of two matrices. Let
XJ = {1, . . . , J} be the index set of the qualitative levels and Ω be the product
set XJ ×X . An arbitrary design τ on Ω can be expressed as

τ
(
j,xT

)
= η (j) ξj (x) ,

where η and ξj are the marginal and the conditional designs on XJ and X ,
respectively. Then the information matrix of τ is presented as

Mg (τ) =

∫
Ω
g
(
j,xT

)
gT
(
j,xT

)
dτ
(
j,xT

)
=

J∑
j=1

η (j) M(j)
g , (5)

where, for j = 1, . . . , J,

M(j)
g =

[
eje

T
j ⊗M11 (ξj) ej ⊗M12 (ξj)

eTj ⊗M21 (ξj) M22 (ξj)

]
,

and

Mab (ξj) :=

∫
X
fa (x) fTb (x) dξj (x) , a, b ∈ {1, 2} .
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If τ is considered as a product design and denoted by η× ξ, which indicates that
ξj = ξ for all j, then (5) is simplified to

Mg (τ) =

 (∑j η (j) eje
T
j

)
⊗M11 (ξ)

(∑
j η (j) ej

)
⊗M12 (ξ)(∑

j η (j) eTj

)
⊗M21 (ξ) M22 (ξ)

 .
Note that the information matrix of the design ξ is associated with the quanti-
tative model

E [y (x)] =
[
fT1 (x) , fT2 (x)

] (
β̃
T
, γ̃T

)T
= fT (x) θ̃, (6)

in

Mf (ξ) =

[
M11 (ξ) M12 (ξ)
M21 (ξ) M22 (ξ)

]
.

Then Lemma 1 can be obtained easily as follows.

Lemma 1. If τ is a product design with the marginal designs η and ξ on XJ and
X , respectively, then the following equation of determinants holds for model (2)
and (6):

det (Mg (τ)) =

 J∏
j=1

η (j)

p1

[det (M11 (ξ))]J−1 det (Mf (ξ)) ,

where p1 is the dimension of M11.

Under D-criterion the above lemma implies the marginal design η should be
considered as an uniform design on XJ , i.e. η (j) = 1/J for all j, since the
maximization of det (Mg (τ)) can be separated into two parts corresponding to
the marginal designs.

To prove the D-optimality by the equivalence theorem in next section, the
dispersion function is introduced here which is proportional to the variance of
the predicted response and defined by

dh (z; τ) := hT (z) M−1
h (τ)h (z) , for z ∈ Ω.

In the following, a connection of dispersion functions between the model (2) and
(6) is derived for product designs and the proof is given in the Appendix. The
determinant and inverse of a partitioned matrix can be obtained according to the
formulas in Khuri (2003, pp. 35-36).

Lemma 2. Under the same assumptions of Lemma 1, we have

dg
(
j,xT ;τ

)
= df (x;ξ) +

(
1

η (j)
− 1

)
∆f1 (x;ξ) , for (j,x) ∈ XJ ×X , (7)
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where dg
(
j,xT ;τ

)
and df (x;ξ) are the dispersion functions associated with the

models (2) and (6), respectively, and

∆f1 (x;ξ) = fT1 (x) M−1
11 (ξ) f1 (x) .

3. D-optimal designs

The optimization problem is reduced to search for the optimal design ξ∗ on
X through implementing result in Lemma 1, and the optimal designs can be
constructed by the support points of central composite designs. Let ΞCCD be a
class collecting designs with different weights on three portions of CCD, namely
the cube, axial and center points, which can be expressed as

ΞCCD = {ξ : ξ = wcξc + wsξs + w0ξ0, wc + ws + w0 = 1} ,

where ξc is a 2k factorial design, ξs is equally supported on the standard basis
of Rk multiplied by ±r, and ξ0 is one-point design at the origin. Then the non
vanishing moments of any design in ΞCCD are

µu =

∫
X
xui ξ (dx) = wc +

(
ru

k

)
ws, u ∈ {2, 4} and i ∈ {1, . . . , k} ,

and

µ22 =

∫
X
x2
ix

2
jξ (dx) = wc, for all i 6= j.

