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Comparing Two Dependent Groups: Dealing with
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Abstract: The paper considers the problem of comparing measures of lo-
cation associated with two dependent groups when values are missing at
random, with an emphasis on robust measures of location. It is known that
simply imputing missing values can be unsatisfactory when testing hypothe-
ses about means, so the goal here is to compare several alternative strategies
that use all of the available data. Included are results on comparing means
and a 20% trimmed mean. Yet another method is based on the usual median
but differs from the other methods in a manner that is made obvious. (It
is somewhat related to the formulation of the Wilcoxon-Mann-Whitney test
for independent groups.) The strategies are compared in terms of Type I
error probabilities and power.
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1. Introduction

When comparing dependent groups, a commonly encountered concern is miss-
ing values. As is fairly evident, simply excluding missing data, known as complete
case analysis, might result in inefficient estimation, which in turn might result
in a substantial reduction in power when testing hypotheses (e.g., Liang, Wang,
Robins, and Carroll, 2004). There is a massive literature on methods for handling
missing observations, much of which is summarized in several books (e.g., Allison,
2001; Little and Rubin, 2002; McKnight, McKnight, Sidani and Figueredo, 2007;
Molenberghs and Kenward, 2007; Daniels and Hogan, 2008; Schafer, 1997). When
dealing with means, common approaches include maximum likelihood (Ibrahim,
Chen and Lipsitz, 1999; Ibrahim, Lipsitz and Horton, 2004), weighted adjustment
(Cochran, 1977), single imputation (Rao and Sitter, 1995) and multiple imputa-
tion (Rubin, 1987; Little and Rubin, 2002). Ludbrook (2008) suggests using a
permutation test when comparing groups based on means. A positive feature of
a permutation test is that when testing the hypothesis of identical distributions,
the exact probability of a Type I error can be determined. But as a method for
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comparing means or medians, it can be unsatisfactory even when there are no
missing values (e.g., Boik, 1987; Romano, 1990).

When the goal is to compare the marginal means and data are imputed, a
simple strategy is to then compute a confidence interval using a normal or t ap-
proximation in the usual manner. It is known, however, that this approach can be
unsatisfactory, as noted for example by Liang, Su and Zou (2008) as well as Wang
and Rao (2002). Moreover, even when there are no missing values, concerns about
relatively low power arise when sampling from a heavy-tailed distribution (e.g.,
Wilcox, 2005). And when the goal is to compare robust measures of location, it
appears that no imputation strategy has been proposed and studied.

Liang et al. (2008) suggested an approach to missing values using an em-
pirical likelihood method, based on single imputation, which is readily adapted
to the problem of computing a confidence interval for pup the population mean
associated with D = X —Y, where X and Y are the dependent random variables
being compared. A concern, however, is that when dealing with heavy-tailed
distributions, large sample sizes might be needed to get a reasonably accurate
confidence interval for up even when there are no missing values. For example,
suppose D has the contaminated normal distribution

H(z) = (1 —¢)®(z) + eP(x/10), (1.1)

where ®(z) is the standard normal distribution. Based on simulations with 5000
replications, if the sample size is n = 100, € = .1, and the goal is to compute a .95
confidence interval for the mean, the actual probability coverage is estimated to be
.084. Using the Bartlett-correction studied by DiCiccio, Hall and Romano (1991),
the actual probability coverage is .078. Here it was found that even with a few
missing values, the probability coverage deteriorates, and so this approach was
abandoned. Moreover, when sampling from a skewed heavy-tailed distribution,
practical concerns are exacerbated. And even if accurate probability coverage
could be attained, concerns about relatively low power, when using any method
based on means, remains for reasons summarized, for example, in Wilcox (2005).

As is well known, heavy-tailed distributions, roughly meaning distributions
for which outliers are likely to occur, appear to be quite common based on modern
outlier detection techniques, as predicted by Tukey (1960). Moreover, many new
and improved methods have been developed in an attempt to deal with this
problem, which include methods based on robust measures of location. There
are many results on comparing robust measures of location (e.g. Wilcox, 2005),
but when comparing robust measures of location associated with two dependent
groups, it appears that there are no results on how to handle missing values
beyond the complete case strategy.
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Here, two related goals are of interest. The first is to test
Hy : 01 = 0>, (1.2)

where 6 is some measure of location associated with the jth marginal distribution
(j =1, 2). The second goal is to compare the groups by testing the hypothesis
that the median of the distribution of D = X — Y, say 0p, is zero, where X and
Y are two random variables that are possibly dependent having some unknown
bivariate distribution. Of course, from basic principles, E(D) = E(X) — E(Y).
However, although there are exceptions, under general conditions the median of
D is not equal to the median of X minus the median of Y. The motivation for
considering inferences about the distribution of D is that missing values can be
addressed in a relatively simple fashion, as will become evident.

