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Abstract: It is known that “standard methods for estimating the causal effect
of a time-varying treatment on the mean of a repeated measures outcome
(for example, GEE regression) may be biased when there are time-dependent
variables that are simultaneously confounders of the effect of interest and are
predicted by previous treatment” (Hernán et al. 2002). Inverse-probability
of treatment weighted (IPTW) methods are developed in the literature of
causal inference. In genetic studies, however, the main interest is to esti-
mate or test the genetic effect rather than the treatment effect. In this work,
we describe an IPTW method that provides unbiased estimate for the ge-
netic effect, and discuss how to develop a family-based association test using
IPTW for family-based studies. We apply the developed methods to systolic
blood pressure data in Framingham Heart Study, where some subjects took
antihypertensive treatment during the course of study.

Key words: FBAT, hypertension, inverse probability of treatment weight-
ing, systolic blood pressure, time-varying confounding.

1. Background

Originating in 1948, Framingham Heart Study (FHS, Dawber et al. 1951) is
an ongoing prospective study of risk factors including genetic variants for car-
diovascular disease. The clinical data from FHS includes blood pressure, to-
tal cholesterol, fasting HDL cholesterol, blood glucose and others, and the ge-
netic data includes microsatellite markers and single-nucleotide polymorphisms
(SNPs). This study provides opportunities to dissect genetic structure of blood
pressure, cholesterol and other complex traits.

Since FHS started, one of the phenotypes, systolic blood pressure (SBP),
has drawn many researchers’ attention. For example, investigators in Levy et
al. (2000) and Hunt et al. (2002) found genetic markers significantly associated
with SBP. Interestingly, as pointed out in Shea et al. (1985), some subjects took
antihypertensive treatment during the course of study. For these subjects, their
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underlying SBPs were distorted by the antihypertensive medication. In Levy et
al. (2000) and Hunt et al. (2002), the SBP levels were adjusted for treatment
before analysis by deriving adjusted residuals for subjects on treatment. It is
well understood that the past SBP is a time-dependent confounder for estimating
the treatment effect because it is a predictor of both the treatment assignment
and the future SBP (Robins 1998). With the presence of such time-dependent
confounder, standard approaches including adding confounder as a covariate do
not work (Robins 1998). With estimating treatment effect as the main interest,
Robins and colleagues proposed several remedies including inverse-probability of
treatment weighting (IPTW). See, for example, Hernán et al. (2002) and Robins
(1999).

In genetic studies, the main interest is the genetic effect that would have
been observed if every subject was untreated. Consider a gene that increases
SBP, therefore carriers are more likely to develop hypertension and more likely
to receive antihypertensive medication. Assume that the treatment is effective in
reducing subjects’ SBPs. Then using the observed SBPs to estimate the genetic
effect will create a downward bias because SBPs on carriers who are treated are
lower than the underlying true values had they not received treatment. When
the genetic effect is of interest, how does one adjust for subjects taking treatment
which distorts their SBPs? Does the convenient practice of including confounder
as a covariate work?

To answer these questions, understanding the unbalanced roles of the genetic
effect and the treatment effect is essential: when the treatment effect is of primary
interest, the genotype, which is not affected by the treatment, can be treated as
a covariate; when the genetic effect is of primary interest, the treatment, which
is predicted by the genotype through the underlying SBP, however, cannot be
treated as a covariate. Therefore, including treatment as a covariate to adjust for
bias is inappropriate. For cross-sectional studies, authors in Tobin et al. (2005)
examined the biasedness of several standard methods and proposed to use cen-
sored regression model. It is shown in Tobin et al. (2005) that by including the
treatment assignment as a covariate, some of the genetic effect is adjusted away.

In longitudinal studies, the baseline SBP measurements, based on which the
treatment is assigned, may be available. If there are two measurements, one mea-
sured when the treatment is assigned and the other measured after the treatment
is taken for some period, regular regression analysis with the baseline SBP as
a covariate provides an unbiased estimate of the treatment effect, but a biased
estimate of the genetic effect. When there are more than two measurements,
regular regression analysis gives biased estimates for both the treatment and the
genetic effect.