In the following X is assumed to be the sphere with radius r =
√
k, that is,

X =
{
x ∈ Rk : xTx ≤ k

}
. With this choice the support points of designs ξc and

ξs lie on the boundary of X . On this region the design supporting on the origin
with weight 2/ [(k + 1) (k + 2)] and on the boundary uniformly with remaining
weight is D-optimal for the second-order response surface model (Kiefer, 1960).
For k = 2 and 3, the vertices of regular polygons and polyhedrons equally spaced
on the boundary can be used to constructed the D-optimal designs. Instead
of these, D-optimal designs made by CCD have the advantages of the sequen-
tial examination of model adequacy and structure invariance for all k. Kiefer
and Wolfowitz (1960) gave the celebrated results on the equivalence between D-
optimality and minimaxity of the dispersion function, i.e. the D-optimality of a
design can be verified via the properties of the corresponding dispersion function.
In order to find the D-optimal designs, we first present some results concerning
the dispersion function of a design in ΞCCD. It is obvious that the dispersion
functions for the quantitative model (6) with f1 and f2 given in (4a), (4b) and
(4c) are identical. The verification of Lemma 3 is shown in the Appendix.
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Lemma 3. For a design ξ in ΞCCD, the function df (x;ξ) with fT =
(
fT1 , f

T
2

)
in

one of the (4a), (4b) and (4c) models can be expressed as

df (x;ξ) =
1

w0
+ a1

k∑
l=1

x2
l + a2

(
k∑

l=1

x2
l

)2

+ a3

k∑
l<m

x2
l x

2
m, (8)

where

a1 =
(k + 2)w0 − 2

kw0 (1− w0)
, a2 =

k − 1

k2ws
+

1

k2w0 (1− w0)
and a3 =

1

wc
− 2

kws
.

Additionally, the function ∆f1 (x;ξ) is

(i) 1 +
(

1
1−w0

)∑k
l=1 x

2
l , for (4a);

(ii) 1 +
(

1
1−w0

)∑k
l=1 x

2
l + 1

wc

∑k
l<m x

2
l x

2
m, for (4b);

(iii) df (x;ξ)− 1
wc

∑k
l<m x

2
l x

2
m, for (4c).

By symbolizing the support points of designs ξc, ξs and ξ0 as xc, xs and x0,
respectively, we solve the following equations with respect to the weights wc, ws

and w0 under the constraint that wc + ws + w0 = 1 for each j ∈ XJ and each of
the models (4a), (4b) and (4c),

dg
(
j,xT

c ;τ
)
− dg

(
j,xT

s ;τ
)

= 0 and dg
(
j,xT

s ;τ
)
− dg

(
j,xT

0 ;τ
)

= 0, (9)

where τ = η × ξ and ξ ∈ ΞCCD. From the former equation, we obtain that
the weight wc is equal to kws/2 for (4a), kws/ [2η (j)] for (4b) and η (j) kws/2
for (4c), respectively. The results of the D-optimal designs are presented in the
following theorem and the proofs based on the equivalence theorem of Kiefer and
Wolfowitz (1960) are presented in the Appendix.

Theorem 4. The product design τ∗ with the marginal designs η and ξ is D-
optimal if η is a uniform design on XJ and ξ belongs to ΞCCD with the optimal
weights given as follows:

1. for model (4a),

w∗s =
2k (k + 2J + 1)

(k + 2) (k2 + 2Jk + k + 2)
and w∗c =

kw∗s
2

;
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2. for model (4b),

w∗s =
2k (Jk + J + 2)

(k + 1) (Jk + 2)2 and w∗c =
Jkw∗s

2
;

3. for model (4c),

w∗s =
2Jk (k + 4J − 1)

(k + 2J) [2J (2k + 1) + k (k − 1)]
and w∗c =

kw∗s
2J

;

and for each model w∗0 = 1− w∗s − w∗c .

Note that the D-optimal design for each model is rotatable, that is, the asso-
ciating dispersion function depends only on When J = 1, these three models are
simplified to the second-order response surface model for k-quantitative factors
and the D-optimal design can be obtained from one of the results in Theorem 4,
that is,

ξ∗2nd =
k2 (k + 3)

(k + 1) (k + 2)2 ξc +
2k (k + 3)

(k + 1) (k + 2)2 ξs +
2

(k + 1) (k + 2)
ξ0.

This theorem shows that the D-optimal design puts more weights on the cube
portion than the axial portion for models (4a) and (4b) with k > 2. This agrees
with the intuition that the estimations of the linear effects and interactions of
the quantitative factors are efficient through the full 2k factorial design at each
level. Furthermore, the comparisons between w∗s , w∗c and w∗0 for each of models
(4a) and (4b) show that, for J ≥ 1 and k ≥ 2,

w∗c ≥ w∗s ≥ w∗0.