When comparing measures of location associated with the marginal distribu-
tions, the focus in this paper is on comparing means and 20% trimmed means,
assuming that data are missing at random in the sense defined by Rubin (1976).
That is, the reason why a data point is missing is not related to its actual value.
Although methods based on means have known practical concerns even when
no values are missing, results on comparing means are included anyway as a
benchmark.

One reason for focusing on 20% trimmed means, versus other amounts of
trimming, stems from efficiency considerations (Rosenberger and Gasko, 1983).
The median represents the maximum amount of trimming, it can have relatively
high efficiency when sampling from a very heavy-tailed distribution where a large
proportion of outliers are expected, but its efficiency under normality or other
relatively light-tailed distributions can be unsatisfactory. One strategy for dealing
with this issue is to trim less. A 20% trimmed mean has nearly the same efficiency
as the mean under normality but it can have substantially higher efficiency when
sampling from a heavy-tailed distribution. It is not being suggested that 20%
trimming is always optimal, it is not, but it is a reasonably good choice for general
use. (Another approach is to use a one-step M-estimator based on Huber’s ¥,
but this is not pursued here. In terms of maximizing power when dealing with
data from actual studies, there is some evidence that a 20% trimmed mean is
usually preferable; see Wu, 2002.)

The above discussion might seem to suggest that when making inferences
about the distribution associated with D, a 20% trimmed mean should be used
rather than éD, an estimate of the median of D . But now, in terms of efficiency,
the median generally performs better than a 20% trimmed mean (Wilcox, 2006).
Even under normality, efficiency compares well with the usual sample mean. For
example, under bivariate normality with Pearson’s correlation p = 0, the squared
standard error of the mean, divided by the squared standard error of Op, is .94
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with a sample size of n = 10. With p = .5 and .8, this ratio is .85 and .84,
respectively. With n = 50, these ratios, again for p = 0, .5 and .8, are .96, .91
and .87, respectively. And it is already known that hypotheses about 6p can
be tested using a standard percentile bootstrap method (Wilcox, 2006). That
is, in simulations covering a wide range of distributions, reasonably accurate
probability coverage is obtained when there are no missing values. The method
is easily extended to the case of missing values, but the impact of missing values
is unknown.

2. Description of the Methods to be Compared

This section describes the details of the methods to be compared. All of the
methods are based on relatively simple extensions of extant techniques and are
based in part on bootstrap methods.

We begin with a brief review of the trimmed mean. Momentarily consider a
single random sample: X7,..., X,. Let X(;) <--- < X,y be the values written
in ascending order and let g = [yn], 0 < v < .5, where [yn] is the greatest integer
less than or equal to yn. Then the ~-trimmed mean is

Z X)-

i=g+1

n—g

For reasons already explained, the focus is on v = .2, the 20% trimmed mean.

Now consider the case of two dependent variables. It is assumed than n pairs
of observations are randomly sampled where both values are available, which
is denoted by (X1,Y1),...,(X,,Yn). The corresponding (marginal) ~-trimmed
means are denoted by X; and Y;. For the first marginal distribution, an additional
n1 observations are sampled for which the corresponding Y value is not observed.
These observations are denoted by X,4t1,...,Xp+n, and the trimmed mean of
these n; observations is denoted by X;. Similarly, no observations are sampled for
which the corresponding value for the first marginal distribution is not observed
and the trimmed mean is denoted by Y;.

2.1 Method 1

The first method for testing (1.2) stems from a simple variation and general-
ization of the approach used by Lin and Stivers (1974) to derive a (non-bootstrap)
method for handling missing values when the goal is to compare the marginal
means. Let h; = [yn;] (j =1, 2), and let \; = h/(h + h;). Then an estimate of
the difference between the marginal trimmed means, pu:p = 1 — peo, is

fip = M X — AaXi + (1= M) X — (1 — X)) Xoo,
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a linear combination of three independent random variables.

