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Abstract: This paper is concerned with the change point analysis in a general
class of distributions. The quasi-Bayes and likelihood ratio test procedures
are considered to test the null hypothesis of no change point. Exact and
asymptotic behaviors of the two test statistics are derived. To compare
the performances of two test procedures, numerical significance levels and
powers of tests are tabulated for certain selected values of the parameters.
Estimation of the change point based on these two test procedures are also
considered. Moreover, the epidemic change point problem is studied as an
alternative model for the single change point model. A real data set with
epidemic change model is analyzed by two test procedures.
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1. Introduction

This paper is concerned with the change point analysis in a general class of
distributions. The problem can be described as follows. Given a sequence of
independent random variables X1, · · ·, Xn which are distributed according to the
one parameter density function fθi

(xi), θi ∈ Θ, i = 1, 2, · · ·, n, one has to test
the null hypothesis H0 : θ1 = · · · = θn = θ0, against the alternative hypothesis

H1 : θi =
{

θ0 i = 1, 2, · · ·, k0,
θ0 + δ i = k0 + 1, · · ·, n.

The initial parameter θ0 may be known or unknown. The change point k0 (k0 =
1, · · ·, n − 1) and the magnitude of change δ are unknown parameters. Without
loss of generality, let δ ≥ 0. The following regularity conditions are needed.

(i) For every value x, the derivative g(θ, x) = ∂
∂θ log fθ(x) exists for ev-

ery θ ∈ Θ, and Eθ0 |g(θ0, X1)|3 < ∞, so the Fisher information σ2 = I(θ0) =
V arθ0 [g(θ0, X1)] exists.
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(ii) For any function h(·) with Eθ|h(X1)| < ∞, we have

d

dθ

∫
h(x)fθ(x)dx =

∫
h(x)

∂

∂θ
fθ(x)dx,

for every θ ∈ Θ.

The following example shows that these conditions are satisfied in two rich
families of distributions.

Example 1. In the exponential family with density function

fθ(x) = h(x) exp{ϕ1(θ)u(x) + ϕ2(θ)},

condition (i) is satisfied provided

Eθ0 |u(X1)|3 < ∞.

In the location family
fθ(x) = f(x − θ),

where the derivative f
′
(·) exists, condition (i) is satisfied provided∫ ∞

−∞

|f ′(x)|3

[f(x)]2
dx < ∞.

For example, for the logistic distribution L(θ, 1) with f(x) = e−x

(1+e−x)2
, we have∫ ∞

−∞

|f ′(x)|3

[f(x)]2
dx =

∫ ∞

−∞

e−x|1 − e−x|3

(1 + e−x)5
dx < ∞.

Condition (ii) is typically satisfied.
Chernoff and Zacks (1964) considered the quasi-Bayesian change point analy-

sis for independent normal observations. Kander and Zacks (1966) (KZ) extended
the work of Chernoff and Zacks (1964) to the case of exponential family distri-
butions. The nonparametric methods in change point analysis can be found in
Brodsky and Darkhovsky (1993). Broemeling and Gregurich (1996) surveyed
the Bayesian estimation of change point via resampling methods. An excellent
reference in change point analysis is Csörgő and Horváth (1997). Gupta and
Ramanayake (2001) used KZ’s quasi-Bayes method to study the epidemic change
point in exponential distribution. For more references see Hjort and Koning
(2002) and Habibi et al. (2005) among the other.

In this note, we consider quasi-Bayes and likelihood ratio test procedures to
detect a change in a general class of distributions. This paper is organized as
follows. The quasi-Bayes test is studied in Section 2. The exact distribution of



Test Procedures for Change Point 113

the test statistic in some special cases and its asymptotic distribution in general
cases are also derived. Section 3 contains the exact and asymptotic distributions
of the likelihood ratio test statistic. The performances of the two test procedures
are compared in Section 4. Estimation of the change point based on two test
procedures is also considered in this section. Section 5 considers the epidemic
change point model which is an alternative model for the single change point
model. A real data set is also considered in this section. This paper although is
extension of an old paper however its approach in presenting the results in term
of stochastic integrals is interested. It also considers change point detection in
general class of distribution with single and epidemic change point model, a topic
which is not considered before.

