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Abstract: When there is a rare disease in a population, it is inefficient
to take a random sample to estimate a parameter. Instead one takes a
random sample of all nuclear families with the disease by ascertaining at
least one affected sibling (proband) of each family. In these studies, an
estimate of the proportion of siblings with the disease will be inflated. For
example, studies of the issue of whether a rare disease shows an autosomal
recessive pattern of inheritance, where the Mendelian segregation ratios are
of interest, have been investigated for several decades. How do we correct for
this ascertainment bias? Methods, primarily based on maximum likelihood
estimation, are available to correct for the ascertainment bias. We show that
for ascertainment bias, although maximum likelihood estimation is optimal
under asymptotic theory, it can perform badly. The problem is exasperated
in the situation where the proband probabilities are allowed to vary with the
number of affected siblings. We use two data sets to illustrate the difficulties
of maximum likelihood estimation procedure, and we use a simulation study
to assess the quality of the maximum likelihood estimators.
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1. Introduction

When there is a rare disease in a population, it is inefficient to take a random
sample to estimate a parameter of interest. Instead one takes a random sample of
all nuclear families with the disease by ascertaining at least one sibling (proband)
of each family. In such studies, an estimate of the proportion of siblings with the
disease will be inflated. Sometimes the situation is even worse; the investigator
takes all families that appear in the hospital. Thus, there is a selection bias (e.g.,
Patil and Rao, 1978).

Fisher (1934) illustrated the importance of adjusting for the selection bias.
For a discussion of the problems of ascertainment bias in the analysis of family
data, see Crow (1965). For example, studies of the issue of whether a rare disease
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shows an autosomal recessive pattern of inheritance, where the Mendelian segre-
gation ratios are of interest, have been investigated for several decades. For a rare
disease, the Mendelian segregation ratio is p = 0.5 for an autosomal dominant
disease and p = .25 for an autosomal recessive disease. These follow from the
first law of Mendel. For a rare disease one would be interested to know whether
it is autosomal dominant or recessive. That is, whether p = 0.5 or p = .25 re-
spectively. But because the disease is rare, the investigator will select all those
nuclear families that appear. Then there is a selection bias; specifically the esti-
mates will be inflated. How do we correct for this ascertainment bias? Methods,
primarily based on maximum likelihood estimation, are available to correct for
the ascertainment bias. See Lange (2002, chap. 2) and Sham (1998, chap. 2) for
very clear pedagogy on this problem.

Table 1 gives a set of data which was presented by Fisher (1934) to illustrate
the need to take account of the method of ascertainment in segregation analysis.
The data consist of 340 families all with five offspring. The family was ascer-
tained through at least one affected offspring. One can count the total number
of offspring to be 1700, the total number of affected offspring to be 623, and the
total number of probands to be 432. [Sham (1998) gave an incorrect total of 434.]
Thus, one might estimate the segregation ratio to be 623/1700 = .3665, and the
ascertainment probability to be 432/623 = .6934. Unfortunately, these simple
estimates are too inflated. Sham (1998) also used these data for illustration. We
note that Fisher (1934) did not state that the data are on albinism, but one
might believe so because his work was motivated by the study of albinism. It is
currently known that there are various forms of albinism in which chromosomes
(11, 15, 13, 9, 10 and X) may become damaged or incomplete during mutation
so that the proper proteins may not form, making the person albino. So that
albinism does not come from a single chromosome. For illustration using these
data, we will treat it as autosomal recessive as Fisher (1934) did.

Table 2 gives a set of data on cystic fibrosis which was presented by Crow
(1965) to illustrate the need to take account of the method of ascertainment in
segregation analysis. Cystic fibrosis is a hereditary disease that affects the mucus
glands of the lungs, liver, pancreas, and intestines, causing progressive disability
due to multisystem failure. The CFTR gene, found in Chromosome 7, is the
cause of cystic fibrosis, where mutations result in proteins that are too short
because of premature end to production. One can count the total number of
offspring to be 269, the total number of affected offspring to be 124, and the total
number of probands to be 90. Thus, one might estimate the segregation ratio
to be 124/269 = .4610, and the ascertainment probability to be 90/124 = .7258.
Again, these simple estimates are too inflated. Note that 46.1% which is far
in excess of the 25% expected on simple recessive inheritance (cystic fibrosis
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is autosomal recessive). One reason for the excess is the ascertainment bias -
the exclusion of families where the parents are heterozygous, but fail to have a
homozygous recessive child. These would add to the number of normal children
and thereby reduce the proportion affected. This data set was also used in Lange
(2002) for illustration. Current data on cystic fibrosis of the same form from the
state of Georgia are available, but because of confidentiality they cannot be used.

There are two major differences between the two data sets. First, in Fisher’s
data the family sizes are all the same, but in Crow’s data the sample sizes vary
from 1 to 10. There are 340 families in Fisher’s data, but there are only 80
families in Crow’s data. Therefore, because maximum likelihood estimation has
optimal asymptotic properties, it may be more appropriate in Fisher’s data.

We describe the ascertainment bias problem in the study of rare autosomal
recessive disorders. It is almost always the case that a disease is inherited from
carrier parents when the disease is rare in the entire population. The number of
at-risk parents is usually small (i.e., the number of parents capable of producing
affected siblings is very small relative to the number not capable of producing
affected siblings). So if a sample is taken at random from the entire population,
there could be no at-risk families. Hence, at-risk families are divided into two
groups, those with at least one affected sibling and the other with no affected
siblings. A sample is then drawn from the families with at least one affected
sibling, thereby introducing an ascertainment bias. Thus, our two examples can
be viewed in this manner, and as is evident in both examples, a direct estimate
of the proportion of affected siblings will be too large; one needs to adjust for the
ascertainment bias.