An expression for the squared standard error of ji;p follows almost imme-
diately from results summarized in Wilcox (2005). To briefly review, the 7-
Winsorized variance associated with X is

Tl
o= [ @ = P E) A~ )+ 1 )l

Ly
where z is the v quantile. Using the notion of Winsorized expected values (e.g.,
Wilcox, p. 39)_, or the influence function of the trimmed mean, the squared
standard of \1 X — \Y is

1
0-(2) = ( )‘%Ug)m + )\20'3]3’, — 2)\1>\20'wzy)7 (21)

1- 27)277,(
where 04y is the population Winsorized covariance between X and Y. The
squared standard error of (1 — A\;)X is

= T2+ ) 22)

and the squared standard error of (1 — \)Y is

(1- )\2)2012@
=220 + ) (23)

o3 =

So the squared standard error of fi;p is

72:03—#0%—}—0%.
For convenience, let Ny = n + ny and g1 = [yN1]. The Winsorized values
corresponding to Xi,..., Xy, are

X(g1+l) lf X; < X(91+1)
Wi = X; if X(g1+1) < X; < X(legl)
Xn—gr) X 2 X(wi—gy)-

The (sample) Winsorized mean is

1 &
Wy = — E Wi,
Ny 4
i=1
an estimate of the Winsorized variance, 02, is
1
2

wr — ]\]1 1 Z(Wm - Xx)zy
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and an estimate of Ufuy is obtained in a similar fashion. The Winsorized covariance
between X and Y is estimated with

where

and Y,, is defined in a similar manner. (Perhaps there is some practical advantage
to using W, rather than W, when computing the sample Winsorized covariance,
but this has not been considered.)

The sample Winsorized variances yield estimates of 0(2), 0? and o3 via equa-
tions (2.1), (2.2) and (2.3), say 63, 67 and 63, in which case an estimate of the
squared standard error of fi;p is

~2 ~2 ~2 ~2
T = 0'0 +0'1 +O'2.

So a reasonable test statistic for testing (1.2) is

T=H (2.4)

~ -

7

There remains the problem of approximating the null distribution of T and
here a basic bootstrap-t method is used (e.g., Efron and Tibshirani, 1993). Based
on results derived by Hall (1988a, 1988b), a symmetric two-sided confidence in-
terval is used as opposed to an equal-tailed confidence interval. The method
begins by randomly sampling with replacement N = n+ nq + ng pairs of observa-
tions from (X1,Y2),...,(Xn, Yn) yielding (X7, Y5), ..., (X%, Yy ). Based on this
bootstrap sample, estimate p;p and 7, label the results fi;, and 7%, respectively,
and let . A

T — ’/“LtD j :U’tD| )
7—*
Repeat this process B times and put the resulting 7™ values in ascending order
yielding T(*l) <. < T(*B). Then an approximate 1 — a confidence interval for
HtD 18 - B
(X — Xp) £ T(*C)%
where ¢ = (1 — a) B rounded to the nearest integer.

As for the choice for B the initial strategy was to use B = 100 with the goal
of reducing execution time, but this was found to be unsatisfactory in terms of
controlling the probability of a Type I error. Increasing B to 300, good control
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over the Type I error probability was achieved for a range of situations, but
exceptions occur, as will be seen. For these latter situations, simulations were
repeated with B = 600. A criticism of not using a larger value for B is that
this might lead to some loss of power. Racine and MacKinnon (2007) discuss
this issue at length and proposed a method for reducing this problem. (Also see
Jockel, 1986). Davidson and MacKinnon (2000) proposed a pretest procedure for
choosing B.

2.2 Method 2

It is known that when comparing population means, a bootstrap t method is
generally preferable to a percentile bootstrap method (e.g., Hall and Wilson, 1991;
Wilcox, 2005). However, for various robust location estimators, it is known that
the reverse is true (Wilcox, 2005). This suggests using a percentile bootstrap
method when comparing the marginal 20% trimmed means, which deals with
missing values (at random) in a straightforward and simple manner.

As with method 1, generate a bootstrap sample and let D,’f = f(;" — 17{", where
X is the trimmed mean based on all of the X[ values not missing and Yy is
computed in a similar manner. Repeat this B times, put the resulting yielding
[?2" values in ascending order, and label the results Dz‘(l) <. < DZ‘( B Then an
approximate 1 — « confidence interval for p:p is

D1y Diay):

where ¢ = aB/2, rounded to the nearest integer, and u = B — ¢. To compute
a p-value, estimate p = P(fi;, > 0) with p, the proportion of D} values greater
than 0. Then a (generalized) p-value is

P = 2min(p, 1 — p)
(Liu and Singh, 1997).
2.3 Method 3

Now focus on 8p, the median of the distribution of D = X — Y. The goal is
to test Hy: Op = 0.

The method begins by forming all pairwise differences among the observed
X and Y values. That is, compute D;; = X; =Y, ¢ =1,...,Ny;j=1,...,No
resulting in Ny x Ny D;; values. Then an estimate of p is obtained by computing
the sample median of the D;; values.