2. Quasi-Bayes Test

In this section, following KZ the quasi-Bayes test statistic is derived. Assume
that k0 = [nt0], for some unknown t0 ∈ (0, 1). We consider the point t0 as a ran-
dom variable with prior density π(t), t ∈ (0, 1). First, suppose that θ0 is known.
The marginal likelihoods of the sample under H0 and H1 are

∏n
k=1 fθ0(xk) and

∫ 1

0
π(t)

[nt]∏
k=1

fθ0(xk)
n∏

k=[nt]+1

fθ0+δ(xk)dt,

respectively, and so the marginal likelihood ratio function under H1 to that under
H0 is given by ∫ 1

0
π(t) exp{

n∑
k=[nt]+1

log fθ0+δ(xk) − log fθ0(xk)}dt.

Following KZ, as δ → 0, then the marginal likelihood ratio can be approxi-
mated by ∫ 1

0
π(t) exp{δ

n∑
k=[nt]+1

g(θ0, Xk) + o(δ)}dt,

and it can be expressed by

1 + δ

∫ 1

0
π(t)

n∑
k=[nt]+1

g(θ0, Xk)dt + o(δ).

Then to test H0 the corresponding test statistic becomes

T π
n =

1
n

∫ 1

0
π(t)

n∑
k=[nt]+1

g(θ0, Xk)dt.
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By partitioning [0, 1] to n equal subdivisions, it can be shown that

T π
n =

1
n

n∑
k=1

Π(
k − 1

n
)g(θ0, Xk),

where

Π(t) =
∫ t

0
π(x)dx.

KZ derived the test statistic T π
n in exponential families. The test procedure

based on T π
n is locally most powerful (see KZ). Under the noninformative prior

π(t) = 1 for t ∈ (0, 1) then the test statistic

Tn =
1
n2

n∑
k=1

(k − 1)g(θ0, Xk),

will be obtained. Habibi et al. (2005) studied the behavior of this test statistic.

Example 2. The exact null distribution of Tn can be found in some special
cases. In exponential families Tn reduces to KZ test statistic. So the exact null
distribution of Tn can be obtained in the normal, exponential, and binomial
distributions (see KZ). The exact null distribution of Tn can also be found in
the logistic distribution as follows. Without loss of generality, let θ0 = 0. It is
easy to verify that

Tn =
1
n2

n∑
i=1

(i − 1)(−2F (Xi) + 1),

where F (·) is the distribution function of the standard logistic distribution
L(0, 1). Let Sn =

∑n
i=1(i − 1)F (Xi) and gn(·) be the density function of Sn.

Then Sn = −n2Tn
2 + n(n−1)

4 . Variables (i− 1)F (Xi) are independent with uniform
distribution on (0, i − 1). Sadooghi et al. (2005) showed that

gn(s) =
(−1)n−1

(n − 1)!(n − 2)!
{(−1)n−1sn−2 +

n−1∑
k=1

(−1)n−1−k
∑∑

....
∑

1≤j1<j2<....<jk≤n

[(s −
k∑

l=1

jl)+]n−2},

where x+ = max(x, 0). Now if hn(·) is the density function of Tn, we have

hn(t) =
n2

2
gn(

−n2t

2
+

n(n − 1)
4

).
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However, since the exact distribution of T π
n ( or Tn) is very complicated in

many cases, the asymptotic distribution of T π
n is considered in Theorem 1. Sup-

pose that σ2 = I(θ0), the Fisher information computed at θ0.

Theorem 1. Assuming regularity conditions (i) and (ii) and under the null
hypothesis H0, we have

√
nσ−1T π

n
d→ N(0,

∫ 1

0
Π2(t)dt).

Proof. Consider the stochastic process Sn(t) as follows:

Sn(t) = n−1/2σ−1

[nt]∑
i=1

g(θ0, Xi) for t ∈ (0, 1).

