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Abstract:  Data collection for landslide susceptibility modelling is often an
almost inhibitive activity. This has been the reason for quite sometimes land-
slide was described and modelled on the basis of spatially distributed values
of landslide related attributes. This paper presents landslide susceptibility
analysis at Selangor area, Malaysia, using artificial neural network model
with the aid of remote sensing data and geographic information system (GIS)
tools. To meet the objectives, landslide locations were identified in the study
area from interpretation of aerial photographs and supported with extensive
field surveys. Then, the landslide inventory was grouped into two categories:
(1) training data (2) testing data. Further, topographical, geological data
and satellite images were collected, processed, and constructed into a spatial
database using GIS tools and image processing techniques. Nine landslide
occurrence attributes were selected and analyzed using an artificial neural
network model to generate the landslide susceptibility maps. Landslide loca-
tion data (training data) were used for training the neural network and five
training sites were selected randomly in this case. The use of five training
sites ensemble to investigate the model reliability, including the role of the
thematic variables used to construct the model, and the model sensitivity
to changes in the selection of the training sites. By studying the variation
of the neural network’s susceptibility estimate, the error associated with the
model is determined. The results of the neural network analysis are shown
on five sets of landslide susceptibility maps. Then the susceptibility maps
were validated using ”receiver operating characteristics (ROC)” method as
a measure for the model verification. Landslide training data which were not
used during the training of the neural network was used for the verification
of the maps. The results of the analysis were verified using the landslide
location data and compared between five different cases. Qualitatively, the
model seems to give reasonable results with accuracy observed was 87%,
83%, 85%, 86% and 82% for five different training sites respectively.
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1. Introduction

Landslide presents a significant constraint to development in many parts of
Malaysia which experiences frequent landslides, with the most recent occurring
in 2000, 2001, 2004, 2007 and 2008. Damages and losses are regularly incurred
because; historically there has been too little consideration of the potential prob-
lems in land use planning and slope stability analysis. Landslides are mostly oc-
curred in Malaysia mainly due to heavy tropical rainfall. In recent years greater
awareness of landslide problems has led to significant changes in the control of
development on unstable land. So far, few attempts have been made to predict
these landslides or preventing the damage caused by them. In last few years, land-
slide susceptibility analysis using GIS and data mining such as fuzzy logic, and
artificial neural network methods have been applied by researchers in different
countries (Ercanoglu and Gokceoglu 2002; Gomez and Kavzoglu, 2005; Pistocchi
et al. 2002; Lee et al. 2003a, 2003b, 2004; Pradhan 2010a, 2010b, 2010c, 2010d;
Pradhan and Lee, 2010a, 2010b, 2010c; Pradhan, Lee and Buchroithner, 2010a,
2010b; Pradhan, Oh and Buchroithner, 2010; Pradhan and Buchroithner, 2010;
Pradhan et al., 2010; Pradhan and Youssef, 2010; Pradhan and Pirasteh, 2010).
But their result output can not be directly used in the Malaysian landslide sus-
ceptibility analysis. This is due to the changes in the geographical environment
set up, litho types and different climatic condition etc. The local geographical
settings cause different landslide types based on completely different mechanisms
and are absolute incomparable. Through scientific analysis of landslides, we can
assess and predict landslide-susceptible areas, and thus decrease landslide damage
through proper preparation. To achieve this aim, landslide susceptibility analysis
techniques have been applied, and verified in the study area using artificial neural
network.

In landslide literature, there have been many studies carried out on land-
slide hazard evaluation using GIS. There are number of different approaches for
the measurement of landslide hazard, including direct and indirect heuristic ap-
proaches, and deterministic, probabilistic, statistical and data mining approaches.
Recently, there have been studies on landslide hazard evaluation using GIS, and
many of these studies have applied probabilistic models (Baeza and Corominas,
2001; Lee and Min, 2001; Lee, Chwae and Min, 2002; Gokceoglu, Sonmez, and
Ercanoglu, 2000; Lee and Choi, 2003; Lee, Choi and Min, 2004; Lee and Prad-
han, 2006, 2007; Pradhan, Singh and Buchroithner, 2006; Youssef et al., 2009).
One of the multivariate models available, the logistic regression models, has also
been applied to landslide hazard mapping (Dai and Lee, 2002; Pradhan et al.,
2008a; Pradhan and Lee, 2009a; Pradhan and Youssef, 2009). In last few years, a
new approach to landslide hazard evaluation using GIS, data mining using fuzzy



