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Abstract: For model selection in mixed effects models, Vaida and Blan-
chard (2005) demonstrated that the marginal Akaike information criterion
is appropriate as to the questions regarding the population and the con-
ditional Akaike information criterion is appropriate as to the questions re-
garding the particular clusters in the data. This article shows that the
marginal Akaike information criterion is asymptotically equivalent to the
leave-one-cluster-out cross-validation and the conditional Akaike informa-
tion criterion is asymptotically equivalent to the leave-one-observation-out
cross-validation.
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1. Introduction

Linear mixed effects models (Laird and Ware, 1982) are powerful for the
analysis of clustered data, longitudinal data, meta data analysis, and recently
for the functional data analysis (e.g., Brumback and Rice, 1998; Rice and Wu,
2001). Since the beginning, many model selection procedures have been proposed
for the linear mixed effects models. Among them, Akaike information criteria
(AIC; Akaike, 1973) are most popular, and they are of a similar formula, AIC =
−2log likelihood + 2K, where K is the number of effective degrees of freedom
measuring the model complexity.

In the traditional AIC criteria, K simply counts the number of fixed param-
eters; see for example, Pinheiro and Bates (2000) and Ngo and Brand (2002).
Vaida and Blanchard (2005) demonstrated that the marginal Akaike informa-
tion criterion (mAIC) is appropriate as to the questions regarding the population
and the conditional Akaike information criterion (cAIC) is appropriate as to the
questions regarding the particular clusters in the data, where in the mAIC the
effective degrees of freedom are the number of fixed parameters and in the cAIC
the effective degrees of freedom are the ρ proposed by Hodges and Sargent (2001).
Without assuming that the scaled variance-covariance matrix of random effects
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is known, Liang et al. (2008) developed a general conditional AIC. Actually, the
general cAIC developed by Liang et al. (2008) coincides with the concept of gen-
eralized degrees of freedom developed by Ye (1998). This finding clearly classifies
the AIC criteria for mixed effects models existing in the literature into two main
streams, the mAIC and the cAIC.

To further investigate the mAIC and the cAIC, I attempt to find connections
between the cross-validation procedures and the AIC criteria for linear mixed
effects models. It is well known that for ordinary linear regression models, the
leaving-one-out cross-validation is asymptotically equivalent to the AIC criterion
(Stone, 1977). In this article I show that the leave-one-cluster-out cross-validation
(CLCV) is asymptotically equivalent to the mAIC and the leave-one-observation-
out cross-validation (OBCV) is asymptotically equivalent to the cAIC. The CLCV
and the OBCV were applied by Wu and Zhang (2002) for bandwidth selection in
the local polynomial mixed effects models for longitudinal data (there they are
named respectively as SJCV and PTCV), but the intricate difference between
the CLCV and the OBCV was not discussed. After establishing the asymptotic
equivalences between the CLCV and the mAIC and between the OBCV and the
cAIC, I can conclude that the CLCV is appropriate as to the questions regarding
the population and the OBCV is appropriate as to the questions regarding the
particular clusters in the data. This conclusion applies to other model selection
problems, such as bases selection in functional data analysis, and bandwidth
selection in the local polynomial mixed effects models.

2. Main Results

As in Laird and Ware (1982) and Vaida and Blanchard (2005), assume the
observation yij of subject j in cluster i can be modeled by

yij = xT
ijβ + zT

ijbi + εij , (2.1)

where i = 1, · · · ,m, j = 1, · · ·ni, β is the p-vector of fixed effects, bi is the q-
vector of random effects for cluster i following N(0, σ2G) independently, εij is
following N(0, σ2) independently of one another and bi, and G is q × q positive
definite. At the cluster level, the model is

yi = Xiβ + Zibi + εi, (2.2)

where Xi = (xi1, · · · , xini)
T is ni × p matrix of rank of p, Zi = (zi1, · · · , zini)

T

is ni × q matrix of rank q, and εi = (εi1, · · · , εini)
T is following N(0, σ2Ini).

Furthermore, letting N be the total number of observations, the model can be
written as

y = Xβ + Zb + ε, (2.3)
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where X = (XT
1 , · · · , XT

m)T is N × p matrix of rank p, Z = diag(Z1, · · · , Zm)
is N × r block-diagonal of rank r = mq, b = (bT

1 , · · · , bT
m)T is r-vector fol-

lowing N(0, σ2G0) with the block-diagonal matrix G0 = diag(G, · · · , G), and
ε = (εT

1 , · · · , εT
m)T is following N(0, σ2IN ).

