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Abstract: This article deals with the latent class analysis of models with
error of measurement. If the latent variable is ordinal and manifest variables
are nominal, an approach to handle the restrictions is given for latent class
analysis of the models with error of measurement using log linear models. By
this way, we include ordinal nature of the latent variable into the analysis.
Therefore, overall uncertainty is decreased, and our inferences become more
precise. The new approach is applied to a women’s liberation data set.
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1. Introduction

Latent class analysis is frequently used in social sciences and education. Main
aim of the analysis is to explain the association structure between manifest vari-
ables by using unobserved variables, namely latent variables. Latent class analy-
sis is a categorical analogous of the factor analysis when the latent and manifest
variables are categorical. Log-linear models are widely used for the analysis of
contingency tables. It is possible to represent a latent class model as a log-linear
model using conditional response probabilities. This representation is called as
log-linear parametrization. This is a special case of Formann’s linear logstic latent
class analysis (Formann, 1992).

Error of measurement models are probabilistic versions of Guttman scale
(Guttman, 1950), and considered as restricted latent class models. In the log-
linear parametrization of the latent class models, types of manifest and latent
variables are important issues because latent class models specialize according to
the typology of the variables. For example, if the latent variable is metrical and
manifest variables are nominal then appropriate analysis is to carry on latent
class analysis with linear restrictions or use nominal response models (Heinen,
1996). In our concerned models with error of measurement, manifest variables
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can be nominal or ordinal, but latent variable is ordinal. If manifest variables are
also ordinal then latent class analysis with ordinal classes is a convenient way.
However, if they are nominal while latent variable is ordinal, there is no proposed
latent class analysis; and latent variable is treated as a metric variable in this case
(Heinen, 1996). This is an inappropriate approach for the models with error of
measurement. Type of used log linear model is another issue here. Heinen (1996)
uses independence log linear models for the latent class analysis of models with
error of measurement. In this, ordinal nature of latent variable is ignored. Also,
Heinen (1996) mentions use of logit form of column or row association models
when column or row variable of a two-way classification is metric, and use of logit
form of uniform association models when latent and manifest variables are metric
in a two-way classification for latent class analysis. However, these models should
be used for ordinal variables rather than metric variables, and use of them for
models with error of measurement is not noted. In this article, we propose to
use column or row effects log linear models in the analysis of models with error
of measurement over multi-way tables when the latent variable is ordinal and
manifest variables are nominal.

We revisit the women’s liberation data set of Felling et al. (1987). It is also
analyzed by Heinen (1996) over models with error of measurement. He treats
the ordinal latent variable as if it is metric, and uses an independence log linear
model. Our approach is a more convenient option for the analysis of this data set
because we take into consideration of ordinal nature of latent variable using an
appropriate log linear model. We clarify our approach over the data set, compare
our results with those obtained by Heinen (1996), and evaluate effects of both
approaches for the models with error of measurement over the data set. By this
application, we aim to promote use of column or row effects models in the analysis
of latent class models with error of measurement for this kind of data sets.

Section 2 explains the log-linear model and necessary notation. Section 3
gives the basic latent class model. Section 4 explains models with error of mea-
surement. Log-linear approach to the latent class models is given in Section 5
by means of nominal and ordinal latent variable. An expectation-maximization
(EM) algorithm for estimation procedure is also presented in Section 5. The
women’s liberation data is analyzed using the given approach over the models
with error of measurement in Section 6.

2. The Log-linear Model

Log-linear models vary according to the type of variables that construct the
contingency table. Classical independence model is used when all variables are
nominal; however, if they are ordinal, interaction models are used. If some vari-
ables are nominal and some are ordinal, row or column effect models are used.
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Notation given in this section are valid under all cases. Furthermore, it is assumed
that effect coding is used. An alternative to effect coding is dummy coding, which
sometimes makes the representations easier (Heinen, 1996).