Preparation of Landslide Susceptibility Maps 67

logic, and artificial neural network models have been applied (Catani et al., 2005;
Ercanoglu and Gokceoglu, 2002; Ermini, Catani, and Casagli, 2005; Neaupane
and Achet, 2004; Pradhan, Lee and Buchroithner, 2009; Pradhan et al., 2008b;
Pradhan and Lee, 2009a, 2009b; Pradhan and Lee, 2007).

In recent years, Lee and Pradhan (2006), Lee and Pradhan (2007), and Prad-
han and Lee (2009a) investigated the landslide susceptibility in Malaysia. Prad-
han and Lee (2009b) evaluated three models for landslide susceptibility analy-
sis using frequency ratio, logistic regression and artificial neural network model.
Pradhan and Lee (2009b) analyzed the rainfall precipitation in the Penang area
using back-propagation neural networks. However, they could not have a detail
landslide hazard analysis due to lack of rainfall intensity data. Slope stability
and rainfall intensity is very important factors causing most of the landslides in
Malaysia. Besides these two important factors of rainfall and slope, soil weight
and distance to drainage are also important factors in some regions. Pradhan,
Lee and Buchroithner (2009), investigated the landslide susceptibility using fuzzy
model at Penang Island and they pointed out some important factors, such as to-
pographic slope, topographic aspect, topographic curvature, distance to drainage,
lithology, distance to faults, soil texture, landcover, vegetation index and accu-
mulated rainfall intensity.

The objective and motivation of this study is to demonstrate a data mining
model for the landslide hazard analysis with the aid of GIS. In order to get a
stable and reliable result, in this paper, nine geological and geomorphological
factors including, topographic slope, topographic aspect, topographic curvature,
distance to drainage, lithology, distance to faults, soil texture, landcover and nor-
malized difference vegetation index (ndvi) to predict landslide susceptible areas.
These nine factors constructed an ANN using the back propagation algorithm for
landslide susceptibility analysis. To meet the objectives, firstly the ANN model
was trained using training sites which can be directly utilized for the landslide
susceptibility analysis as long as the recorded nine factors are fed into an ANN
model. Five different training samples were selected to train the ANN in order o
avoid bias effect in the final results. Finally, the results of the landslide suscepti-
bility maps were validated using the existing landslide location data with the aid
of receiver operating characteristics (ROC) approaches.

2. Study Area

The eastern part of Selangor state has suffered much landslide damage follow-
ing heavy rains and it was selected as a suitable pilot area to evaluate frequency
and distribution of landslides. The study area is located approximately between
3°23/53.6" F and 3°45'18.05 and 101°30'55.33" N and 101°3/36.3 N. The landuse
of the state is mainly peat swamp forest, plantation forest, inland forest, scrub,
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grassland and ex-mining area. The landform of the area ranges from very flat ter-
rain, especially for the peat swamp forest, ex mining, grassland and scrub area, to
quite hilly area for the natural forest ranging between 0— 420 m. a.s.l. Based on
Malaysian Meteorological Services Department, the temperature of northern part
of Selangor is between 29° C to 32° C and mean relative humidity of 65% to 70%.
The rainfall from 58 mm to 240 mm per month was recorded in the study area
(Tanjung Karang weather station provided by Malaysian Meteorological Services
Department).