In the next section, we describe an IPTW method that provides asymptoti-
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cally unbiased estimate for the genetic effect. By an example and some simulation
studies, we quantify the biases in some standard methods and compare them with
the proposed methods. We then apply the developed methods to the SBP data
in FHS. We conclude with some discussions on how to develop a family-based
association test using IPTW for family-based studies.

2. An IPTW Method for Estimating the Genetic Effect

We describe an IPTW method for estimating the genetic effect of a can-
didate gene in longitudinal studies when subjects’ phenotypes are distorted by
taking treatment. The focus here is the genetic effect in the population where
everyone is untreated. Let i index the subjects and j index the visits. Let Yij

denote the phenotype measurement at visit j of subject i, i = 1, · · · , n, and
j = 0, 1, · · · , mi. Assume that measurements between subjects are independent,
and at the baseline j = 0, no subject takes the treatment. Let Yi be the vector
(Yi1, · · · , Yimi)

T . The predictors include the genotype at the candidate gene, the
treatment assignment, and may include time-constant variables such as gender
and time-dependent variables such as age.

The standard generalized estimating equation (GEE) regression solves∑
i

(
∂µi(β)

∂β
)T V −1

i (Yi − µi(β)) = 0, (2.1)

where µi(β) is the specified marginal means of Yi in terms of parameter β and
the predictors, and Vi is the working covariance matrix of Yi. For example in a
candidate gene study, µi(β) can be parametrized as a linear model, Xiβ, where Xi

includes carrier status at the gene and other important covariates such as gender
and age to be adjusted. The standard GEE gives a consistent estimate for the
genetic effect when there is no time-dependent confounder; see for example Liang
and Zeger (1986).

It is shown in Robins (1986) that in the presence of time-varying confounder,
the standard GEE may provide biased estimate for the treatment effect even
after including past treatment history and other confounders as covariates. When
the genetic effect is of interest, in Section 3 we demonstrate that the standard
methods provide biased estimates for the genetic effect. We develop an IPTW-
type method to find asymptotically unbiased estimate for the genetic effect.

Simply put, the IPTW method solves a weighted GEE with time- and subject-
specific weights. The basic idea is that, by properly weighting subjects, we con-
struct a pseudo-population in which the past SBP and the treatment assignment
are not associated, and therefore the genetic effect is not distorted by the treat-
ment effect. It is then straightforward to estimate the genetic effect and/or its
interaction with environmental effects in the pseudo-population.
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To construct IPTW estimators, one can use nonstabilized weight, which is
the inverse of the conditional probability of the observed treatment status given
the corresponding subject’s treatment history and observed time-dependent con-
founder. As an alternative, stabilized weight proposed in [6] is shown to be more
efficient and stable, especially when the conditional probability is small. For
subject i, the stabilized weights are defined as,

SWi(0) = 1, SWi(j) =
j∏

k=1

Pr(Ti(k)|Ti(k − 1), Zi)
Pr(Ti(k)|T̄i(k − 1), C̄i(k − 1))

, j = 1, · · · ,mi,(2.2)

where Zi comprises the baseline covariates believed to predict the treatment
assignment, Ti(k) is the indicator of taking treatment at visit k, T̄i(k) is the
treatment history up to visit k, Ci(k) is the vector of time-varying variables
including the confounder at visit k, and C̄i(k) is the history of Ci(k) up to visit
k. Let SWi denote the matrix with diagonal elements SWi(1), · · ·SWi(mi). The
IPTW method solves the weighted estimating equation,∑

i

(
∂µi(β)

∂β
)T V −1

i SWi(Yi − µi(β)) = 0. (2.3)

In practice, the weights (2.2) are unknown, but they can be estimated from
the data by specifying a model (e.g., logistic model) for the treatment status
Ti(k); see [1] for more discussion. We illustrate how to obtain the weights in the
next section.