Let S1, S2 and S3 be nominal categorical random variables (r.v.’s) constituting
a R × C × K contingency table, and | · | represent number of levels of inner
categorical r.v. Hence |S1| = R, |S2| = C and |S3| = K. The representation of a
saturated log-linear model is as follows:

log nijk = β + β1
i + β2

j + β3
k + β12

ij + β13
ik + β23

jk + β123
ijk , (2.1)

where i = 1, . . . , R, j = 1, . . . , C, k = 1, . . . ,K; log nijk is the natural logarithm of
expected cell count corresponding to i, j and k levels of the first, second and third
variables; β is normalizing constant; β1

i , β2
j and β3

k are main effect parameters
of levels i, j and k of the first, second and third variables, respectively; β12

ij , β13
ik

and β23
jk are interaction effects of the corresponding levels of the first and second,

first and third, and second and third variables, respectively.
Let S1, S2 be nominal and S3 be an ordinal categorical r.v. constituting a

R×C×K contingency table. Then the log-linear model as a row (column) effect
model is represented as follows:

log nijk = β + β1
i + β2

j + β3
k + β12

ij + τ13
i νk + τ23

j νk, (2.2)

where τ13
i and τ23

j are row (column) effect parameters of nominal-ordinal inter-
actions of the first and third, and the second and third variables, respectively; νk

is the score value corresponding to level k of the ordinal variable; definitions of
the rest of the elements of eq. (2.2) are the same as in eq. (2.1). Similar models
are constructed according to the number of ordinal variables. See Agresti (2002)
for more details.

3. Latent Class Models

There are two main variable types in the latent class model: manifest and
latent variables. Manifest variables are directly obtained and contain informa-
tion about latent variable, and latent variables are theoretical and not observed
directly. Let X be the latent variable, using the representations of Section 2, |X|
is the number of unobserved latent classes. When the manifest variables come
from N r.v.’s, there are |X| · |S1| · · · |SN | cells in the incomplete contingency ta-
ble. Because contingency table of interest is incomplete, the aim of latent class
analysis can be pertained as to complete the table.

Main assumption of the latent class analysis is the local independence. Al-
though the manifest variables constituting the complete contingency table are
interrelated with each other, if they are independent on the levels of the latent
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variable X, this association structure is defined as local independence by Lazars-
feld and Henry(1968). For N = 3, ` = 1, . . . , |X|, basic unrestricted latent class
model is as follows:

πS1S2S3X
ijk` = πX

`

N∏
λ=1

πSλX
g` (3.1)

where g equals to i, j or k if λ equals to 1, 2 or 3, respectively; πS1S2S3X
ijk` is

the probability of being in the cell ijk` of the incomplete table for a randomly
selected individual; πX

` is the probability that a randomly selected individual is in

the level ` of the latent variable, which are called latent class probabilities. πSλX
g` ,

which must sum up to one, is the conditional probability of being in the level g
of Sλ given the individual is in the level ` of the latent variable (McCuthcheon,
1987; Hagenaars, 1993, Heinen, 1996). Latent class probabilities, which must
sum to one, describe the distribution of the latent variable within the observed
measures. Latent class number determines the number of latent characteristics.
Conditional probabilities reflect the degree of having the latent characteristic for
a subject, who is in a given latent class.

4. Models with Error of Measurement

These models are variants of Guttman scaling. Items are ordered from the
least difficult to most difficult, thus there is one correct ordering. In Guttman
scales, if once an individual responds negatively to an easier item, she will re-
spond negatively to the other more difficult items. Therefore, Guttman scales are
deterministic. The deterministic nature of Guttman scales can be improved by
allowing the measurement error. These models are restricted latent class models.
There are |X| = t + 1 response patterns or latent classes corresponding to t bi-
nary item. In this case, some observations will respond according to |X| = t + 1
response patterns and remaining will respond according to 2t − (t + 1) response
patterns (McCuthcheon, 1987; Heinen, 1996). Because the items are ordered,
corresponding response patterns construct an ordinal latent variable. There are
four main models with error of measurement.

Proctor’s model: Proctor’s model is the first probabilistic variation of Guttman
model and proposed by Proctor (1970). In the model, each scale item has error
rates that are assumed to be same over all items and scale types. So, there are
equality restrictions on the conditional probabilities of the scale items for each
latent class.