Tectonically, state of Selangor forms a part of the Sunda Shield. Its fold-
mountain system has northern to north-western regional trend which is a southern
continuation of eastern Burma through Thailand, and Indonesian Borneo. All the
systems, forms the Cambrian to the Quaternary rock formations in Peninsular
Malaysia. The pre-Triassic rocks are essentially marine whereas the post-Triassic
rocks are characteristically non-marine. The Triassic rocks are of both marine
and non-marine origins but in general, the non-marine deposits occur in the
Upper Triassic. Within Selangor, it is believed that sedimentation was continuous
throughout the Paleozoic and Mesozoic but because of the instability of the basin,
the sedimentary record is not complete. Major breaks are apparent between the
Paleozoic, Mesozoic and Cenozoic groups of rocks. Granitoids occupy almost half
of the study area. These bodies commonly form topographic highs, the largest
of which is the main range situated on the eastern flank of the area. Although
many of the granite bodies are aligned parallel to the structural trend, they
do not always occupy the anticlinal ridges of the sedimentary covers and some
of the smaller bodies are found to cut across the structural trends. Regional
metamorphism is widespread and most of the Paleozoic and Mesozoic rocks show
slight to moderate deformation. In general, the older rocks show a greater degree
of metamorphism than the younger rocks. Contact metamorphism is not intense
and generally forms narrow aureoles around the igneous bodies. There are at
least four major episodes of granite emplacement and it is believed that much
of the known mineralization occurred during the later episodes and commonly
associated with faulting. At least three sets of faults have been recognized in the
study area, the youngest of which is at most post-Early Cretaceous in age.

3. Spatial Database Construction

The data used is shown in Figure 1 and Table 1. Accurate detection of
the location of landslides is very important for probabilistic landslide hazard
analysis. The application of remote sensing methods, such as aerial photographs
and satellite images, are used to obtain significant and cost-effective information
on landslides. In this study, 1:25,000—1:50,000-scale aerial photographs were used
to detect the landslide locations. These photographs were taken during the period
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1981-2000, and the landslide locations were detected by photo interpretation and
the locations verified by fieldwork. Recent landslides were observed in aerial
photographs from breaks in the forest canopy, bare soil, or other geomorphic
characteristics typical of landslide scars, for example, head and side scarps, flow
tracks, and soil and debris deposits below a scar. To assemble a database to
assess the surface area and number of landslides in each of three study areas, a
total of 327 landslides were mapped in a mapped area of 8,179.28 km?.

Table 1: Various attribute data layers used in the analysis

Classification Sub-Classification GIS Data Type Scale

Geological Hazard Landslide Point coverage 1:25,000

Basic Map Topographic Map Line and Point coverage 1:25,000
Geological Map Polygon coverage 1:63,300
Drainage Line coverage 1: 25,000
Land Cover GRID 30m x 30 m
Soil Map GRID 10 m x 10 m
Vegetation Index (ndvi) GRID 10m x 10 m

There were nine factors considered, and the factors were extracted from the
constructed spatial database. The factors were transformed into a vector-type
spatial database using the GIS, and landslide-related factors were extracted using
the database. A digital elevation model (DEM) was created first from the topo-
graphic database. Contour and survey base points that had elevation values from
the 1:25,000-scale topographic maps were extracted, and a DEM was constructed
with a resolution of 10 m. Using this DEM, the slope angle, slope aspect, and
slope curvature were calculated. In the case of the curvature, negative curvatures
represent concave, zero curvature represent flat and positive curvatures represents
convex. The curvature map was prepared using the avenue routine in ArcView
3.2. In addition, the distance from drainage was calculated using the topographic
database. The drainage buffer was calculated in 100 m intervals. Using the geol-
ogy database, the lithology was extracted, and the distance from lineament were
calculated. The lithology map was obtained from a 1:63,300-scale geological map,
and the distance from lineament map was calculated in 100 m intervals. Land
cover data was classified using a LANDSAT TM image employing an unsuper-
vised classification method and field survey. The nine classes identified, such as
urban, water, forest, agricultural area, tin mines, rubber and palm oil plantation
were extracted for land cover mapping. Finally, the Normalized Difference Vege-
tation Index (NDVI) map was obtained from SPOT satellite images. The NDVI
value was calculated using the formula NDVI = (IR — R)/(IR + R), where IR
value is the infrared portion of the electromagnetic spectrum, and R-value is the
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red portion of the electromagnetic spectrum. The NDVI value denotes areas of
vegetation in an image.
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Figure 1: TInput data layers (a) Slope; (b) Aspect; (c¢) Curvature; (d) Distance
to drainage; (e) Lithology; (f) Distance to fault; (g) Soil; (h) Land cover; and
(i) Normalised difference vegetation index (ndvi)

The factors were converted to a raster grid with 10 m x 10 m pixels for
application of the artificial neural network. The area grid was 14,140 rows by
12,900 columns and 327 pixels had landslide occurrences.