3. Example and Simulations

3.1 Example

We assume there are 200 subjects, half with genotype G = 1 and the other
half with G = 0. The threshold for defining high SBP is 130 mmHg. Let L
indicate high SBP, with L = 1 being having high SBP and L = 0 being having
low SBP. The probability of developing high SBP, P (L = 1|G), is higher in
subjects with G = 1 than those with G = 0; they are 0.2 and 0.1, respectively.
The assumptions and results are summarized in Table 1. Here we assume that
the numbers of subjects within each categories of L and G are consistent perfectly
with their expectations, as shown in the 6th column of Table 1. At time 1, the
mean SBP of subjects with L = 1 is 140 mmHg, and those with L = 0 is 120
mmHg. Their SBPs are recorded before some subjects being prescribed and then
starting to take treatment. Assume that among subjects with L = 1, 80% will
receive treatment, and among those with L = 0, 10% will receive treatment.
Assume the treatment reduces SBP by an average of 20 mmHg at time 2.
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Table 1: An example illustrating biases in various methods

G L T P (L|G) P (T |L) Num E(Y1|G, L) E(Y2|G, L, T ) W Nw SW Nsw

1 1 1 0.2 0.8 16 140 120 1.25 10 0.26 4.1
1 1 0 0.2 0.2 4 140 140 5.00 10 3.98 15.9
1 0 1 0.8 0.1 8 120 100 10.00 40 2.05 16.4
1 0 0 0.8 0.9 72 120 120 1.11 40 0.88 63.6
0 1 1 0.1 0.8 8 140 120 1.25 5 0.26 2.05
0 1 0 0.1 0.2 2 140 140 5.00 5 3.98 7.95
0 0 1 0.9 0.1 9 120 100 10.00 45 2.05 18.45
0 0 0 0.9 0.9 81 120 120 1.11 45 0.88 71.55

For simplicity, no disturbance is added to the phenotype. The outcomes
therefore coincide with their expectations. The expected bias is the same as
shown here if adding a mean zero random disturbance to the SBP. The genetic
effect is

β = [20(140) + 80(120)]/100 − [10(140) + 90(120)]/100 = 2.

If only using data at time 1, we can obtain an unbiased estimate of the genetic
effect, but in practice it is more advantageous to use all the available data.

We consider four standard methods: (1) ignore that some subjects have taken
treatments; (2) exclude subjects taking treatments; (3) treat T as a covariate;
(4) treat both L and T as covariates. For method 1, the estimated genetic effect
is

[140(16 + 4) + 120(8 + 72) + 120(16) + 140(4) + 100(8) + 120(72)]/200
− [140(8 + 2) + 120(9 + 81) + 120(8) + 140(2) + 100(9) + 120(81)]/200 = 1.3.

Therefore method 1 underestimates the genetic effect by 0.7. Similar calcula-
tions show that method 2 and 3 underestimate the genetic effect by 0.58 and
0.33, respectively. Method 4 estimates the genetic effect as zero and the treat-
ment effect as −20. Therefore, by adjusting for the baseline SBP and treatment
assignment, the estimate of the treatment effect is unbiased but the estimate of
the genetic effect is biased. Treating T as covariate has the smallest bias, but
still non-negligible.

The IPTW method requires computing weights. At time 1, the weights are
one. At time 2, the unstabilized weights are 1/Pr(T |L), and the stabilized weights
are Pr(T )/Pr(T |L). For instance, the stabilized weight in the first row of Table
1 is (16 + 8 + 8 + 9)/200/0.8 = 0.26, and in the second row is (1 − (16 + 8 +
8 + 9)/200)/0.2 = 3.98. These weights are summarized in the 11th column of
Table 1. The weighted sample sizes Nw and Nsw are obtained by multiplying the
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original sample sizes by the corresponding weights and then normalize so that
the total sample size remains as 200. These are summarized in the 10th and the
12th column.

The IPTW estimators can now be computed using the adjusted sample sizes.
Using the stabilized weights, the estimate of the genetic effect is

[a1(16 + 4) + a2(8 + 72) + a3(4.1) + a4(15.9) + a5(16.4) + a663.6)]/200
−[a1(8 + 2) + a2(9 + 81) + a3(2.05) + a4(7.95) + a5(18.45) + a6(71.55)]/200
= 2,

where a1 = 140, a2 = 120, a3 = 120, a4 = 140, a5 = 100, a6 = 120. Similarly,
using the nonstabilized weights the estimate is also 2. Although both the sta-
bilized and nonstabilized weights give unbiased estimates, the stabilized weights
generally provide more efficient and stable estimator Robins (1986). It can be
seen in the example that the range of the nonstabilized weights is wider than the
stabilized weights.