Item-specific error rate model: This model relaxes the assumption that all
scale items have the same error rate (Clogg and Sawyer, 1981). Instead, the
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assumption that there are different error rates for each of the k items. In this
models, there are equality restrictions on conditional probabilities associated with
each item and latent class over the response patterns.

True-type-specific error rate model: True-type-specific error rate model re-
laxes the assumption of the Proctor’s model that all scale types have the same
error rate (Clogg and Sawyer, 1981). However, these models assume that incor-
rect response probabilities of items are the same in each latent class. To construct
the model, equality restrictions are put on the conditional probabilities of scale
items for each latent class.

Lazarsfeld’s latent distance model: Latent distance model is proposed by
Lazarsfeld (1950a, 1950b). The main assumption of the model is that error rates
are specific to the items rather than scale types. There is the assumption that
error rates for incorrect and correct responses for an item are different from each
other; and this assumption is valid for all scale types except the least and most
difficult ones. To set the model, the same equality constraints with the item-
specific error rate model are imposed on the conditional probabilities of the first
and last scale types, and for the rest, there are equality restrictions for each
level of the manifest variables and corresponding latent classes on the conditional
probabilities.

5. Log-linear Approach to the Latent Class Models

Log-linear approach linearizes the latent class model. In the log-linear repre-
sentation of (2.1), the log-linear model for the incomplete table is as follows for
N = 3 and ` = 1, . . . , |X|:

log nijk` = β + β1
i + β2

j + β3
k + βX

` + β1X
i` + β2X

j` + β3X
k` . (5.1)

Definitions of log-linear parameters are straightforward as in Section 2. For the
nominal latent variable, the relation between conditional probabilities and log-
linear parameters is explained over the eq. (5.1) as

πSλX
g` =

exp(βλ
g + βλX

g )
|Sλ|∑
g=1

exp(βλ
g + βλX

g )

, (5.2)

where the definition of the g is the same as in eq. (3.1). Hence, conditional
probabilities are represented in the form of log-linear parameters (Haberman,
1979; Heinen, 1996). By this way, restrictions on the conditional probabilities
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are imposed on log-linear parameters or design matrix, and estimation process
is easier than the maximum likelihood (ML) estimation of the restricted latent
class analysis.

In the log-linear representation of (2.2), the log-linear model for the incom-
plete table is as follows for N = 3 and ` = 1, . . . , |X|:

log nijk` = β + β1
i + β2

j + β3
k + βX

` + τ1X
i` ν` + τ2X

j` ν` + τ3X
k` ν`. (5.3)

Definitions of elements of log-linear model are straightforward as in Section 2.
Heinen (1996) notes that when latent variable is ordinal and manifest vari-

ables are nominal, there had not any estimation method proposed for latent class
models, until 1996. In addition, we have not been coincided with any citation on
the subject in the literature. In this section, a log-linear approach is introduced
for this case. The log-linear model for contingency tables including an ordinal
variable is given in eq. (2.2). It is the same for the ordinal latent variable case
but row (column) effect models are used instead of the log-linear independence
models. Interaction effects between nominal and ordinal variables are perceived
as row (column) effect parameters. Under these definitions, we modify the eq.
(5.2) for the case that incomplete table includes and ordinal variable correspond-
ing to the latent variable. Over the eq. (5.3), the relation between log-linear
parameters and conditional probabilities is found as follows:

πSλX
g` =

exp(βλ
g + τλX

g ν`)
|Sλ|∑
g=1

exp(βλ
g + τλX

g ν`)

. (5.4)

The restrictions imposed on conditional probabilities are handled using (5.4)
in the ordinal latent variable case over a row (column) effects log-linear model.

Models including the error of measurement contain an ordinal latent variable.
Therefore, use of log linear models in the analysis of these models is possible due
to the eq. (5.4). An appropriate analysis of the models with error of measurement
can be made by converting the assumptions given in Section 4 to restrictions on
the conditional probabilities, and expressing them as the restrictions on the log-
linear parameters, namely the restrictions on the elements of design matrix.