When all families with affected offspring are ascertained, we say that there is
complete ascertainment. When there are families with affected offspring who are
not probands, we say that there is incomplete ascertainment. Fisher (1934) first
analyzed the data in Table 1 using complete ascertainment. His analysis was done
using a truncated binomial distribution. However, Fisher (1934) also described a
simpler method for the more appropriate incomplete ascertainment for these data.
This discussion was further developed by Bailey (1951) and Morton (1959). In
this paper, we will focus on incomplete ascertainment as is evident in data in both
Tables 1 and 2. Crow (1965) pointed out the need to adjust for ascertainment
bias and incomplete ascertainment for the cystic fibrosis data.

The key idea for the correction of ascertainment bias is to find the correct
sampling distribution under the ascertainment bias. Let x represent the quantity
being measured, A denote the ascertainment event, and θ a parameter. Without
the ascertainment bias, f(x | θ) is the sampling distribution for a random sample.
However, when there is an ascertainment bias, we need f(x | θ,A) = f(x,A |
θ)/f(A | θ).
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In general, the two sampling distributions f(x | θ,A) and f(x | θ) are different;
f(x | θ,A) being the more appropriate sampling distribution. Correcting for as-
certainment bias means that we need to construct the sampling distribution, f(x |
θ,A). A simple example, introduced by Fisher (1934) for complete ascertainment,
is on the number (r) of affected siblings in a family of size (s) in a binomial model
with r > 0. Then, f(r | θ,A) = s!θr(1−θ)s−r/{r!(s−r)![1−(1−θ)s]}, r = 1, . . . , s,
where θ is the proportion of affected siblings, and A is the event that r > 0, lead-
ing to the binomial distribution truncated at 0. More importantly the binomial
probabilities are being re-weighted (increased in this case) so that the mass points
are 1, . . . , s; 0 is excluded.

The problem of ascertainment is not new to survey samplers. For finite pop-
ulation sampling, Sverchkov and Pfeffermann (2004) defined the sample and
sample-complement distributions as two separate weighted distributions (Patil
and Rao, 1978) for developing design consistent predictors of the finite popu-
lation total; see also the more recent presentation (Pfeffermann and Sverchkov,
2007). Malec, Davis and Cao (1999) used a hierarchical Bayesian method to es-
timate a finite population mean for binary data. These works are not directly
applicable to our situation, but the ideas they portray are important for the
issues associated with ascertainment bias. For probability proportional to size
(PPS) sampling Nandram (2007) implemented surrogate sampling techniques to
provide simulated random samples by using a model which reverses the selection
bias. Under PPS sampling, Nandram et al. (2006) used a method, developed by
Chambers, Dorfman and Wang (1998), to do Bayesian predictive inference when
a transformation is needed.

We wish to study how inference about the segregation ratio changes with the
proband probability. So we consider two cases. In the first case we consider
a single proband probability, and we discuss extensively maximum likelihood
estimation. In the second case, we consider how inference about the segregation
parameter will change when there are different proband probabilities. In fact, we
allow the proband probabilities to depend on the number of affected siblings in
each family. Because there are more parameters in the analysis of the same data,
maximum likelihood estimation should be relatively inefficient.

In this paper we provide some new distribution results and algorithms on
maximum likelihood estimation of the ascertainment bias problem in which we
assume incomplete ascertainment. The plan of the rest of the paper is as follows.
In the next section we review maximum likelihood estimation, and we present
some new analytical results. Specifically, we discuss existence of maximum likeli-
hood estimators, how to compute them, and what inferential difficulties exist. In
the third section, we present numerical results and a simulation study. We also
show how to incorporate different proband probabilities. As we will show, this
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task is particularly challenging for maximum likelihood estimation. The final sec-
tion has a discussion where, in addition to a summary, we discuss how one might
fix the problems associated with the maximum likelihood estimation procedure.

2. Theories and Methods

Thompson (1986) discussed many ascertainment models. In this paper, we
discuss the simplest ascertainment model (Sham, 1998; Lange, 2002). Essen-
tially Lange (2002) showed how to adjust for the ascertainment bias using the
expectation-maximization (EM) algorithm (Dempster, Laird and Rubin, 1977);
Sham (1998) used Fisher’s scoring. We will introduce a couple new methods as
well.

Suppose there are n families selected through ascertainment sampling. Let-
ting the kth ascertained family have sk siblings, we assume that there are rk

affected siblings and ak ascertained siblings. In Fisher’s data the sk are all equal
5, and for Crow’s data sk vary from 1 to 10. Let p denote the segregation prob-
ability and π the proband probability. Here, p is primarily the parameter of
interest. The simplest ascertainment model specifies that

ak | rk, π
ind∼ Binomial(rk, π) and rk | sk, p

ind∼ Binomial(sk, p),

k = 1, . . . , n. Thus, let uk = sk!/[ak!(sk − rk)!(rk − ak)!], the joint probability
mass function of (ak, rk) is

p(ak, rk | π, p, sk) = ukp
rk(1 − p)sk−rkπak(1 − π)rk−ak , (2.1)

ak = 0, . . . , rk, rk = 0, . . . , sk, k = 1, . . . , n. Note that (2.1) provides the
likelihood for any family without conditioning on whether it is ascertained or
not. To incorporate the ascertainment bias, we need to adjust (2.1) to the
support 1 ≤ ak ≤ rk ≤ sk, k = 1, . . . , n. That is, the ascertainment event,
1 ≤ ak ≤ rk ≤ sk, k = 1, . . . , n, is denoted by A.