For the population focus, the interest is in the fixed effects (i.e. β) and the
model can be assessed by the prediction error evaluated at a new cluster,

ErrCL = E(ym+1 − Xm+1β̂)T (Inm+1 + Zm+1GZT
m+1)

−1(ym+1 − Xm+1β̂)/nm+1,
(2.4)

where Xm+1 and Zm+1 are the predictors of the new cluster, ym+1 is the outcome
of the new cluster, and β̂ is the estimate of β by the EM algorithm in Laird and
Ware (1982) based on all the training data. This can be estimated by the leave-
one-cluster-out cross-validation,

CLCV =
m∑

i=1

(yi − Xiβ̂
[i])T (Ini + ZiĜ

[i]ZT
i )−1(yi − Xiβ̂

[i])/(mni), (2.5)

where β̂[i] and Ĝ[i] are respectively the estimates of β and G by the same method
based on the training data without cluster i.

For the cluster focus, the interest is in the cluster effects (i.e. bi) and the
model can be assessed by the prediction error evaluated at a new observation in
each cluster,

ErrOB =
m∑

i=1

E(yi(ni+1) − xT
i(ni+1)β̂ − zT

i(ni+1)b̂i)2/m, (2.6)

where yi(ni+1), xi(ni+1) and zi(ni+1) are respectively the outcome and predictors
of the new observation in cluster i, and β̂ and b̂i are respectively the estimates of
β and bi based on all the training data. This can be estimated by the leave-one-
observation-out cross-validation,

OBCV =
m∑

i=1

ni∑
j=1

(yij − xT
ij β̂

[i,j] − zT
ij b̂

[i,j]
i )2/N, (2.7)

where β̂[i,j] and b̂
[i,j]
i are respectively the estimates of β and bi based on the

training data without subject j in cluster i.
Following the arguments in Stone (1977), I obtain Theorem 1, which implies

the asymptotical equivalence between the CLCV and the mAIC as model selection
procedures.
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Theorem 1. Assume that G is known, ni ≡ n, and (yi, Xi, Zi) are i.i.d. in a
common distribution. Let Wi = Ini + ZiGZT

i . As m goes to infinity,

m∑
i=1

(yi − Xiβ̂
[i])T W−1

i (yi − Xiβ̂
[i])

=
m∑

i=1

(yi − Xiβ̂)T W−1
i (yi − Xiβ̂) + 2pσ2 + op(1). (2.8)

If G is unknown and Wi is estimated by Ini +ZiĜ
[i]ZT

i , the penalty term 2pσ2

in the RHS of (2.8) becomes 2(p + d)σ̂2, where d is number of parameters in G.
Still, as model selection procedures, the CLCV and the mAIC are asymptotically
equivalent. The assumption ni ≡ n can be replaced by

∑m
i=1 ni/m → n0 as

m → ∞, because under this new assumption the difference between (2.5) and
(2.8) is op(1).

Motivated by the proof of Lemma 1 in Wang et al. (2000), I obtain Theorem
2, which implies the asymptotical equivalence between the OBCV and the cAIC.
The proof is in Appendix. To state Theorem 2, let H1 be the hat matrix mapping
the observed data vector y in model (2.3) into the fitted vector ŷ = Xβ̂+Zb̂, that
is ŷ = H1y. This matrix was first proposed by Hodges and Sargent (2001) and
also used in Vaida and Blanchard (2005) and Liang et al. (2008); see Appendix
for details.

Theorem 2. Assume that G is known. Letting k = k(i, j) =
∑i−1

v=1 nv + j, we
have

OBCV =
1
N

m∑
i=1

ni∑
j=1

(
yij − xT

ij β̂ − zT
ij b̂i

1 − hkk

)2

, (2.9)

where hkk is the (k(i, j), k(i, j)) component of H1.
As Golub et al. (1979), replacing hkk in (2.9) by tr(H1)/N leads to

GCV =
1
N

m∑
i=1

ni∑
j=1

[
yij − xT

ij β̂ − zT
ij b̂i

1 − tr(H1)/N

]2

. (2.10)

Noting that
∑N

k=1 hkk = tr(H1), we see that the difference between the GCV and
the OBCV is op(1/N), under the assumption that

∑m
i=1 ni/m → n0 as m → ∞.

Furthermore, noting that 1/(1 − x)2 ≈ 1 + 2x, we see that the difference
between the GCV in (2.10) and the cAIC in Vaida and Blanchard (2005) is
op(1/N). Therefore, this implies the asymptotical equivalence between the OBCV
and the mAIC as model selection procedures, where K is equal to tr(H1), denoted
as ρ in Hodges and Sargent (2001).
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3. Practical Issues

In Theorems 1 and 2, I assume that G is known temporally. This assumption
is not needed in constructions of the CLCV and the OBCV. Therefore, the OBCV
procedure is more general than the cAIC (Vaida and Blanchard 2005), where G
is assumed to be known, and it is more straightforward than the general cAIC
(Liang et al. 2008), which requires the Monte Carlo method to compute the
penalty term.