Under the null hypothesis, Sn(·) d→ W (·) in (D[0, 1], d) where W (·) is the standard
Brownian motion on [0, 1] and d is Skorokhod metric (see Billingsley, 1968). The
map Λ defined as

x(·) Λ→
∫ 1

0
π(t)x(t)dt,

is continuous. The continuity theorem implies that

√
nσ−1T π

n =
∫ 1

0
π(t)(Sn(1) − Sn(t))dt

d→ W (1) −
∫ 1

0
π(t)W (t)dt.

Integration by part can be applied to show that

W (1) −
∫ 1

0
π(t)W (t)dt

d=
∫ 1

0
Π(t)dW (t) d= N(0,

∫ 1

0
Π2(t)dt).

Corollary 1. Under (i), (ii) and H0, then
√

3nTn
d−→ N(0, σ2).

Remark 1. When the initial parameter θ0 is unknown, then θ0 is substituted
by θ̂0, the maximum likelihood estimate of θ0 under the null hypothesis, resulting
in the following test statistic:

T̂ π
n =

1
n

n∑
k=1

Π(
k − 1

n
)g(θ̂0, Xk).

It is easy to show that under the null hypothesis (since θ̂0
p→ θ0), then

n−1/2σ−1T̂ π
n

d→
∫ 1

0
Π(t)dB(t).
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Example 3. As a special case of Remark 1, consider a sequence of indepen-
dent random variables Xi such that

Xi = θ0 + δI(i ≥ k0 + 1) + Ni,

where Ni are i.i.d random variables of standard normal N(0, 1) distribution.
The initial mean θ0 is unknown and it is replaced by Xn. Then, the test statistic
is given by

T̂n =
1
n2

n∑
k=1

(k − 1)(Xk − Xn).

It is seen that
√

nT̂n =
∫ 1

0
tdBn(t) d→

∫ 1

0
tdB(t),

where Bn(t) = n−1/2
∑[nt]

k=1(Xk − Xn) converges to B(·), the standard Brownian
bridge on [0, 1].

Remark 2. Suppose that Xi = Xi−1 + εi, i = 1, ..., n, where εi are iid

normaly distributed with E(ε1) = 0 and E(ε2
1) = σ2. Let Hn(t) = n−1/2

∑[nt]
i=1 εi.

Then
T π

n√
nσ

=
1
n

n∑
k=1

Π(
k − 1

n
)Hn(

k

n
) d→

∫ 1

0
Π(t)W (t)dt.

Next, the asymptotic distribution of Tn under the alternative hypothesis is
considered. To do so, the following extra condition is assumed.

(iii) Eθ1 |g(θ0, X)|3 < ∞.

Let µθ1 = Eθ1(g(θ0, Xk0+1)) and I(θ0, θ1) = V arθ1(g(θ0, Xk0+1)).

Theorem 2. Under the alternative hypothesis H1, then

√
n{T π

n − µθ1

∫ 1

t0

Π(t)dt} d→
∫ 1

0
π(t){W ∗(1) − W ∗(t)}dt,

where

W ∗(t) =
{

σW1(t) t ≤ t0,

σW1(t0) +
√

I(θ0, θ1)W2(t − t0) t ≥ t0,

which W1(·) and W2(·) are two independent standard Brownian motions on
[0, 1].

Proof. Let S∗
n(t) = n−1/2

∑[nt]
k=1 Yk, where

Yk = g(θ0, Xk) − EH1(g(θ0, Xk)).
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Note that {Yk, k = 1, · · ·, k0} and {Yk, k = k0 + 1, · · ·, n} are two independent
of iid random variables. Then there exist two independent standard Brownian
motions on [0, 1] namely W1(·) and W2(·) such that{

n−1/2
∑[nt]

k=1 Yk
d→ σW1(t), for t ≤ t0,

n−1/2
∑[nt]

k=[nt0]+1 Yk
d→

√
I(θ0, θ1)W2(t − t0), for t ≥ t0,

Notice that S∗
n(·) d→ W ∗(·) (see Theorem 2) in (D(0, 1), d) where d is the Sko-

rokhod metric. Notice that

√
n{T π

n − E(T π
n )} =

∫ 1

0
π(t){S∗

n(1) − S∗
n(t)}dt.