Now, the probability that a family with sk siblings is ascertained is 1 − (1 −
pπ)sk , leading to the truncated probability mass function

p(ak, rk | π, p, sk, A) = ukp
rk(1− p)sk−rkπak(1− π)rk−ak/[1− (1− pπ)sk ], (2.2)

ak = 1, . . . , rk, rk = ak, . . . , sk. Note that in (2.2) 1 − (1 − pπ)sk is simply the
probability that 1 ≤ ak ≤ rk ≤ sk, k = 1, . . . , n. Also, note that (2.2) provides
the likelihood for a family that has been ascertained. Thus, in the terminology of
missing data, while (2.1) is the complete data likelihood, (2.2) is the incomplete
data likelihood.

This is a fairly long section, so we present a plan. First we present some new
theoretical results on the properties of the joint probability mass function. Then
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we present maximum likelihood estimation; most of this is known, but we present
some new ideas as well.

Henceforth, unless otherwise stated all inference will be conditioned on sk and
A. However, for convenience we will drop this notation.

2.1 Properties of the joint probability mass function

We present some properties of the joint probability mass function p(ak, rk |
p, π) in (2.2). Again, note that we still have the conditioning on sk and A, but it
will be eliminated for convenience. We provide some interpretations as well. We
note that some of the results are new.

First, we consider the marginal distribution of rk. Using (2.2), let vk =
sk!/[rk!(sk − rk)!], the marginal probability mass function of rk is

p(rk | p, π) = vkp
rk(1 − p)sk−rk [1 − (1 − π)rk ]/[1 − (1 − pπ)sk ], rk = 1, . . . , sk;

all other points have zero probability. In Appendix A we show that

E(rk | p, π) = skp
{
1 + π(1 − p)(1 − πp)sk−1/[1 − (1 − πp)sk ]

}
. (2.3)

Thus, E(rk | p, π) is bigger than skp with the discrepancy related to p, π and
sk. With some cumbersome algebraic manipulation, we also show in Appendix
A that

Var(rk | p, π) = skp(1 − p)(1 − Qk),

where

Qk = π2p(1 − p)(1 − πp)sk−2[1 − (1 − πp)sk ]−1

×{sk/[1 − (1 − πp)sk ] − (1 − π)(2π − 1)/[π2p(1 − p)]}.

Note that Qk ≤ 1 (i.e., Qk is an adjustment factor). So that if Qk ≥ 0, then
Var(rk | p, π) ≤ skp(1 − p), the situation in which rk | p ∼ Binomial(sk, p). For
example, if sk = 1, then Qk = {1 − πp − 2π(1 − π)}/πp(1 − πp). If, in addition,
π − 3

4 < πp < 1
2 (reasonable for autosomal recessive), then 0 ≤ Qk ≤ 1 and

Var(rk | p, π) ≤ p(1 − p).
Also, for a family that has not been ascertained (i.e., ak = 0), it is easy to

show that

p(ak = 0, rk | π, p) =
sk!prk(1 − p)sk−rk(1 − π)rk

rk!(sk − rk)!{(1 − πp)sk − [(1 − π)p]sk}
,

rk = 1, . . . , sk. Here, (1−πp)sk − [(1−π)p]sk is the probability of having at least
one affected sibling in the kth family with ak = 0.
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The marginal probability mass function of ak is

p(ak | p, π) = sk!(πp)ak(1−πp)sk−ak/{ak!(sk−ak)![1−(1−πp)sk ]}, ak = 1, . . . , sk;

all other points have zero probability. That is, p(ak | p, π) is a truncated binomial
probability mass function. It is easy to show that

E(ak | p, π) = skπp/[1 − (1 − πp)sk ] (2.4)

and

Var(ak | p, π) = skπp(1− πp){1−{1 + (sk − 1)πp}(1− πp)sk−1/[1− (1− πp)sk ]}.

Thus, as expected, E(ak | p, π) increases from skπp, and Var(ak | p, π) decreases
from skπp(1 − πp).

In Appendix B, we show that

Cov(rk, ak | p, π) =

[
1 − (1 − πp)sk−1{1 + (sk − 1)πp}

]
skπp(1 − p)

{1 − (1 − πp)sk}2
.

We also show that (1− πp)sk−1{1 + (sk − 1)πp} is nonnegative. Thus, the corre-
lation between ak and rk is nonnegative, and therefore, there may be important
information about p (via the rk) in π (via the ak).

In fact, the conditional probability mass function of rk given ak is also inter-
esting. It is easy to show that

p(rk | ak, p, π) =
(sk − ak)!{(1 − π)p}rk−ak(1 − p)sk−rk

(rk − ak)!(sk − rk)!(1 − πp)sk−ak
,

rk = ak, . . . , sk. Therefore, rk−ak | ak, p, π ∼ Binomial{sk−ak, (1−π)p/(1−πp)}.
Then

E(rk | ak, p, π) = p(1 − π)sk/(1 − πp) + ak[1 − p(1 − π)/(1 − πp)]

and
Var(rk | ak, p, π) = (sk − ak)p(1 − p)(1 − π)/(1 − πp)2.

Thus, in the conditional probability mass function, expectation increases with ak

and variance decreases with ak [i.e., a knowledge of ak is informative, consistent
with Sham (1998)]. Sham (1998) used Fisher’s data to illustrate this issue, but
here we have obtained an analytical argument.

Finally, letting a =
∑n

k=1 ak, r =
∑n

k=1 rk and s =
∑n

k=1 sk, without selection
bias the maximum likelihood estimators of p and π are p̂ = r/s and π̂ = a/r
respectively. These are the MLEs under the model without the ascertainment
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bias in (2.1). We will denote the MLEs with selection bias by p̃ and π̃, which are
to be determined. These are the MLEs under the model with the ascertainment
bias in (2.2).