For model (4c), we have that w∗s ≥ w∗0 for k ≥ 2 and

w∗c ≥ w∗s , if J ≤ k

2
,

and

w∗c ≤ w∗0, , ifJ ≥
k

4

(
2k − 1 +

√
4k2 − 3

)
.

Table 1 lists the optimal weights for these models with k and J ∈ {2, · · · , 5}.
By comparing the optimal weights between the three models, for given k and J ,
both of w∗s and w∗0 for model (4c) are greater than those for models (4a) and (4b),
and those for model (4b) are the smallest. These results are given in Figure 1 for
J = 3 and 2 ≤ k ≤ 20.
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Figure 1: Plots for comparing the optimal weights between models (4a), (4b)
and (4c) with J = 3 and 2 ≤ k ≤ 20

Table 1: The weights of D-optimal design for 2 ≤ k ≤ 5 and 2 ≤ J ≤ 5

Model (4a) Model (4b) Model (4c)

k J w∗
s w∗

c w∗
0 w∗

s w∗
c w∗

0 w∗
s w∗

c w∗
0

2 2 7
16

7
16

1
8

8
27

16
27

1
9

6
11

3
11

2
11

2 3 9
20

9
20

1
10

11
48

11
16

1
12

39
64

13
64

3
16

2 4 11
24

11
24

1
12

14
75

56
75

1
15

68
105

17
105

4
21

2 5 13
28

13
28

1
14

17
108

85
108

1
18

35
52

7
52

5
26

3 2 24
65

36
65

1
13

15
64

45
64

1
16

60
119

45
119

2
17

3 3 3
8

9
16

1
16

21
121

189
242

1
22

7
12

7
24

1
8

3 4 36
95

54
95

1
19

27
196

81
98

1
28

216
341

81
341

4
31

3 5 21
55

63
110

1
22

33
289

495
578

1
34

165
247

99
494

5
38

4 2 6
19

12
19

1
19

24
125

96
125

1
25

11
24

11
24

1
12

4 3 22
69

44
69

1
23

34
245

204
245

1
35

6
11

4
11

1
11

4 4 26
81

52
81

1
27

44
405

352
405

1
45

38
63

19
63

2
21

4 5 10
31

20
31

1
31

54
605

108
121

1
55

230
357

92
357

5
51

5 2 25
91

125
182

1
26

35
216

175
216

1
36

5
12

25
48

1
16

5 3 60
217

150
217

1
31

100
867

250
289

1
51

240
473

200
473

3
43

5 4 5
18

25
36

1
36

65
726

325
363

1
66

200
351

125
351

2
27

5 5 80
287

200
287

1
41

160
2187

2000
2187

1
81

8
13

4
13

1
13
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4. Discussion

In this study the approximate D-optimal designs for models (4a), (4b) and
(4c) have been provided when the quantitative factors are considered within a
sphere design region. The framework for investigating D-optimal designs can be
applied to higher order models for quantitative factors with qualitative factors.

The performance of designs comparing to the D-optimal design for model
g (x) are measured by the D-efficiency which is defined by

Deff (τ) =
|Mg (τ)|∣∣Mg

(
τ∗g
)∣∣ .

The design with 40 trials in the example of SO2 removal, denoted by τex, has
poor D-efficiencies (0.140, 0.034 and 0.151) for estimating the model parameters
of (4a), (4b) and (4c). Furthermore, by denoting the D-optimal designs for mod-
els (3), (4a), (4b) and (4c) as τ∗3 (= η̄ × ξ∗2nd), τ∗4a, τ∗4b and τ∗4c, these designs are
compared mutually with each other for k = 3 and J = 2 and the D-efficiencies
are presented in the following table. For models (3) and (4a), the designs τ∗3 and
τ∗4a provide the excellent infromation for the estimations, and τ∗4b and τ∗4c have
acceptable efficiencies. However, for estimating models (4b) and (4c), the corre-
sponding D-optimal designs provide the information about only 13.8% for each
other models. Thus it can be concluded that τ∗3 and τ∗4a have robust performance
on fitting these models. Further, τ∗3 is most robust for these models according to
the maximin criterion, that is, the minimum D-efficiency under other models is
the greatest among all 5 candidate designs.