3.2 Simulations

Simulation studies were conducted based on a modification of Example 1. Two
hundred subjects were simulated. Genotypes were generated with P (G = 1) =
0.4. The effect of having G = 1 was assumed to increase a subject’s probability
of developing hypertension. Four scenarios were considered: subjects with G = 1
were simulated to be hypertensive (L = 1) at time 1 with probability 0.2, 0.3, 0.4
or 0.5, and subjects with G = 0 with probability 0.1. This is equivalent to that
subjects with G = 1 on average had SBPs 2, 4, 6, or 8 mmHg higher than those
with G = 0, provided that E(Y1|G,L) followed the 7th column of Table 1.

Treatments were assigned to subjects following probabilities P (T |L) in the 5th
column of Table 1. Hypertensive subjects had higher probability to be treated. To
account for a natural increasing trend of SBP as subjects get older, each subject
was assumed to have underlying SBP 2 mmHg higher at time 2 than time 1. The
treatment effect was generated from a normal distribution with mean -22 and
standard deviation 3. The random error added to the underlying SBP at the two
time points were generated from a bivariate normal distribution with mean 0,
standard deviation 10 for both components, and correlation coefficient 0.5. Each
experiment was repeated 1000 times.

4. Results

4.1 Simulation results



Adjusting for Treatment Effect in Genetic Studies 133

Table 2 summarizes the results of estimating and testing the genetic effect.
In all scenarios, the standard approaches (no adjustment, excluding subjects on
treatment, and including treatment indicator as a covariate) underestimate the
genetic effect. The bias increases with the strength of the genetic effect. Including
treatment as a covariate has smaller bias than the other two approaches, but
the bias is still non-ignorable. Both IPTW approaches with nonstabilized and
stabilized weights provide estimates with minimal bias (absolute value ranging
from 0.01 to 0.07), but the standard errors using stabilized weights are smaller
than using nonstabilized weights. Comparing with the standard approaches, the
IPTW approaches have larger standard errors. This reflects a tradeoff between
the bias and the variance.

Table 2: Estimation of genetic effect (β) in four scenarios

Emp. Est. Power
Scenario Approach Mean β̂ Bias SE∗ SE† Power Loss‡

No adjustment 1.22 -0.78 1.7 1.6 0.13 27.8%
1 Exclude being treated 1.38 -0.62 1.7 1.6 0.16 11.1%
β = 2 Treatment as covariate 1.63 -0.37 1.7 1.7 0.17 5.6%

Non-stabilized IPTW 2.01 0.01 2.3 2.2 0.16 11.1%
Stabilized IPTW 1.99 -0.02 2.1 2.0 0.18 -
No adjustment 2.49 -1.51 1.7 1.7 0.33 36.5%

2 Exclude being treated 2.84 -1.16 1.8 1.8 0.37 28.8%
β = 4 Treatment as covariate 3.26 -0.74 1.8 1.8 0.47 9.6%

Non-stabilized IPTW 4.1 0.1 2.4 2.3 0.45 13.5%
Stabilized IPTW 4.05 0.05 2.2 2.1 0.52 -
No adjustment 3.67 -2.33 1.9 1.8 0.51 30.1%

3 Exclude being treated 4.45 -1.55 2.0 2.0 0.63 13.7%
β = 6 Treatment as covariate 4.84 -1.16 2.0 1.9 0.70 4.3%

Non-stabilized IPTW 6.02 0.02 2.7 2.5 0.64 15.1%
Stabilized IPTW 5.96 -0.04 2.3 2.3 0.73 -
No adjustment 4.86 -3.14 1.8 1.7 0.80 16.7%

4 Exclude being treated 6.04 -1.96 1.9 1.8 0.89 7.3%
β = 8 Treatment as covariate 6.49 -1.51 1.9 1.8 0.93 3.1%

Non-stabilized IPTW 8.07 0.07 2.5 2.3 0.91 5.2%
Stabilized IPTW 7.98 -0.02 2.2 2.1 0.96 -

Note:
∗: Empirical Standard Error, ∗ Empirical standard error,† Mean estimated standard er-
ror, ‡ Percentage decrease of power comparing with IPTW approach using stabilized weights.