2.2 Estimation procedures

We discuss maximum likelihood estimation of p and π under the reasonable
assumption that the families are sampled independently. This is the same as-
sumption used throughout the historical development since the pioneering work
of Fisher (1934); see Lange (2002, chap. 2) and Sham (1998, chap. 2). Then, the
likelihood function for all ascertained families is

Likelihood(p, π) =
n∏

k=1

{prk(1 − p)sk−rkπak(1 − π)rk−ak/[1 − (1 − pπ)sk ]}. (2.5)

It is pertinent for us to show that if a > n, the maximum likelihood estimators
(MLE) of p and π exist. For example, if ak = 1, k = 1, . . . , n, MLEs may not
exist. That is, if exactly one sibling is ascertained in each family, MLEs may not
exist. Also, if each family has exactly one sibling, the likelihood function is a
constant in the unit square (i.e., 0 ≤ p, π ≤ 1), and every point in the unit square
is an MLE (i.e., the MLE is not unique). It is true in both Fisher’s and Crow’s
examples that a > n. To prove the existence of the MLEs, we note that because
1 − (1 − πp)sk is increasing in sk and sk ≥ 1, πp ≤ 1 − (1 − πp)sk . Thus, using
(2.5)

n∏
k=1

prk(1−p)sk−rkπak(1−π)rk−ak/[1−(1−pπ)sk ] ≤ pr−n(1−p)s−rπa−n(1−π)r−a,

where a =
∑n

k=1 ak, r =
∑n

k=1 rk and s =
∑n

k=1 sk. The maximum point (p, π)
of the likelihood function exists (inside the unit square) if r > n, s > r, a > n
and r > a. This is true because the function xg−1(1 − x)h−1, 0 ≤ x ≤ 1 if g > 1
and g + h > 2. But because a ≤ r ≤ s, a > n suffices.

There are at least four methods to find the maximum likelihood estimators
of p and π. One can use an optimization routine such as Nelder-Mead algorithm
or Newton’s method directly. Sham (1998) used a Fisher scoring algorithm,
and Lange (2002) used the EM algorithm. We have developed a much simpler
algorithm.

It is worth noting here that if we differentiate the log-likelihood function in
(2.5) to obtain the maximum likelihood estimators of p and π, we need to solve
the two equations simultaneously

s(p̂ − p) = πp(1 − p)q and r(π̂ − π) = pπ(1 − π)q, (2.6)
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where q =
∑n

k=1{sk(1− pπ)sk−1}/{1− (1− pπ)sk}. These are the equations that
constitute our new iterative method. We start with p set at p̂ and π set at π̂
in the left-hand sides of these equations to update the right-hand sides of these
equations. Thus, it is mathematically clear that p̂ and π̂ are inflated by πp(1 −
p)q/s and pπ(1 − π)q/r respectively, thereby accounting for the ascertainment
bias. More importantly, it is easy to solve these equations iteratively by simply
replacing p and π in the right-hand sides of these equations and updating the
left-hand sides accordingly; it is sensible to start with p = p̂ and π = π̂.

In fact, we have maximized the logarithm of the likelihood function of (p, π)
in (2.5) directly using the Nelder-Mead algorithm (Nelder and Mead, 1965) to
get the maximum likelihood estimators (π̃, p̃). Unlike Newton’s and the Fisher
scoring algorithm, the Nelder-Mead algorithm is derivative-free; both Newton’s
and Fisher scoring need the first derivative and while Newton’s method need the
Hessian matrix, the Fisher scoring algorithm needs the information matrix (i.e.,
expected value of the negative Hessian matrix). Both of these methods are rather
inefficient near the boundaries of the parametric space (e.g., p or π near 0 or 1).

Lange (2002) used the expectation-maximization (EM) algorithm. However,
he has used an additional assumption in the EM algorithm. His key argument is,
“If we view ascertainment as a sampling process in which unascertained families
of size sk are discarded one by one until the kth ascertained family is finally
ascertained, then the number of unascertained families discarded before reaching
the kth ascertained family follows a shifted geometric distribution with success
probability 1 − (1 − πp)sk .” His EM algorithm gives the MLEs by solving

p =
n∑

k=1

{rk + skp(1− π)(1− πp)sk−1/[1− (1− πp)sk ]} /

n∑
k=1

{sk/[1− (1− πp)sk ]},

π =
n∑

k=1

ak/

n∑
k=1

{rk + skp(1 − π)(1 − πp)sk−1/[1 − (1 − πp)sk ]} (2.7)

iteratively as in (2.6). No measure of variability was presented, and any measure
of variability will be too small because of the additional assumption. Essentially,
Lange (2002) assumes that the missing sibship sizes are known, but he did no say
this explicitly. In fact, no EM algorithm exists in the original model with missing
sibling sizes.

However, we observe that it is much easier to solve the MLE equations in
(2.6) by first updating p only. Using (2.6) we get

πp = 1 − {(1 − p)/(1 − p̂}(1 − π̂p̂).
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Substituting πp into (2.6), and solving for p and π, we get

p = p̂ − {p − p̂(1 − π̂)/(1 − π̂p̂)} s−1
n∑

k=1

skw/[(1 − p̂)sk − w] (2.8)

and
π = π̂ − (1 − π̂)(p̂ − p)/[p(1 − p̂)], (2.9)

where w = {(1 − p)(1 − π̂p̂)}sk . Thus, we start with p set at p̂ in the right-
hand side of (2.8) to obtain p on the left-hand side, and iterate until convergence
to p̃. Then, we substitute p̃ into (2.9) to get π̃ without iterations. Of course,
convergence is much faster than updating (p, π) simultaneously.