The continuity theorem implies that∫ 1

0
π(t){S∗

n(1) − S∗
n(t)}dt

d→
∫ 1

0
π(t){W ∗(1) − W ∗(t)}dt.

Therefore,
√

n{T π
n −E(T π

n )} d→
∫ 1
0 π(t){W ∗(1)−W ∗(t)}dt. Notice that E(T π

n ) =
µθ1
n

∑n
k=[nt0]+1 Π(k−1

n ) which converges to µθ1

∫ 1
t0

Π(t)dt and

E(T π
n ) − µθ1

∫ 1

t0

Π(t)dt = O(n−1).

Write A =
√

n{T π
n − E(T π

n )}. Then

A =
√

n{T π
n − µθ1

∫ 1

t0

Π(t)dt} +
√

n{µθ1

∫ 1

t0

Π(t)dt − E(T π
n )}

=
√

n{T π
n − µθ1

∫ 1

t0

Π(t)dt} + O(n−1/2).

This completes the proof.

Corollary 2. Under (i), (ii), (iii) and H1 then

√
n(Tn − 1 − t20

2
µθ1)

d→ N(0,
σ2

t0(θ0, θ1)
3

),

where σ2
t0(θ0, θ1) = t30I(θ0) + (1 − t30)I(θ0, θ1).

Although, deriving Corollary 2 from Theorem 1 is straightforward, but we
present a proof briefly. Let Yi = (i − 1)g(θ0, Xi). Then

0 ≤ lim
n→∞

Cn

Dn
≤ lim

n→∞
O(n−1/6) = 0,
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at which Cn = 3
√∑n

i=1 E|Yi − E(Yi)|3 and Dn =
√∑n

i=1 V ar(Yi). Therefore by

Lyapunov’s theorem
Pn

i=1{Yi−EYi}√Pn
i=1 V ar(Yi)

d→ N(0, 1). Replacing EYi and V ar(Yi) gives

the result.

Corollary 3. The approximate power of test in size α based on Tn is given
by

βα(δ) = 1 − Φ(
σzα −

√
3n
2 (1 − t20)µθ1

σt0(θ0, θ1)
).

For example, when Xi = θ0+δI(i ≥ k0+1)+Ni, Ni
i.i.d∼ N(0, 1), we have µθ1 = δ,

σt0(θ0, θ1) = 1 and then βα(δ) = Φ{−zα +
√

3n
2 (1 − t20)δ}. It can be shown that

as δ → 0, then

µθ1

δ
→ I(θ0) and

I(θ0, θ1) − I(θ0)
δ

→ Eθ0(g
3(θ0, X1)).

Then σ2
t0(θ0, θ1) can be approximated by

I(θ0) + δ(1 − t30)Eθ0(g
3(θ0, X1)).

In the special case when g(θ0, x) = g∗(x−θ0) for some odd function g∗, and when
the null distribution of X1 is symmetric under θ0, then Eθ0(g

3(θ0, X1)) = 0, and
then the power is approximatly Φ(−zα +

√
3n
2 (1 − t20)σδ). For example, when

Xi are normal with variance 1, then σ = 1 and the power is approximately
Φ{−zα +

√
3n
2 (1 − t20)δ}.

Remark 3. We can estimate the location of change point using the quasi-
Bayesian test. To see this in details, we consider the special case Xi = θ0+δI(i ≥
k0 + 1) + Ni, where Ni are iid random variables from N(0, 1) distribution and
δ > 0. The change point estimator k̂n based on quasi-Bayes test is given by

k̂n = argmin Uk,

where Uk = 1
n

∑k
i=1 Π( i−1

n )(Xi −X) for k = 1, ..., n− 1. Define g(t) =
∫ t
0 Π(x)dx.