Heinen (1996) suggests using the independence model and (5.2) imposing the
restrictions on the log-linear parameters; however in this case ordinal structure
of the latent variable cannot be reflected. In fact, omitting the ordinal structure
of the latent variable means omitting the difficulty levels of the items.

Here choice of score values is important, because score values should reflect
the ordinal structure correctly. An inappropriate choice can cause the algorithm,
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which is used to obtain ML estimates, not to converge. Scores can be chosen as
the proportion of the observed individuals in each latent class or integers from 1
to |X| or νk − ν, where ν is the average of relevant score values.

An EM algorithm is used to obtain parameter estimates. Initial values, n̂0
ijk`,

are determined in the E-step. Then estimated cell counts are obtained using

ŷijk` = yijk
n̂ijk`

|X|∑
`=1

n̂ijk`

.

When summed over the levels of latent variable, estimated observed values are
equal to the observed counts. In the M-step, estimated observed counts are taken
as directly observed counts and n̂ijk` is updated. On this step, Newton-Raphson
method is used to obtain updated estimates. Then E-step is revisited. This loop
is continued until the algorithm converges (Hagenaars, 1993).

6. Analysis of women’s liberation data

Considered data set is taken from Heinen (1996, p.46). Data comes from
a Dutch study of sociocultural developments in the Netherlands. Felling et al.
(1987) give detailed information about the study. There are five binary items
that

1. Women’s liberation sets women against men (S3).

2. It’s better for a wife not to have a job because that always poses problems
in the household, especially if there are children (S2).

3. The most natural situation occurs when the man is breadwinner and the
women runs the household and takes care of the children (S4).

4. It isn’t really as important for a grill to get a good education as it is for a
boy (S1).

5. A woman is better studied to raise small children than a man (S5).

For this data set, |S1| = · · · = |S5| = 2 and i, j, k,m, r ∈ {1, 2}. Order-
ing of items from the most to least difficult to be agree is that S1, S2, S3, S4,
S5. Response patterns are (1, 1, 1, 1, 1), (1, 1, 1, 1, 2), (1, 1, 1, 2, 2), (1, 1, 2, 2, 2),
(1, 2, 2, 2, 2), (2, 2, 2, 2, 2). Each pattern is associated with a latent class. Actu-
ally, the responses on the items are rated on a 5-point scale. However, Heinen
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(1996) recodes them in two categories that the category 1 includes “agree en-
tirely”, “agree” or “natural” responses, and the category 2 includes “don’t agree”
and “don’t agree at all” responses.

Women’s liberation data set is also analyzed by Heinen (1996) by means of
scaling models with error of measurement assuming that the latent variable is in
metric scale over independence log linear model. We reanalyze the data using
our approach over models with error of measurement with row effects log linear
models. The EM algorithm, mentioned in Section 5, was run until the absolute
mean difference between the estimated values of the parameters was less than
10−13.

Proctor’s model: The restrictions on the conditional probabilities that make
each scale item has the same error rate over all items and scale types are

πS1X
11 = πS2X

11 = πS3X
11 = πS4X

11 = πS5X
11

= πS1X
12 = πS2X

12 = πS3X
12 = πS4X

12 = πS5X
22

= πS1X
13 = πS2X

13 = πS3X
13 = πS4X

23 = πS5X
23

= πS1X
14 = πS2X

14 = πS3X
24 = πS4X

24 = πS5X
24

= πS1X
15 = πS2X

25 = πS3X
25 = πS4X

25 = πS5X
25

= πS1X
26 = πS2X

26 = πS3X
26 = πS4X

26 = πS5X
26 .

(6.1)

Heinen (1996) notes that G2 = 108.62 and P = 0.00, thus the model is not
statistically significant. Here G2 is the likelihood ratio statistic (Agresti, 2002,
p. 24). Each πS·X

·· is written in log-linear parameters using (5.4) and restrictions
given by (6.1) are applied to get the restrictions of Proctor’s model in log-linear
parameters instead of conditional probabilities. The same way is followed for
other models of interest. Therefore, it is obtained that

β5
2 + τ5X

2 ν2 = β4
2 + τ4X

2 ν3 = β5
2 + τ5X

2 ν3

= β3
2 + τ3X

2 ν4 = β4
2 + τ4X

2 ν4 = β5
2 + τ5X

2 ν4

= β2
2 + τ2X

2 ν5 = β3
2 + τ3X

2 ν5 = β4
2 + τ4X

2 ν5

= β1
2 + τ1X

2 ν6 = β2
2 + τ2X

2 ν6 = β3
2 + τ3X

2 ν6

= β5
2 + τ5X

2 ν5 = β4
2 + τ4X

2 ν6 = β5
2 + τ5X

2 ν6.