It is also easy to find the negative inverse Hessian matrix to get an approx-
imation for the covariance matrix of (π̃, p̃). Sham (1998) gave a form for the
standard errors from his Fisher scoring, but he did not present the correlation
between the estimators. Lange (2002) gave the EM algorithm, but he did not
present any measure of precision of his estimators. It is a standard practice to use
the inverse negative Hessian matrix, evaluated at the MLEs to get an approxima-
tion of the covariance matrix. Thus, it does not matter which method is used to
get the MLEs, the covariance matrix is the same. In Appendix B we present the
covariance matrix. We note in Appendix B that if the MLEs exist, the covariance
matrix will be positive definite, and therefore, the MLEs are unique.

In Appendix B we have also shown that a sufficient condition for the cor-
relation between p̃ and π̃ to be nonnegative is sk − 1 ≥ 4πp. In the study of
autosomal recessive typically π, p ≤ .50 and πp is greater than a number which is
smaller than 1/4. So that a sufficient condition for nonnegativity is that sk ≥ 2.
This excludes families with one sibling, but if there are not too many of these,
the correlation will be nonnegative.

3. Results

This section has three parts. First, we present numerical results for Fisher’s
data and Crow’s data. Second, we perform a simulation study to assess the
performance of the maximum likelihood estimators of the segregation ratio and
proband probabilities. Third, we show that there are further difficulties of the
maximum likelihood estimators when the proband probabilities vary with the
number of affected siblings within a family.

3.1 Numerical results

Essentially we have used all the numerical methods we have discussed, and
we have found that they gave the same estimates of the MLEs. Specifically, it is
good that they agree with the Nelder-Mead algorithm.
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For Fisher’s data, the EM algorithm gives p̃ = .253, π̃ = .475; these are
consistent with the estimates provided by Sham (1998). Their standard errors of
.0129 and .0310 are also consistent with the ones we obtained. We also have a
reasonable correlation of .250 between p̃ and π̃. We have used both the Fisher’s
information and the negative inverse Hessian matrix (without taking expectation)
to compute the standard errors and correlation; they are in perfect agreement.
Sham (1998) used Fisher’s information to obtain the standard errors of p̃ and π̃,
but he did not present the correlation between p̃ and π̃. We note that for the
case in which the information on the probands are ignored, Sham (1998) reported
standard errors of .0286 and .2400, showing large gains in precision in the method
that includes the probands.

For Crow’s data, the EM algorithm gives p̃ = .268, π̃ = .359; the standard
errors are respectively .0347 and .0814 with a small correlation of .248. These are
consistent with the estimates given by Lange (2002); the standard errors were
not provided. As pointed by Lange (2002), these estimates are consistent with
the theoretical value of .25 for an autosomal recessive as in cystic fibrosis.

It is possible to provide approximate 95% confidence interval for p by us-
ing the asymptotic normality of maximum likelihood estimators. We have used
the intervals p̃ ± 1.96STE(p̃) where p̃ is the maximum likelihood estimator and
STE(p̃), the standard error, obtained from the information matrix. Similarly for
π, we have used the interval π̃±1.96STE(π̃), where π̃ is the maximum likelihood
estimator and STE(π̃), the standard error, obtained from the inverse negative
Hessian matrix.

For Fisher’s data the approximate 95% confidence interval for p is .253 ±
1.96 × .0129 which gives (.228, .278). Note that the 95% credible interval for
p contains .250, consistent with an autosomal recessive inheritance. For Crow’s
data the approximate 95% confidence interval for p is .268 ± 1.96 × .0347 which
gives (.200, .336). We also consider inference about π. For Fisher’s data the
approximate 95% confidence interval is .475±1.96× .031 which gives (.414, .536).
For Crow’s data the approximate 95% confidence interval is .359 ± 1.96 × .081
which gives (.200, .519). Note, as for Fisher’s data, the 95% credible interval for
p contains .250, consistent with an autosomal recessive model.

3.2 Simulation study

We have performed a small simulation study to assess the performance of
the maximum likelihood estimation procedure. We have generated data from
the model with ascertainment bias in (2.2), and we have fit the model using
maximum likelihood estimation procedure. We have taken p = .257, π = .371
to obtain data similar to Crow’s data. To study the effect of the sample size n,
we have taken n = 25, 50, 100, 200; smaller values of n should challenge the
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maximum likelihood procedure.
We have generated 1000 data sets from the model that includes the ascertain-

ment bias. From Crow’s data, we have obtained the distribution of the ten family
sizes 1, 2, . . . , 10. The frequencies of the family sizes are 9, 24, 16, 13, 9, 2, 4, 1, 1, 1.
Thus, using the table method, we draw n family sizes for each of the 1000 simu-
lated data sets. Now, noting that

p(ak, rk | p, π) = p(ak | p, π)p(rk | ak, p, π),

we use the composition method to draw ak from p(ak | p, π), and with this value
of ak, we draw rk from p(rk | ak, p, π), where

p(ak | p, π) = sk!(πp)ak(1−πp)sk−ak/ak!(sk − ak)![1 − (1 − πp)sk ], ak = 1, . . . , sk,

and

p(rk | ak, p, π) =
(sk − ak)!{(1 − π)p}rk−ak(1 − p)sk−rk

[(rk − ak)!(sk − ak)!(1 − πp)sk−ak ]
,

rk = ak, . . . , sk. Here p(ak | p, π) is a truncated binomial probability mass func-
tion; so we draw ak from Binomial(sk, πp) and accept it if it is larger than 0.
Because rk − ak | ak, p, π ∼ Binomial{sk − ak, (1 − π)p/(1 − πp)}, we first draw
rk −ak from this binomial probability mass function and add ak to it. We repeat
this process for all n families.