For the purpose of model selection, the CLCV is asymptotically equivalent to
the mAIC and the OBCV is asymptotically equivalent to the cAIC. Therefore,
the CLCV is appropriate as to the questions regarding the population and the
OBCV is appropriate as to the questions regarding the particular clusters in the
data.

Here the asymptotical equivalence has two meanings. Let me take the CLCV
and the mAIC for example. For estimating the prediction error ErrCL, both the
CLCV and the mAIC, as estimates, are asymptotically unbiased. For selecting
one appropriate, parsimonious model including only a subset of predictors, both
the CLCV and the mAIC, as criteria, are asymptotically the same.

Moreover, the idea of choosing between the mAIC and the cAIC (or equiv-
alently between the CLCV and the OBCV) is an example of the Focused Infor-
mation Criterion (FIC) proposed by Claeskens and Hjort (2003). As pointed out
by Claeskens and Hjort (2003), a model selector should focus on the parameters
singled out for interest, instead of on selecting a single model with good overall
properties.

4. Discussion

This article shows connections, respectively, between the leave-one-cluster-out
cross-validation and the marginal AIC, and between the leave-one-observation-
out cross-validation and conditional the AIC. The results can be extended to func-
tional data analysis, where one curve is one cluster. In functional data analysis,
when predicting a new curve is of interest, leave-one-curve-out cross-validation
is appropriate, and when predicting future observations in particular curves is of
interest, leave-one-point-out cross-validation is appropriate.

Appendix

Lemma 1. Assume that G is known, and for some r × r matrix ∆ we have

G0 = (∆T ∆)−1. Let M =
(

X Z
0 −∆

)
and H1 = (X : Z)(MT : M)−1(X : Z)T .
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Then we have

(β̂T : b̂T )T = (MT : M)−1(X : Z)T y, and ŷ = Xβ̂ + Zb̂ = H1y.

Lemma 1 was proved in Hodges and Sargent (2001) and was used in Vaida and
Blanchard (2005) and Liang et al. (2008). Here β̂ coincides with the estimator of
Harville (1977) and b̂ with the empirical Bayes estimator b̂ = E(b|y, β̂).2

Let y[i,j], X [i,j] and Z [i,j] be, respectively, the matrices y, X and Z without
subject j in cluster i, let β̂[i,j] and b̂[i,j] be, respectively, the estimates of β and b
based on the training data without yij . Now for a given subject (i, j), define an N -
vector y∗ such that y∗i′j′ = yi′j′ for any (i′, j′) 6= (i, j) and y∗ij = xij β̂

[i,j] + zij b̂
[i,j].

Let β̂∗ and b̂∗ be respectively the estimates of β and b based on data (y∗, X, Z).
Since

‖ y∗ − Xβ − Zb ‖2≥‖ y[i,j] − X [i,j]β − Z [i,j]b ‖2

≥ ‖ y[i,j] − Xβ̂[i,j] − Zb̂[i,j] ‖2=‖ y∗ − Xβ̂[i,j] − Zb̂[i,j] ‖2,

together with Lemma 1, we have the following leave-one-out lemma.

Lemma 2. (Leave-one-out Lemma) Following the above notation, we have

xT
ij β̂

∗ + zT
ij b̂

∗ = xT
ij β̂

[i,j] + zT
ij b̂

[i,j].

Actually, Lemma 2 holds in many other settings; see for example, Wahba
(1990), Hastie and Tibshirani (1990), and Wang et al. (2000).2
Proof of Theorem 2. Let k = k(i, j) =

∑i−1
v=1 nv + j. By Lemma 1, we have

ŷ = H1y, in particular, ŷij =
∑N

l=1 hklyl, where hkl is the (k, l) component of H1.
By Lemma 2, we have

ŷ
[i,j]
ij = xT

ij β̂
[i,j] + zT

ij b̂
[i,j] = xT

ij β̂
∗ + zT

ij b̂
∗ =

N∑
l=1

hkly
∗
l =

∑
l 6=k

hklyl + hkky
[i,j]
ij .

Combining the above two formulas, we have ŷij − ŷ[i,j] = hkk(yij − ŷ[i,j]). Then
by some algebra, we have yij − ŷ

[i,j]
ij = (yij − ŷij)/(1 − hkk). 2
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