Here, |X| = 6, and if β1
2 = β2

2 = β3
2 = β4

2 = β5
2 then ν2 = ν3 = ν4 = ν5 = ν6 = c,

where c is a constant score value. Hence, the design matrix consists one column
for main effect of good education, five columns for latent classes and one column
for the row effect parameter. When ν1 = 0.055 and c = 0.04762, error rate is
obtained as 0.23, which is reported as 0.13 by Heinen (1996). Obtained latent
proportions are 0.054, 0.155, 0.242, 0.118, 0.145 and 0.286, which are so close to
Heinen’s (1996) results. In addition, our G2 and corresponding P value are very
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close to Heinen’s results.

Item-specific error rate model:

The restrictions on the conditional probabilities that assign different error
rates for each of the k items are

πS1X
11 = πS1X

12 = πS1X
13 = πS1X

14 = πS1X
15 = πS1X

26

πS2X
11 = πS2X

12 = πS2X
13 = πS2X

14 = πS2X
25 = πS2X

26

πS3X
11 = πS3X

12 = πS3X
13 = πS3X

24 = πS3X
25 = πS3X

26

πS4X
11 = πS4X

12 = πS4X
23 = πS4X

24 = πS4X
25 = πS4X

26

πS5X
21 = πS5X

22 = πS5X
23 = πS5X

24 = πS5X
25 = πS5X

26 .

(6.2)

For this model, G2 = 27.37 and P = 0.159, when the latent variable is treated
as metric (Heinen, 1996). Restrictions, given by (6.2), are expressed in terms of
log-linear parameters using (5.4) as follows:

β1
2 + τ1X

2 ν6

β2
2 + τ2X

2 ν5 = β2
2 + τ2X

2 ν6

β3
2 + τ3X

2 ν4 = β3
2 + τ3X

2 ν5 = β3
2 + τ3X

2 ν6

β4
2 + τ4X

2 ν3 = β4
2 + τ4X

2 ν4 = β4
2 + τ4X

2 ν5 = β4
2 + τ4X

2 ν6

β5
2 + τ5X

2 ν2 = β5
2 + τ5X

2 ν3 = β5
2 + τ5X

2 ν4 = β5
2 + τ5X

2 ν5 = β5
2 + τ5X

2 ν6.

In this case, there are five columns for main effects of manifest variables, five
columns for latent classes and a column for each row effect parameter in the design
matrix. It is taken as ν5 = ν6 = c1, ν4 = ν5 = ν6 = c2, ν3 = ν4 = ν5 = ν6 = c3

and ν2 = ν3 = ν4 = ν5 = ν6 = c4 in the columns corresponding to τ2X
j , τ3X

k , τ4X
m

and τ5X
r , respectively. Constants c1, c2, c3 and c5, and implementation condi-

tions are determined by the same manner as in Proctor’s model. For this model
G2 = 21.88 with P = 0.147, which are close to those noted by Heinen (1996,
p.78). Five error rates are obtained as 0.0246, 0.1427, 0.4858, 0.4357, 0.5766; and
latent proportions are found as 0.355, 0.091, 0.181, 0.044, 0.099, 0.230. These er-
ror rates and latent proportions are very different from those reported by Heinen
(1996, p.81).