Since Uk − E(Uk) = 1
n

∑k
i=1 Π( i−1

n )(Ni − N), and

n−1/2 sup
0<t<1

|
[nt]∑
i=1

Π(
i − 1

n
)(Ni − N)| d→ sup

0<t<1
|
∫ t

0
Π(x)dB(x)|,

then, we get
sup

0<t<1
|U[nt] − E(U[nt])| = op(1),
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that is U[nt] is pretty close to its mean function E(U[nt]). Then to study limiting
behavior of U[nt], it is enough to study the limiting behavior of E(U[nt]). It is
easy to see that E(U[n·]) → U(·), where

U(t) =
{

−δ(1 − t0)g(t) t ≤ t0,
−δ(1 − t0)g(t0) + δt0(g(t) − g(t0)) t > t0.

This shows the consistency of t̂n = bkn
n , that is t̂n

p→ t0, as n → ∞ (see Bai, 1994).

3. Likelihood Ratio Test

Here, the likelihood ratio test is considered to test the null hypothesis of no
change point. First, assume θ0 is known. The likelihood ratio function under H1

to that under H0 is given by

max
1≤k≤n−1

n∏
i=k+1

fθ0+δ(xi)
fθ0(xi)

.

It is easy to verify that as δ → 0+, then the likelihood ratio function can be
approximated by

1 + δ max
1≤k≤n−1

n∑
i=k+1

g(θ0, Xi) + o(δ),

(see Section 2). One would reject H0 whenever the observed value of T ∗
n is large,

where

T ∗
n =

1
n

max
1≤k≤n−1

n∑
i=k+1

g(θ0, Xi).

One can show that under the null hypothesis H0, as n → ∞, then
√

nT ∗
n

σ
= sup

0<t<1
n−1/2

n∑
i=[nt]+1

g(θ0, Xi)
d→

sup
0<t<1

{W (1) − W (t)} d= sup
0<t<1

W (1 − t) = sup
0<t<1

W (t) d= |N |,

where N is distributed as standard normal distribution (see Billingsley, 1968).

Remark 4. The likelihood ratio test statistics T ∗
n is larger than the quasi-

Bayes test statistic T π
n . To see this, note that

T π
n =

1
n

∫ 1

0
π(t)

n∑
k=[nt]+1

g(θ0, Xk)dt ≤ 1
n

sup
0<t<1

n∑
k=[nt]+1

g(θ0, Xk) = T ∗
n .
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This shows that the critical values of likelihood ratio test are larger than the
values for the quasi-Bayes test.

Remark 5. When the initial parameter θ0 is unknown, again θ0 is substituted
by θ̂0, the maximum likelihood estimate of θ0 under the null hypothesis, resulting
in the following test statistic:

T̂ ∗
n =

1
n

max
1≤k≤n−1

n∑
i=k+1

g(θ̂0, Xi).

It is easy to show that under some mild conditions then
√

nT̂ ∗
n

σ

d→ sup
0<t<1

B(t).

Example 4. To see Remark 5, consider the special case Xi = θ0 + δI(i ≥
k0 + 1) + Ni, where Ni

i.i.d∼ N(0, 1). Since θ0 is unknown it is estimated by Xn

and the test statistic is given by

T̂ ∗
n =

1
n

max
1≤k≤n−1

vk,

where vk =
∑n

i=k+1(Xi − Xn), k = 1, · · ·, n − 1. Under the null hypothesis

n−1/2
n∑

i=[n·]+1

(Xi − Xn) = −n−1/2

[n·]∑
i=1

(Xi − Xn) d→ −B(·),

where B(·) is the standard Brownian bridge on [0, 1]. Since B(·) d= −B(·), the
continuity theorem implies that

√
nT̂ ∗

n
d→ sup0<t<1 B(t).

Under the null hypothesis, random vector v = (v1, ..., vn−1) has a multivariate
normal distribution Nn−1(0,Σ) with

Σij = min(i, j) − ij

n
,

(see Hawkins, 1977). Under H1, then v ∼ Nn−1(δµ,Σ), where µ = (µ1, · · ·, µn)
with

µk =
{

(1 − k0
n )k k = 1, · · ·, k0,

k0(1 − k
n) k = k0 + 1, · · ·, n.