4. Artificial Neural Network Model

The artificial neural network approach has many advantages compared with
other statistical methods. Firstly, the artificial neural network method is inde-
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Figure 2: Three tiered architecture of feed-forward, back-propagation neural
network (multilayer perception). (A): The presentation of training input data
layer pattern 1with the values of and . (B) The output values of the network
(). (C): The desired output pattern for the first samples of the training data
(Modified after Moody and Katz, 2003)

pendent of the statistical distribution of the data and there is no need for specific
statistical variables. Neural networks allow the target classes to be defined in
relation to their distribution in the corresponding domain of each data source
(Zhou, 1999), and therefore integration of remote sensing data or GIS data is
convenient. An artificial neural network is a “computational mechanism able
to acquire, represent, and compute a mapping from one multivariate space of
information to another, given a set of data representing that mapping” (Atkinson
and Tatnall, 1997). Most ANN models share a number of characteristics. These
will be identified before proceeding to describe particular models (Moody and
Katz, 2003). First, unlike expert systems, ANNs are not initialized with any
external rule base. Rather the goal of the ANN is to internally identify a set of
rules for matching input data to output conclusions. An ANN is composed of a set
of nodes and a number of interconnected processing elements. ANN uses learning
algorithms to model knowledge and save this knowledge in weighted connections,
mimicking the function of a human brain (Turban and Aronson, 2001). One of the
most commonly used ANN models is the feed-forward back-propagation ANN.
This is a supervised, pattern recognition model that needs to be trained using a
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data set for which both the input values (x) for a set of predictors and the correct
output values (y) are known for a set of examples. The architecture of this ANN
is based on a structure known as the Multi-Layer Perceptron (MLP). The MLP,
as the name implies, consists of a set of layers, each of which is composed of a set
of nodes (alternatively referred to as “processing elements”, “units”, “processing
units”, or “neurons”). The MLP with the back-propagation algorithm is trained
using a set of examples of associated input and output values. The purpose of
an artificial neural network is to build a model of the data-generating process,
so that the network can generalize and predict outputs from inputs that it has
not previously seen. This learning MLP algorithm is trained with the “Back-
Propagation algorithm”, which consists of an input layer, hidden layer, and an
output layer.

The first layer of the network, or input layer, contains a node for each of [
input variables (Figure 2). The [ input variables are analogous to the independent
variables in multiple regressions. When a given set of [ input values for one of the
n samples in the training data set is presented to the input nodes, we say that
the network is presented with an input pattern (zf, = (x1,... 4,5, where i = 1 to
n). The superscript p indicates terms that consists of or refer to a given pattern
of values (Moody and Katz, 2003).

The last layer of the network, or output layer, contains ¢ nodes, one for
each output type (Figure 2). In this case, there are nine input nodes (one each
for slope, aspect, curvature, distance from drainage, distance from lineaments,
lithology, landuse, vegetation index and soil texture). Sandwiched between the
input and output layers is one “hidden” layer which will allow complexities to
develop in the mapping functions. In this case, a three tired ANN architecture
model is used. The hidden layer, like the input and output layer, consists of
nodes.

The hidden and output layer neurons process their inputs by multiplying each
input by a corresponding weight, summing the product, and then processing the
sum using a nonlinear transfer function to produce a result. An artificial neural
network ”learns” by adjusting the weights between the neurons in response to
the errors between the actual output values and the target output values. At the
end of this training phase, the neural network provides a model that should be
able to predict a target value from a given input value.