Table 2: Comparisons of D-efficiency for k = 3 and J = 2

Model (3) Model (4a) Model (4b) Model (4c)

τ∗3 1.000 0.960 0.582 0.641
τ∗4a 0.966 1.000 0.655 0.554
τ∗4b 0.689 0.747 1.000 0.138
τ∗4c 0.732 0.662 0.138 1.000
τex 0.310 0.140 0.034 0.151

Appendix

A.1 Experiment of flue gas desulfurization

The original data described in Zainudin et al. (2005) is summarized in the
following tables. Totally four factors as code variables are shown in Table A.1



D-Optimal Designs for Second-Order Response Surface models 149

with the original levels, and Table A.2 presents the results of the experiment with
a 20-run CCD at each qualitative level. The analysis of variance is summarized in
Table A.3 in which the total variation is explained about 98.6 percent by fitting
model (4b).

Table A.1: Factors and levels of flue gas desulfurization experiment

Quantitative factors : −1.682 −1 0 1 1.682
x1: Hydration period (h) 3.18 10 20 30 36.82
x2: Ratio of OPA to CaO or Ca(OH)2 (g/g) 0.32 : 1 1 : 1 2 : 1 3 : 1 3.68 : 1
x3: Amount of CaSO4 (g) 0.32 1 2 3 3.68

Qualitative factor: j = 1 j = 2
CaO or Ca(OH)2 CaO Ca(OH)2

Table: A.2 The design matrix of the 20-run CCD for each qualitative level and
the response data

Factor response(y) Factor response(y)

x1 x2 x3 j = 1 j = 2 x1 x2 x3 j = 1 j = 2

−1 −1 −1 31.85 36.25 −1 −1 1 24.45 35.82
1 −1 −1 89.22 71.74 1 −1 1 45.65 68.77
−1 1 −1 24.36 34.05 −1 1 1 28.65 30.10
1 1 −1 120.5 126.00 1 1 1 99.11 119.30

−1.682 0 0 15.48 18.74 0 0 0 48.93 59.37
1.682 0 0 78.67 134.20 0 0 0 55.13 55.11

0 −1.682 0 27.34 26.01 0 0 0 55.17 40.34
0 1.682 0 79.24 105.90 0 0 0 42.68 54.35
0 0 −1.682 56.91 41.28 0 0 0 47.97 52.73
0 0 1.682 33.97 50.60 0 0 0 47.77 48.47

Table: A.3 Analysis of variance for the experiment of flue gas desulfurization

Source of variation
Degrees of Sum of Mean

F p-value
freedom squares square

Model 17 163289.856 9605.286 95.833 < 0.0001
Qualitative factor 2 128564.439 64282.220 641.351 < 0.0001
Within Qualitative

Linear effects (j = 1) 3 11961.379 3987.126 39.780 < 0.0001
Linear effects (j = 2) 3 18335.423 6111.808 60.978 < 0.0001
Interaction (j = 1) 3 1590.235 530.0783 5.289 0.006
Interaction (j = 2) 3 1598.011 532.6704 5.315 0.006

Between Qualitative
Quadratic effects 3 1240.369 413.456 4.125 0.018

Residual 23 2305.274 100.229
Total 40 165595.131
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A.2 Proof of Lemma 2

By calculating the inverse matrices of Mg (τ) according to the formula of a
partitioned matrix in Khuri (2003, pp. 36), we have

M−1
g (τ) =

(
D11 (τ) D12 (τ)
D21 (τ) D22 (τ)

)
where τ = η × ξ,

D11 (τ) = Diag

(
1

η (1)
, . . . ,

1

η (J)

)
⊗M−1

11 (ξ)

+
(
1J1T

J

)
⊗
[
M−1

11 (ξ) M12 (ξ) D22 (τ) M21 (ξ) M−1
11 (ξ)

]
,

D12 (τ) = −1J ⊗
[
M−1

11 (ξ) M12 (ξ) D22 (τ)
]

= DT
21 (τ) ,

D22 (τ) =
[
M22 (ξ)−M21 (ξ) M−1

11 (ξ) M12 (ξ)
]−1

,

and 1J is the k × 1 vector [1, · · · , 1]T . It is obvious that these submatrices are
connected with the submatrices of M−1

f (ξ). From the definition of dispersion
function in Section 2, equation (7) can be obtained after the algebraic simplifica-
tion with properties of the Kronecker product.