In Table 3 we present the results for the simulation study. We consider each
measure in turn. As expected, the MLE’s for p and π converge respectively to the
true values. However, p̃ is closer to the true value than π̃ for all sample sizes; π is
noticeable far away for n = 25. As it must be, the standard errors go down with
increasing n (so must be the widths). The coverage is not so good for n = 25 or
n = 50 when p is estimated; this is worse when π is estimated. The MSEs seem
fine for p, but off for π especially at n = 25 and n = 50.

Therefore, as expected for small sample sizes the maximum likelihood estima-
tion does not perform well. However, as expected maximum likelihood estimation
procedure does perform well for larger sample sizes. In fact, we have found that
for small sample sizes, the lower end of the 95% confidence intervals under maxi-
mum likelihood estimation are smaller than 0, a standard problem with maximum
likelihood estimation. An interval extended below zero has to be truncated at
zero, and extended beyond two standard errors from the maximum likelihood
estimate to get the nominal coverage of 95%; in practice just the truncation is
done.
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3.3 Unequal proband probabilities

We now show how to allow the proband probabilities to vary with the number
of affected siblings. In Fisher’s data there are five different values (1, 2, 3, 4, 5)
for the number affected, and in Crow’s data there are four values (1, 2, 3, 4)
for the number affected. So for Fisher’s data there are five different parameters
(π1, . . . , π5), and for Crow’s data there are four different parameters (π1, . . . , π4).
Thus, generally let πrk

denote the proband probabilities, and d be the number of
distinct proband probabilities (π1, . . . , πd).

Then, with this simple adjustment the likelihood function for n families is

Likelihood(p, π̃) =
n∏

k=1

prk(1− p)sk−rkπak
rk

(1−πrk
)rk−ak/[1− (1− pπrk

)sk ]. (3.1)

We consider finding the MLEs of p, π1, . . . , πd. We have used the Nelder-Mead
minimization algorithm and an iterative method like the one we developed for a
single π based on setting the first derivatives equal 0; see (2.8) and (2.9).

For Crow’s data, p̃ = .299, π̃1 = 1.000, π̃2 = .301, π̃3 = .361, π̃4 = .000
after 487 iterations when the Nelder-Mead algorithm is used, and p̃ = .294,
π̃1 = 1.000, π̃2 = .300, π̃3 = .361, π̃4 = .000 (about 10 iterations for our iterative
method). We have virtually the same answers; there is a small difference for p.
Unfortunately, both methods converge at the boundary of the parameter space.
Crow’s data are very sparse and the maximum likelihood estimation procedure
is fallible. For Fisher’s data, when the Nelder-Mead algorithm and our iterative
method are applied, the MLEs are exactly the same, and they are p̃ = .274,
π̃1 = 1.000, π̃2 = .528, π̃3 = .298, π̃4 = .375, π̃5 = .278. The Nelder-Mead
algorithm converges after 669 iterations, and our method converges in about 10
iterations. But again convergence occurs on boundary of the parameter space.

Finally, we make two important observations. First, for maximum likelihood
estimation, it is difficult to do further inference (e.g., standard errors and 95%
confidence intervals cannot be obtained). The situation is worse for both New-
ton’s method and the Fisher scoring algorithm because they need respectively
the Hessian matrix and the information matrix which can not be computed; see
Appendix E for some insight. Second, the issue of using different proband prob-
abilities is an important one. For Crow’s data when a single proband probability
is assumed, p̃ = .268 and π̃ = .359; .299 differs considerably from .268. Also,
for Fisher’s data when a single proband probability is assumed, p̃ = .253 and
π̃ = .475; again .274 differs considerably from .253.
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4. Discussion

When one wants to find out about the proportion of people with a rare dis-
ease, one cannot take a random sample from the population. It is convenient
to take a random sample of the cases that appear in a doctor’s office. Thus,
clearly this sample is biased (i.e., there is an ascertainment bias). An important
example in genetics occurs when one is interested in the segregation ratio for a
rare recessive disease. This problem exists over a century, and there are many
solutions depending on the sampling scheme. More generally the selection bias
problem is important when a non-random sample is taken from a population as
in population genetics.

We have considered the problem of estimating the segregation ratio and the
proband probabilities when there is an autosomal recessive disease. We have sum-
marized some approaches for finding MLEs in the ascertainment bias problem,
and we have provided some new theoretical results. We have also provided a new
algorithm, potentially faster, and we have presented some new interpretations
of the associated formulas. We also considered the case in which the proband
probabilities change with the number of affected siblings in each at-risk family.
This is a challenge for asymptotic theory as in maximum likelihood estimation.
The two popular methods, Newton’s method or the Fisher scoring method, can
not be used in this case. The use of different proband probabilities can lead to
changes in inference about the segregation parameter over the case of a single
proband probability. This is true for both Fisher’s data and Crow’s data, more
so for Fisher’s data.