The exact distribution of T̂ ∗
n is the distribution of maximum of a multivariate

normal. Then the α-th quantile of T̂ ∗
n is the α-th equi-quantile of a multivariate
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normal distribution which is considered by Genz (1992).

Remark 6. The change point estimator k̂n based on the likelihood ratio test
when δ > 0 is given by

k̂n = argmin Vk, k = 1, ..., n − 1,

where Vk = vk
n . Consider model Xi = θ0 + δI(i ≥ k0 + 1) + Ni, where Ni

i.i.d∼
N(0, 1). It is easy to verify that

sup
0<t<1

|V[nt] − E(V[nt])| = op(1) and E(V[n·]) → δV (·),

where

V (t) =
{

(1 − t0)t t ≤ t0,
t0(1 − t) t > t0.

This fact suggests plotting Vk for k = 1, 2, ..., n − 1. The first point k̂n at which
Vk attains its minimum is the likelihood ratio change point estimator.

4. Comparisons

In this section, we compare the performance of the quasi-Bayes and likelihood
ratio tests by studying their significance levels and powers. The significance levels
of quasi-Bayes and likelihood ratio tests are αn and α∗

n respectively, where

αn = Pθ0(
√

3nTn

σ
≥ zα) and α∗

n = Pθ0(
√

nT ∗
n

σ
≥ zα).
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Table 1: Estimated significance level of quasi-Bayes test

α\n 25 50 75 100 125 150 175 200

0.01 0.0089 0.0095 0.0097 0.0099 0.0101 0.01 0.01 0.01
0.025 0.0231 0.0245 0.0248 0.0251 0.0251 0.025 0.025 0.025
0.05 0.048 0.049 0.05 0.05 0.05 0.05 0.05 0.05
0.1 0.097 0.098 0.098 0.099 0.1 0.1 0.1 0.1

Table 2: Estimated significance level of likelihood ratio test

α\n 25 50 75 100 125 150 175 200 250 300
0.01 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.01 0.01
0.025 0.019 0.022 0.024 0.024 0.024 0.024 0.024 0.024 0.025 0.025
0.05 0.045 0.045 0.045 0.047 0.048 0.048 0.049 0.049 0.05 0.05
0.1 0.093 0.095 0.095 0.096 0.096 0.096 0.097 0.098 0.1 0.1

Table 3: Values of βα(δ) and β̂∗
α(δ)

k0 βα(δ1) β̂∗
α(δ1) βα(δ2) β̂∗

α(δ2)

1 0.617 0.0795 0.9995 0.988
3 0.6075 0.072 0.9995 0.9825
5 0.5965 0.076 0.9992 0.976
7 0.579 0.0725 0.9992 0.971
9 0.567 0.0735 0.996 0.958
11 0.562 0.079 0.995 0.9575
13 0.566 0.0695 0.9855 0.932
15 0.569 0.0705 0.98 0.9225
17 0.5585 0.0745 0.968 0.897
19 0.547 0.073 0.9535 0.878
21 0.5245 0.076 0.9225 0.838
23 0.5285 0.065 0.9055 0.785
25 0.5445 0.0545 0.8795 0.766
27 0.5115 0.062 0.825 0.692
29 0.517 0.0515 0.809 0.6415
31 0.501 0.0615 0.7535 0.5235
33 0.4835 0.0645 0.706 0.456
35 0.4645 0.0465 0.6565 0.3695
37 0.503 0.0535 0.614 0.3125
39 0.476 0.043 0.5795 0.244
41 0.4885 0.05 0.5355 0.174
43 0.4885 0.0455 0.5195 0.1205
45 0.481 0.0465 0.5065 0.1035
47 0.4785 0.0315 0.4745 0.0595
49 0.466 0.046 0.4835 0.049
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4.1 Rate of convergence of αn and α∗
n

In what follows, we compare the rate of convergence of αn and α∗
n to α in

the case of logistic distribution. For a given n, we compute αn and α∗
n using

a Monte Carlo experiment with R = 20000 repetitions. Let α̂nR (α̂∗
nR) be the

number of times that the null hypothesis H0 of no change is rejected based on
the quasi-Bayes test (likelihood ratio test) over R. The SLLN guarantees that
α̂nR (α̂∗

nR) (see Tables 1, 2) is pretty close to αn(α∗
n). The rates of convergence

of αn and α∗
n to α seem good although it seems αn converges to α a little faster.