There are two stages involved in using neural networks for multi-source clas-
sification: the training stage, in which the internal weights are adjusted; and
the classifying stage. Typically, the back-propagation algorithm trains the multi-
layered until some targeted minimal error is achieved between the desired and
actual output values of the network. Once the training is complete, the network
is used as a feed-forward structure to produce a classification for the entire data
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(Paola and Schwengerdt, 1995). For this study, the neural networks were simu-
lated in the neural network module of Mathworks MATLAB (The MathWorks
Inc. 1999). The back propagation multilayer perceptron (MLP) is a commonly
used and widely available neural network structure in geospatial analysis and was
used in this study.

5. Landslide Susceptibility Analysis Using the Artificial Neural Net-
work Model

The probabilities of occurrence of landslides were calculated based on (a) the
various input attributes that have been listed in table 1 and their cumulative
influence (weightage values were derived from ground-based information) and
(b) knowledge based classification. Before running the artificial neural network
program, the training site should be selected. So, the landslide-prone (occurrence)
area and the landslide-not-prone area were selected as training sites. Pixels from
each of the two classes were randomly selected as training pixels, with 327 pixels
denoting areas where landslide not occurred or occurred. First, areas where
the landslide was not occurred were classified as “areas not prone to landslide”
and areas where landslide was known to exist were assigned to an “areas prone to
landslide” training set. Training sites were selected based on landslide location as
prone training site and with a varying slope values as non-prone training site and
then the MLP trained back propagation algorithm was computed. Five different
training sites were selected randomly to produce five susceptibility maps.

The MLP trained with the Back-Propagation algorithm was then applied to
the input attribute layers by modifying the number of hidden nodes and the
learning rate. Hidden layers were selected two times of input attribute layers.
So obviously, the output will have both “existing” and “non-existing” landslide
areas. Some of the input attributes layers are continuous and others categorical
in nature. Therefore, these data were converted to raster grid in order to apply
the ANN model. Three-layered feed-forward network was implemented using the
MATLAB software package. Here, ”feed-forward” denotes that the interconnec-
tions between the layers propagate forward to the next layer. The number of
hidden layers and the number of nodes in a hidden layer required for a partic-
ular classification problem are not easy to deduce. In this study, a 9 x 19 x 2
structure was selected for the network, with input data normalized in the range
0.1-0.9. The nominal and interval class group data were converted to continuous
values ranging between 0.1 and 0.9. Therefore, all the layers were normalized
in the range 0.1- 0.9. The categorical data and their interval class group were
converted to a continuous values ranging 0.1 - 0.9. In this way, the continuous
values became nominal for back propagation modeling.

The learning rate was set to 0.01, and the initial weights were randomly
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Figure 3: RMSE variations observed for the training and test datasets with
respect to each five cases of training sites; (a) training site 1; (b) training site
2; (c) training site 3; (d) training site 4; and (e) training site 5

selected between 0.1 and 0.3. The MLP trained back-propagation algorithm was
used to minimize the error between the predicted output values and the calculated
output values. The algorithm propagated the error backwards iteratively by
adjusting the weights. The number of epochs was set to 2,500, and the root
mean square error (RMSE) value used for the stopping criterion was set to 0.01.
Most of the training datasets met the 0.01 RMSE goal. The results of the learning
rate for the training datasets are shown in Figure 3. However, if the RMSE value
was not achieved, then the maximum number of iterations was terminated at
2,000 epochs. When the latter case occurred, then the maximum RMSE value
was 0.213. Finally, the landslide susceptibility maps were generated using the five
training sites (Figure 4). The values were classified by equal areas and grouped
into four classes (highest 10%, second 10%, third 20% and reminding 60%) based
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on equal area classification for visual interpretation.
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Figure 4: RMSE variations observed for the training and test datasets with
respect to each five cases of training sites; (a) training site 1; (b) training site
2; (c) training site 3; (d) training site 4; and (e) training site 5