Table 2 also shows the results of testing for genetic effect using Wald statis-
tic based on sandwich variance estimate. The IPTW approach with stabilized
weights has the largest power. Comparing to stabilized IPTW, the percentage
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loss of power of the other approaches ranges from 3% to 37%. The most popular
standard approach of adjusting for treatment effect by including it as a covariate
can have a power loss of 9.6% (scenario 2).

For estimating treatment effect, including treatment assignment as a covariate
has large bias ranging from 8.95 to 9.47 (results not shown). The IPTW approach
has negligible bias ranging from 0.01 to 0.15. The estimator of treatment effect
behaves similarly across all scenarios regardless of the size of the genetic effect.

4.2 Data analysis results

We apply the proposed methods to analyze the SBP data in FHS. There
were 5209 subjects recruited (2336 men and 2873 women) from Framingham,
Massachusetts. FHS includes longitudinal observations from two cohorts: Cohort
1, the original Framingham cohort, was first examined in 1948 and had been
examined every 2 years thereafter; Cohort 2, composed primarily of offspring of
the original cohort and the spouses of these offspring, was examined first in 1971
and had been examined approximately every 4 years Dawber et al. (1951).

In the mid-1990s about 1800 members of the largest 330 pedigrees in FHS
were selected for a genome scan conducted by the Mammalian Genotyping Service
in Marshfield, Wisconsin (Cupples et al 2003). The genetic markers span the
whole genome with a 10-cM density. Researchers in Levy et al. (2003) identified
a marker, GATA25A04 (D17S1299) on chromosome 17 with a two point LOD
score of 3.8 for the phenotype SBP. We focus on analyzing the genetic effect at
this marker. We estimated the genetic effect using IPTW method and compared
it with the standard methods.

We fitted three standard GEE regressions with marker alleles, age, sex and
BMI as covariates: the first ignored that some subjects were treated by antihy-
pertensive treatment; the second excluded treated subjects; and the third added
the treatment as a covariate in addition to the original ones. We also applied
the IPTW method, where the weights SWi were computed using (2.2). Here Zi

includes sex and BMI, Ci(k) includes the previously observed SBPs and age. The
conditional probabilities in the numerator and the denominator of the weights
were fitted by logistic regression models; for the numerator, the treatment as-
signment was outcome and sex and BMI were predictors; for the denominator,
past SBPs, age, and age squared were added as predictors.

For all methods, each marker allele was coded as a binary variable of having
at least one copy of the allele or not. We assumed that the observations from
different families were independent and used independent working correlation
matrix. Among 1701 subjects being genotyped, 1667 have valid data at the
marker GATA25A04. The marker has eight alleles, with frequencies ranging
from 0.1% to 38%. We combined the two alleles with least frequencies (alleles
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184 and 212).

Table 3: Estimating genetic effect of maker GATA25A04

No Adjustment Exclude Being Treated Treatment as Covariate Stabilized IPTW

Variable Est. SE p value Est. SE p value Est. SE p value Est. SE p value

x184212 (1%)∗ -7.71 5.33 0.15 -7.94 4.86 0.10 -7.27 4.85 0.13 -7.15 4.82 0.14
x188 (4%) 1.88 1.33 0.16 1.95 1.29 0.13 2.05 1.29 0.11 2.40 1.43 0.09
x192 (12%) 0.85 0.93 0.36 0.78 0.91 0.39 0.85 0.90 0.35 1.47 0.97 0.13
x196 (45%) 1.69 1.07 0.12 1.63 1.04 0.12 1.74 1.03 0.09 3.40 1.34 0.01
x200 (29%) 1.33 0.91 0.15 1.33 0.90 0.14 1.32 0.89 0.14 2.52 1.26 0.04
x204 (6%) 2.71 1.21 0.03 2.66 1.23 0.03 2.71 1.19 0.02 3.93 1.70 0.02
x208 (3%) 1.48 1.59 0.35 1.14 1.60 0.48 1.39 1.57 0.38 2.27 1.66 0.17

∗ Allele frequency

Table 3 reports the results from the four methods. We found that the estimate
of the genetic effect from the IPTW method was larger than those from the
standard methods, except for the combination of alleles 184 and 212 where the
frequency is 1%. The alleles 196 and 200 were not significant in the standard
methods, but were significant in the IPTW method; for example, the allele 196
had an estimate of 3.40 (p = 0.01) in the IPTW method, but the standard
methods failed to detect it. We also found that the allele 204 had a significant
effect in all methods, but the IPTW provided the largest estimate. These results
are consistent with the finding that the standard methods underestimate the
genetic effect.