4.2 Approximated power of two tests

Here, we compare the powers of two test procedures in the logistic observations
L(δ, 1). The power of quasi-Bayes test βα(δ) (see Corollary 2) are given in Table
3 for α = 0.05 and k0 = 1, 3, ..., 49. Table 3 also contains the power of likelihood
ratio test β̂∗

α(δ) which is estimated using a Monte Carlo simulation study with
R = 20000 repetitions. In order to keep the table in reasonable size, only the
case of sample size n = 50 and magnitude of changes (δ1, δ2) = (0.09, 1) with a
significance level α = 0.05 is reported. It is seen from the Table 3 that the power
of quasi-Bayes test is larger than the power of likelihood ratio test in all cells.
The power of likelihood ratio test is too small for δ1 = 0.09. Higher powers for
two tests are achieved if k0 occurs in the beginning of the sequence.

5. Epidemic Change Point

The epidemic change point model is an alternative for the single change point
model. Yao (1993) published a survey of the available test procedures together
with their comparisons. Brodsky and Darkhovsy (1993) constructed estimators
for change points and studied their properties. In this section, the epidemic
change point is considered in a general class of distributions. Epidemic change
point analysis has many applications in practice and studying it in a general class
of distribution is an interested topic. Consider a sequence of independent random
variables X1, · · ·, Xn whose density functions are fθi

(xi), θi ∈ Θ, i = 1, · · ·, n, one
has to test the null hypothesis H0 : θ1 = · · · = θn = θ0, against the alternative
hypothesis

H1 : θi =


θ0 i = 1, 2, · · ·, k0,

θ0 + δ i = k0 + 1, · · ·, k1,
θ0 i = k1 + 1, · · ·, n.

First, suppose that θ0 is known. Let k0 = [nt0] and k1 = [nt1] for some 0 < t0 <
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t1 < 1. Denote prior of (t0, t1) by π(t0, t1), where

π(t0, t1) = π1(t1|t0)π0(t0), 0 < t0 < t1 < 1.

Similar to Section 2, the quasi-Bayes test will reject H0, when T πe
n is large, where

T πe
n =

1
n

∫ 1

0

∫ 1

t
{Ln(s) − Ln(t)}π(t, s)dsdt,

at which Ln(t) =
∑[nt]

i=1 g(θ0, Xi). The Donsker theorem implies that n−1/2{Ln(s)−
Ln(t)} d→ σ{W (s) − W (t)}. Then the continuity theorem implies that

√
nT πe

n
d→ σ

∫ 1

0

∫ 1

t
(W (s) − W (t))π1(s|t)π0(t)dsdt.

The likelihood ratio test statistic is

T ∗e
n =

1
n

sup
0<t<s<1

{Ln(s) − Ln(t)}.

It is easy to see that

√
nT ∗e

n
d→ σ sup

0<t<s<1
{W (s) − W (t)}.

Remark 7. When θ0 is unknown, it is estimated by θ̂0. The above asymptotic
distributions of quasi-Bayes and likelihood ratio statistics are held by replacing
W (·) with B(·), the standard Brownian bridge on [0, 1].

6. Stanford Heart Transplant Data

The data set is (taken from Kalbfleisch and Prentice, 1980) contains 35 pa-
tients with known age groups. The average survival time of the patients were
indexed by age group. There can be doubts about the exsitence of an epidemic
change in the sequence. To check this possibility, we performed the two test
procedures for this data set. The p-values of quasi-Bayesian and likelihood ratio
tests are 0.0235 and 0.0552, respectively. We can reject the null hypothesis of no
change, in favor of an epidemic change for this data set. The ML estimators of
two change points are 29 and 48 years, respectively.
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