Finally, we discuss an alternative Bayesian procedure to maximum likelihood
estimation. The basic difference between Bayesian method and maximum like-
lihood estimation is that in the Bayesian method the parameters are random,
and they have prior distributions which arise from historical data and may not
be informative. The prior distributions permit some flexibility with small sample
sizes and many parameters (e.g., when the proband probabilities are allowed to
vary with the number of affected siblings). For a single proband probability, we
can take p, π

iid∼ Beta(α, β) where α and β are to be specified. For example,
α = 1, β = 1 gives a noninformative and proper prior, and α = 1/2, β = 1/2
gives Jeffrey’s prior. In general, one can incorporate important prior information
using this prior distribution, and this can remove all the difficulties associated
with maximum likelihood estimation procedure. Once a decision on a model
is made, all the information about the parameters exist in their joint posterior
distribution which is obtained using Bayes’ theorem. The Bayesian method is
more versatile than standard maximum likelihood estimation. Two advantages of
Bayesian methods are they have simple interpretation, and they enjoy the recent
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development in Markov chain Monte carlo methods, the workhorse in Bayesian
data analysis. We have shown, not presented in this paper because of space
restriction, that the Bayesian procedure does overcome some of the difficulties
associated with maximum likelihood estimation procedure, especially in the case
where there are different proband probabilities.

In addition, not only the problem with unequal proband probabilities the
Bayesian procedure can solve, but it will permit us to solve two more problems.
First, we can include a familiar correlation in our model; for example, see Nan-
dram and Choi (2005). The number of affected siblings in each family is not
quite a binomial random variable. It is expected that one sibling getting affected
will be related to the other siblings because they are in the same nuclear family
sharing the same genes. For this problem, we have seen some improvements of
the Bayesian procedure over the maximum likelihood procedure as well. Second,
we can consider ascertainment bias that occurs in single nucleotide polymorphism
(SNP) discovery, one of the issues that motivated this work. In SNP discovery
a small sample of people is taken from the population, and these individuals are
sequenced for a large number (≈ 106) of nucleotides. However, because of the low
density of polymorphisms, many of the nucleotides of the panel are not polymor-
phic in the panel, and so they are eliminated from the panel. The discovery goes
on to sequence a larger sample for the variable nucleotides (i.e., the remaining nu-
cleotides). But, if the panel sample was larger, some of the discarded nucleotides
could have been polymorphic. Thus, there is an ascertainment bias; for example,
see Signorovitch (2003) for a description of this problem. The Bayesian procedure
can be implemented to solve this problem, and we have some on-going activities
in this area.

Appendix A. Derivation of Var(rk | p, π) and Cov(ak, rk | p, π)

To derive Var(rk | p, π), we use the well-known identity

Var(rk | p, π) = E{rk(rk − 1) | p, π} + E(rk | p, π){1 − E(rk | p, π)}. (A.1)

After some algebraic simplification, we have

E(rk | p, π) = skp{1 + π(1 − p)(1 − πp)sk−1/[1 − (1 − πp)sk ]} (A.2)

and

E{rk(rk−1) | p, π} = sk(sk−1)p2[1−(1−π)2(1−πp)sk−2]/[1−(1−πp)sk ]. (A.3)

By substituting (A.2) and (A.3) into (A.1) with further algebraic simplification,
we get

Var(rk | p, π) = skp(1 − p)(1 − Qk), (A.4)
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where

Qk = π2p(1 − p)(1 − πp)sk−2[1 − (1 − πp)sk ]−1

×{sk/[1 − (1 − πp)sk ] − (1 − π)(2π − 1)/[π2p(1 − p)]}.

To derive Cov(ak, rk | p, π), we use the well-known identity

Cov(ak, rk | p, π) = E(akrk | p, π) − E(ak | p, π)E(rk | p, π). (A.5)

It is easy to show that

E(akrk | p, π) = skpπ{1 + (sk − 1)p}/[1 − (1 − pπ)sk ]. (A.6)

Then, substituting (A.6), the formulae for E(ak | p, π) in (2.3) and E(rk | p, π)
in (2.4) into (A.5), and simplifying, we get

Cov(rk, ak | p, π) =
[
1 − (1 − πp)sk−1{1 + (sk − 1)πp}

]
× skπp(1 − p){1 − (1 − πp)sk}−2. (A.7)

It is interesting to show that Cov(rk, ak | p, π) is nonnegative. We only need
to show that (1 − πp)sk−1{1 + (sk − 1)πp} ≤ 1. But because (1 − πp)sk−1{1 +
(sk − 1)πp} = 1 when sk = 1, we only need to show that (1 − πp)t{1 + tπp} is
strictly decreasing in t for t ≥ 0. To show that (1−πp)t{1+ tπp} is decreasing in
t, we show that its first derivative is nonpositive. It is easy to show that the first
derivative of (1−πp)t{1+tπp} is (1−πp)t{πpt ln(1−πp)+ln(1−πp)+πp}. Then,
we need to show that a ≥ −1/(πp) − 1/ ln(1 − πp). But because −1/ln(1 − πp)
is nonnegative, t ≥ −1/(πp); in fact, t ≥ 0. Thus, it is true that the function is
nondecreasing, and (1 − πp)sk−1{1 + (sk − 1)πp} ≤ 1.

Appendix B. Covariance matrix of the MLEs of (p, π)

We approximate the covariance by inverse of Fisher’s information matrix
which is the expected value of the negative Hessian matrix over the truncated
joint probability mass function in (2.2).