5. Discussions

Here we describe an IPTW-type method to provide asymptotically unbiased
estimators for the genetic effect when the genetic effect is confounded by the treat-
ment effect. By constructing proper weights, we break the correlation between the
treatment and the past SBP and therefore the correlation between the treatment
and genetic factors because genetic factors predict treatment assignment through
SBP. For the method to be valid, the assumption of no unmeasured confounder
is assumed. This assumption is debatable, but by adjusting for the observed
confounders, the proposed methods can improve the standard methods such as
GEE regression to some extent. For the SBP data in FHS, the assumption of
no unmeasured confounder is that the treatment assignment depends completely
on the measured past SBPs and other covariates. This assumption will not hold
if the subjects in the study have their own physicians outside of the study who
also monitor their SBPs and prescribe the antihypertensive treatment and the
measurements taken outside of FHS are not available to the FHS investigators.
However, since subjects are examined every two years in FHS, the SBP measured
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by an outside physician could be close to the one measured at the nearest pre-
ceding visit by the FHS researchers. In this case, it is still reasonable to assume
that there are no unmeasured confounder.

Here we assume that the subjects are not taking the treatment at the begin-
ning of the study. While this is true for Framingham study because it started
in an era of no available antihypertensive treatment, in other applications this
assumption may not hold. If some of the subjects are treated at the baseline
because they already have high blood pressure and if their SBP measurements
based on which the treatment is prescribed are not available, the weights SWi

cannot be computed. These subjects will be excluded from the analysis. How-
ever, if the blood pressure measurements used to prescribe the treatments before
the study begins are available, these subjects can still contribute to the analyses.

Using the IPTW estimator in (2.3) and its sandwich variance estimate, it is
straightforward to construct a Wald test for the genetic effect. For multivariate
or longitudinal data in family studies, to control for population stratification, a
family-based association test using GEE regression (FBAT-GEE) is proposed in
Lange et al. (2003). The test statistic is

(S − E(S|C))2

V (S|C)
, (5.1)

where S =
∑

i Gi∆iV
−1
i Yi, Gi is the candidate gene’s genotype, and Gi∆i is

the slope of µi(β) at the null hypothesis of no genetic effect, with µi(β) and
Vi defined in (2.1). The expectation E(S|C) and variance V (S|C) are computed
conditionally on the minimal sufficient statistic C under the null hypothesis; the
minimal sufficient statistics are discussed in Rabinowitz and Laird (2000). Under
the null hypothesis, the test statistic has a chi-square distribution with degrees
of freedom equal to the number of the levels of Gi minus one.

Although the FBAT approach has correct type-I error using any test statistic
S, a carefully chosen statistic can be more powerful. For the SBP data, adjusting
for the influence of antihypertensive treatment may improve testing power. To
this aim, one can use an FBAT-type test based on IPTW (FBAT-IPTW). The
test statistic is

(T − E(T |C))2

V (T |C)
, (5.2)

where T =
∑

i Gi∆iV
−1
i SWiYi, with Gi, ∆i and Vi defined in (5.1) and SWi

defined in (2.2). The expectation E(T |C) and variance V (T |C) are also computed
conditionally on the minimal sufficient statistic C under the null hypothesis. Fol-
lowing the arguments in Lange et al. (2003) and Rabinowitz and Laird (2000),
we see that the FBAT-IPTW is robust to population stratification. Note that
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because observed phenotypes are a part of C and the weights SW only involves ob-
served phenotypes and covariates other than genotypes, the weights can be taken
out of the conditional expectation. Therefore in practice, the FBAT-IPTW can be
calculated using the software FBAT (http://www.biostat.harvard.edu/∼fbat/)
by first computing a weighted phenotype SWiYi and then inputting them as
phenotype in the FBAT program.
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