True-type-specific error rate model

The restrictions on the conditional probabilities that make incorrect response
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probabilities of items same in each latent class are

πS1X
11 = πS2X

11 = πS3X
11 = πS4X

11 = πS5X
11

πS1X
12 = πS2X

12 = πS3X
12 = πS4X

12 = πS5X
22

πS1X
13 = πS2X

13 = πS3X
13 = πS4X

23 = πS5X
23

πS1X
14 = πS2X

14 = πS3X
24 = πS4X

24 = πS5X
24

πS1X
15 = πS2X

25 = πS3X
25 = πS4X

25 = πS6X
25

πS1X
25 = πS2X

25 = πS3X
25 = πS4X

25 = πS6X
25 .

(6.3)

For true-type-specific error rate model, it is reported by Heinen (1996) that
G2 = 92.70 and P = 0.00. When restrictions, given by (6.3), are expressed in
terms of log-linear parameters using (5.4), it is obtained that

β5
2 +τ5X

2 ν2

τ4X
2 = τ5X

2

τ3X
2 = τ4X

2 = τ5X
2

τ2X
2 = τ3X

2 = τ4X
2 = τ5X

2

τ1X
2 = τ2X

2 = τ3X
2 = τ4X

2 = τ5X
2 .

For this model, the design matrix of log-linear model consists one column for the
main effect of S5, five columns for latent classes and one column for the row ef-
fect parameter. G2 = 397.1248 with P = 0.00 and error rates are found as 0.126,
0.217, 0.357, 0.646, 0.408 and 0.448, respectively. Latent class probabilities are
obtained as 0.077, 0.162, 0.227, 0.068, 0.179 and 0.287. Our G2 is much greater
than that of reported by Heinen (1996, p.78). This implies that we reject the
significance of the true-type-specific error rate model more confidentially by our
approach.

Lazarsfeld’s latent distance model

The restrictions on the conditional probabilities that make error rates for
incorrect and correct responses for an item different from each other are

πS1X
11 = πS1X

12 = πS1X
13 = πS1X

14 = πS1X
15 = πS1X

26

πS2X
11 = πS2X

12 = πS2X
13 = πS2X

14

πS2X
25 = πS2X

26

πS3X
11 = πS3X

12 = πS3X
13

πS3X
24 = πS3X

25 = πS3X
26

πS4X
11 = πS4X

12

πS4X
23 = πS4X

24 = πS4X
25 = πS4X

26

πS5X
21 = πS5X

22 = πS5X
23 = πS5X

24 = πS5X
25 = πS5X

26 .

(6.4)
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For the latent distance model, Heinen (1996) reports that G2 = 24.02 and
P = 0.154. When restrictions, given by (6.4), are expressed in terms of log-linear
parameters using (5.4), it is obtained that

β1
2 + τ1X

2 ν6; ν5 = ν6; ν4 = ν5 = ν6; ν3 = ν4 = ν5 = ν6; ν2 = ν3 = ν4 = ν5 = ν6.

The design matrix contains five columns for main effects of manifest variables
and latent classes and a column for each restriction. Significance of the model is
concluded by G2 = 20.11 with P = 0.0925. Error rates are 0.416, 0.027, 0.033,
0.093, 0.158, 0.008, 0.154 and 0.0193. These error rates are very different from
those reported by Heinen (1996, p.80). Latent class probabilities are 0.278, 0.106,
0.156, 0.044, 0.118 and 0.297. The third and last latent class probabilities are
close to those noted by Heinen (1996, p.80). The type of used log linear model is
effective on the results and inferences.

In conclusion, fits of Proctor’s and True-type-specific error rate models to
the women’s liberation data are poor, while those of Item-specific error rate and
Lazarsfeld’s latent distance model are statistically significant. Moreover, latent
class probabilities obtained by both models are very close. The first response
pattern has the greatest latent class probability according to both models. How-
ever, the highest error rates are seen for the last and first response patterns for
item specific error rate and Lazarsfeld’s latent distance models, respectively.

Proctor’s model seems not to be effected by the type of log linear model.
A possible cause of this is small number of parameters in both kinds of log
linear models due to the equality restrictions of the model. For all models, G2

values and corresponding p-values are close in our and Heinen’s analyses both.
However, error rates and latent class probabilities are very different for all models
except Proctor’s model in both analyses. This shows the effect of inclusion of
ordinality in the analysis. The differences are due to the loss of information when
independence log linear model with metric latent variable is used.
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