6. ROC Curve Evaluations of the Landslide Susceptibility Maps

The outputs of the neural network model after their spatialization are gener-
ally presented in the form of maps expressed qualitatively or quantitatively. In
this case, both physical and Receiver Operating Characteristic (ROC) model val-
idations of these outputs have been done in the five cases of susceptibility maps.
The landslide susceptibility analysis results were verified using known landslide
test locations. The ROC curves were created and their areas under curve were
calculated for all five cases. The ROC curve explains how well the model and
attributes predict the landslide. So, the area under curve (AUC) can assess the
prediction accuracy qualitatively. To obtain the relative ranks for each prediction
pattern, the calculated index values of all pixels in the study area were sorted
in descending order. Then the ordered pixels values were set on the y-axis with
accumulated intervals on the z-axis. .The rate verification results appear as a
line in Figure 5. For example, in the case of all attributes used, 90 to 100% (10%)
class of the study area where the landslide susceptibility index had a higher rank
could explain 35% of all the landslides. In addition, the 80 to 100% (20%) class
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of the study area where the landslide susceptibility index had a higher rank could
explain 58% of the landslides. To compare the result quantitatively, the areas
under the curve (AUC) were re-calculated based on the total area value 1 which
means perfect prediction accuracy. So, the area under a curve can be used to
assess the prediction accuracy qualitatively. Verification results show that in the
randomly selected training site 1 (case 1), the area ratio was 0.9259 and the pre-
diction accuracy was 92.59%. In the training site 2 (case 2), the area ratio was
0.8374 and the prediction accuracy was 83.74. In the training site 3 (case 3), the
area ratio was 0.8507 and the prediction accuracy was 85.07%. In the training
site 4 (case 4), the area ratio was 0.8604 and the prediction accuracy was 86.04%.
In the training site 5 (case 5), the area ratio was 0.8292 and the prediction accu-
racy was 82.92%. So from the prediction accuracy graphs (Figure 5), it is quite
evident that, training site 1 where slope equal to ”zero” used for susceptibility
map shows the best prediction accuracy of 92.59%, where as training site 5 shows
the least prediction accuracy of 82.92% with difference is about 10%.
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Figure 5: ROC curve evaluations for the susceptibility maps constructed using
the five different training cases.

6. Discussions and conclusion

Landslides possess a significant constraint to development in Malaysia, no-
tably through the sudden reactivation of ancient inland landslides. A series of
Government funded research projects has provided much background information
and identified suitable methods for the use of landslide susceptibility information
in land use planning. However, a number of significant problems remain over
the use of this information. In this study, an artificial neural network model was

used to estimate the landslide susceptible areas using remote sensing data and
GIS tools.



Preparation of Landslide Susceptibility Maps 77

In this neural network model, it is difficult to follow the internal processes
of the procedures, and the method entails a long execution time with a heavy
computing load. There is a need to convert the database to another format,
such as ASCII; the method requires that data be converted to ASCII for use in
the artificial neural program and later reconverted to incorporate it into a GIS
layer. Moreover, the large amount of data in the numerous layers in the study
area cannot be processed in artificial neural network program quickly and easily.
Using the attribute data, landslide occurrence potential can be assessed, but the
landslide events cannot be predicted. However, landslide susceptibility can be
analyzed qualitatively. While dealing with continuous and discrete data in an
artificial neural network model is an intriguing task. To optimize the model, the
artificial neural network methods have to be improved by applying in different
areas with more case studies.

Using the artificial neural network, five landslide susceptibility maps were
created and verified with the aid of ROC curve method. Five susceptibility maps
were prepared using the five randomly selected training sites. The results shows
that, training site 1 (case 1) where slope equal to ”zero” used for susceptibility
map gives higher prediction accuracy than the other training sites (Case 2- 5).

Landslide susceptibility maps are of great help to planners and engineers for
choosing suitable locations to implement developments. These results can be used
as basic data to assist slope management and land-use planning, but the models
used in the study are valid for generalized planning and assessment purposes,
although they may be less useful at the site-specific scale where local geological
and geographic heterogeneities may prevail. In spite of a number of weaknesses
in the database, the ANN modeling approach, combined with the use of remote
sensing and GIS spatial data give reasonable accuracy for the landslide prediction.
For the model to be more generally applied, more landslide data are needed, as
well as application to more regions.
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