Appendix A.3 Proof of Lemma 3

Note that model (6) is identical to the second-order response surface model
with the f1 and f2 under all three models (4a), (4b) and (4c). For any ξ in ΞCCD,
the moment matrices associated with the linear effects, 2-factor interactions and
quadratic effects by denoting as ML, MI and MQ are, respectively,

ML (ξ) =

∫
X
fL (x) fTL (x) dξ (x) = µ2Ik,

MI (ξ) =

∫
X
fI (x) fTI (x) dξ (x) = µ22I k(k−1)

2

,

and

MQ (ξ) =

∫
X
fQ (x) fTQ (x) dξ (x) = (µ4 − µ22) Ik + µ22Jk,

where Ik is the k × k identity matrix, Jk = 1k1
T
k . As a result, we have

df (x;ξ) = fT (x) M−1
f (ξ) f (x)

= fTL (x) M−1
L (ξ) fL (x) + fTI (x) M−1

I (ξ) fI (x)

+
[
1, fTQ (x)

]T ( 1 µ21
T
k

µ21k MQ (ξ)

)−1 [
1

fQ (x)

]
,
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where fT (x) =
[
1, fTL (x) , fTI (x) , fTQ (x)

]
,

Mf (ξ) =


1 0 0 µ21

T
k

0 ML (ξ) 0 0
0 0 MI (ξ) 0

µ21k 0 0 MQ (ξ)

 .

It can be simplified by using the results that µ2 = wc +ws, µ22 = wc, µ4−µ22 =
kws and(

1 µ21
T
k

µ21k MQ (ξ)

)−1

=

(
1
w0

− 1
kw0

1T
k

− 1
kw0

1k
1

kws
Ik +

(
1

k2w0(1−w0)
− 1

k2ws

)
Jk

)
.

Then (8) can be obtained easily.The function ∆f1 (x;ξ) can be obtained that, for
model (4a),

∆f1 (x;ξ) = 1 + fTL (x) M−1
L (ξ) fL (x) ,

and for model (4b),

∆f1 (x;ξ) = 1 + fTL (x) M−1
L (ξ) fL (x) + fTI (x) M−1

I (ξ) fI (x) ,

and for model (4c),

∆f1 (x;ξ) = fTL (x) M−1
L (ξ) fL (x)

+
[
1, fTQ (x)

]T ( 1 µ21
T
k

µ21k MQ (ξ)

)−1 [
1

fQ (x)

]
.

Lemma 3 is proved.

A.4 Proof of Theorem 4

According to the equivalence theorem, to verify the D-optimality is equivalent
to show that the maximum of the dispersion function dg

(
j,xT ;τ∗

)
w.r.t

(
j,xT

)
is no greater than the number of model parameters and the maximum will be
attained at the support points of τ∗.

First, the coefficient of the term
∑k

i<j x
2
ix

2
j in dg (j,x;τ∗) can be computed

easily for each model according to Lemma 2 and 3, then the relationship between
w∗c and w∗s described in the theorem makes it vanish for all j. This implies that
the dispersion function depends only on xTx, in other words, dg (j,x;τ∗) is a
second-degree polynomial in xTx. Further, the positive coefficient for the terms
of the highest degree indicates that the maximum of the dispersion function for
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each j occurs at xTx = 0 or k. Since the optimal weights are the solutions of the
equations (9), then we have

dg (j,x0;τ∗) = dg (j,xc;τ
∗) = dg (j,xs;τ

∗) , ∀j.

Next, for each model, the maximum can be easily evaluated from dg (j,x0;τ∗),
i.e. the intercept of the dispersion function. Then applying the results of Lemma
3 to Lemma 2, we have

dg (j,x0;τ∗) =

{
1
w∗

0
+ (J − 1) , for (4a) and (4b),

J
w∗

0
, for (4c),

and

w∗0 =


1− k+2

2 w∗s , for (4a),

1− Jk+2
2 w∗s , for (4b),

1− k+2J
2J w∗s , for (4c).

A straightforward algebraic computation yields that the maximum is equal to
(k + 1) (k + 2J) /2 for model (4a), [J + k + Jk (k + 1) /2] for model (4b) and
[J (2k + 1) + k (k − 1) /2] for model (4c), respectively, which are the number of
the model parameters. Then the proof is complete.
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