The Hessian matrix, H(r̃, ã), is the 2 × 2 matrix of the second derivatives of
the truncated joint probability mass function in (2.2), and

H(r̃, ã) =
(

H11 B(p, π) + πpA(p, π)
B(p, π) + πpA(p, π) H22

)
, (B.1)

where A(p, π) =
∑n

k=1[sk(1 − πp)sk−2{(1 − πp)sk + sk − 1}]/{1 − (1 − πp)sk}2,
B(p, π) = −

∑n
k=1 sk(1 − πp)sk−1/[1 − (1 − πp)sk ], H11 = −rp−2 − (s − r)(1 −

p)−2 + π2A(p, π) and H22 = −aπ−2 − (r − a)(1 − π)−2 + p2A(p, π).
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The 2 × 2 information matrix is I(p, π) = −E{H(r̃, ã | p, π)}, where

I(p, π) =
(

C(p, π) − π2A(p, π) −B(p, π) − πpA(p, π)
−B(p, π) − πpA(p, π) D(p, π) − p2A(p, π)

)
, (B.2)

where C(p, π) = r̃(p, π)p−2+[s−r̃(p, π)](1−p)−2, D(p, π) = ã(p, π)π−2+[r̃(p, π)−
ã(p, π)](1 − π)−2 and r̃(p, π) = E(r | p, π) and ã(p, π) = E(a | p, π) are given in
(2.3) and (2.4) respectively.

Hence, letting d = C(p, π) − π2A(p, π), e = D(p, π) − p2A(p, π) and f =
−B(p, π) − πpA(p, π), the covariance matrix of (p̃, π̃), approximately I(p, π)−1

with elements given in (B.2) evaluated at (p̃, π̃), is

I(p̃, π̃)−1 =
(

σ2
p ρσpσπ

ρσpσπ σ2
π

)
, (B.3)

where σ2
p = {d(1− ρ2)}−1, σ2

π = {e(1− ρ2)}−1 and ρ = −f(de)−1/2. Note that in
this approximation σ2

p is the variance of p̃, σ2
π is the variance of π̃, and ρ is the

correlation between p̃ and π̃.
Finally, we show that the correlation ρ is nonnegative. It is easy to show that

−f =
∑n

k=1 AkBk where Ak = πp(1−πp)sk(1−πp)sk/{1− (1−πp)sk} and Bk =
sk−{1+πp(1−πp)−1}{1−(1−πp)sk}. Thus, we need the condition for Bk to be
nonnegative for each k, and this is the same as sk−1 ≥ {1−(1−πp)sk}/πp(1−πp).
This leads to the condition for nonnegativity that sk − 1 ≥ 4πp.

References

Bailey, N. T. J. (1951). The estimation of frequencies of recessives with incomplete
multiple selection. Annals of Eugenics 16, 215-222.

Chambers, R., Dorfman, A. and Wang, S. (1998). Limited information likelihood anal-
ysis of survey data. Journal of the Royal Statistical Society, Series B 60, 397-411.

Crow, J. F. (1965). Epidemiology and genetics of chronic disease. In Public Health
Service Publication 1163 (edited by J. V. Neal, M. W. Shaw and W. J. Schull)
Department of Health, Education, and welfare, Washington,DC pp. 23-44.

Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977). Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society,
Series B 39, 1-38.

Fisher, R. A. (1934). The effect of methods of ascertainment upon the estimation of
frequencies. Annals of Eugenics 6, 13-25.

Lange, K. (2002). Mathematical and Statistical Methods for Genetic Analysis, 2ed.
Springer-Verlag.



40 Balgobin Nandram, Jai-Won Cho and Hongyan Xu

Malec, D., Davis, W. W. and Cao, X. (1999). Model-based small area estimates of
overweight prevalence using sample selection adjustment. Statistics in Medicine
18, 3189-3200.

Morton, N. E. (1959). Genetic tests under incomplete ascertainment. American Journal
of Human Genetics 11, 1-16.

Nandram, B. (2007). Bayesian predictive inference under informative sampling via
surrogate samples. In Bayesian Statistics and Its Applications (Edited by S. K.
Upadhyay, U. Singh and D. K. Dey). Anamaya, New Delhi: Anshan.

Nandram, B. and Choi, J. W. (2005). A bayesian analysis of a two way categorical
table incorporating intra-class correlation. Journal of Statistical Computation and
Simulation 76, 233-249.

Nandram, B., Choi, J. W., Shen, G. and Burgos, C. (2006). Bayesian predictive infer-
ence under informative sampling and transformation. Applied Stochastic Models
in Business and Industry 22, 559-572.

Nelder, J. A. and Mead, R. (1965). A Simplex Method for Function Minimization.
Computer Journal 7, 308-313.

Nielsen, R. and Signorovitch, J. (2003). Correcting for ascertainment biases when
analyzing snp data: Applications to the estimation of linkage disequilibrium. The-
oretical Population Biology 63, 245-255.

Patil, G. P. and Rao, C. R. (1978). Weighted distributions and size biased sampling with
applications to wildlife populations and human families. Biometrics 34, 179-189.

Pfeffermann, D. and Sverchkov, M. (2007). Small-area estimation under informative
probability sampling of areas and within areas. Journal of the American Statistical
Association 102, 1427-1439.

Sham, P. (1998). Statistics in Human Genetics. Arnold.

Sverchkov, M. and Pfeffermann, D. (2004). Prediction of finite population totals based
on the sample distribution. Survey Methodology 30, 79-92.

Thompson, E. A. (1986). Pedigree Analysis in Human Genetics. Johns Hopkins.

Received March 19, 2009; accepted May 6, 2009.



Likelihood Estimation for Ascertainment Bias 41

Balgobin Nandram
Department of Mathematical Sciences
Worcester Polytechnic Institute
100 Institute Road
Worcester, MA 01609, USA
balnan@wpi.edu

Jai-Won Choi
Department of Biostatistics
Medical College of Georgia
1469 Laney Walker Blvd.
Augusta, GA 30912, USA
jchoi@mcg.edu

Hongyan Xu
Department of Biostatistics
Medical College of Georgia
1469 Laney Walker Blvd.
Augusta, GA 30912, USA
hxu@mcg.edu