The idea of making inferences about 6p is not new and in fact is a fundamen-
tal component of well-known methods for comparing independent groups. More



8 Rand R. Wilcox

precisely, consider the Wilcoxon-Mann-Whitney test or any of its modern exten-
sions (e.g., Brunner, Domhof and Langer, 2002; Cliff, 1996; Wilcox, 2005). Let
p = P(X <Y) be the probability that a randomly sampled observation from the
first group is less than a randomly sampled observation from the second group.
As is well known, these methods provide a test of the hypothesis

Hy:p=.5

and can be viewed as a method for testing the hypothesis that the distribution
of D has a median of 0. (But under general conditions it does not test the
hypothesis that the median of X is equal to the median of Y.) This follows
almost immediately from developments in Cliff (1996) and this perspective is
discussed at some length in Wilcox (2005).

Again, a basic percentile bootstrap method is used to make inferences about
0p. Generate a bootstrap sample as done in Method 2 and let éj‘j be the resulting
estimate of 0p. Repeat this process B times yielding é,’gb, b=1,...,B. Next,
put these B values in ascending order yielding é}")(l) <...<6 p(B) and let £ and
u be defined as before. Then a 1 — « confidence interval for 8p is

Obes1) Obwy)-

3. Simulation Results

Simulations were used to check the small-sample properties of the methods
described in the previous section. Observations were generated from a bivariate
distribution having marginal g-and-h distributions with correlation p = 0 or .5.

To elaborate, let Z be a standard normal random variable. Then

W— 7BXP(QQZ)_1eXp(hZ2/2), ifg>0
Zexp(hZ?/2), if g=0

has a g-and-h distribution where g and h are parameters that determine the first
four moments (Hoaglin, 1985). The standard normal distribution corresponds
to g = h = 0. The case g = 0 corresponds to a symmetric distribution, and
as g increases, skewness increases as well. The parameter h determines heavy
tailedness. As h increases, heavy tailedness increases. The six marginal distribu-
tions considered here are (g,h) = (0,0), (0, .5), (.5, 0), (5., .5 ), (1, 0), and (1,
0). So bivariate normal distributions are included and correspond to g = h = 0.
Table 1 summarizes the skewness (k1) and kurtosis (k2) for the g-and-h distribu-
tions used in the simulations. When h > 1/k, E(X — u)* is not defined and the
corresponding entry in Table 1 is left blank.



Comparing Two Dependent Groups with Missing Values 9

Table 1: Some properties of the g-and-h distribution

g h K1 K2
0.0 0.0 0.00 3.00
0.0 0.5 0.00 —
0.5 0.0 1.75 8.9
0.5 0.5 — —
1.0 0.0 6.19 113.94
1.0 0.5 — —

There remains the issue of generating data having a specified correlation.
Let R be the correlation matrix and form the Cholesky decomposition U'U = R,
where U is the matrix of factor loadings of the principal components of the square-
root method of factoring a correlation matrix, and U’ is the transpose of U. Let
V be an n x 2 matrix of data where the independent marginal distributions have
one of the g-and-h distributions previously described. Then the matrix product
XU produces an n x 2 matrix of data that has population correlation matrix R.

The sample size used here was N = 30 with n; = ny = 5 as well as
(n1,n2) = (10,0). Table 2 reports the estimated type I error probabilities based
on 1000 replications and B = 300, where the number of replications was chosen
to keep execution time at a reasonable level while simultaneously providing a
reasonably accurate estimate of the actual Type I error probability. If, for ex-
ample, the actual level is .05, then the standard error of the estimated level is

/-05(.95)/1000 = .0069.

Table 2. Estimated type I error probabilities, & = .05, n = 30, ny =ng =5

g h p ML(m)  Ml(n) M2 M3
0.0 0.0 0.0 .032 .039 .049 .056
0.5 0.0 0.5 .037 .037 .062 .063
0.0 0.5 0.0 .024 .023 .051 .065
0.0 0.5 0.5 .026 .023 .055 .059
0.5 0.5 0.0 .019 .021 .059 .065
0.5 0.5 0.5 .019 .018 .047 .064
1.0 0.0 0.0 .022 .026 .057 .065
1.0 0.0 0.5 .006 .010 .038 .064
1.0 0.5 0.0 .009 .014 .051 .065
1.0 0.5 0.5 .008 .009 .034 .057

Tables 2 and 3 report the estimated Type I error probabilities, where M1
() indicates method 1 using means, M1 () is method M1 using 20% trimmed
means, and M2 and M3 are methods 2 and 3, respectively. Note that both versions
of method M1 avoid estimated Type I error probabilities above the nominal level,
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but both yield estimates less than .025 for a variety of situations involving a
heavy-tailed distribution. This is of particular concern when using means because
there are at least two reasons why comparing means can result in relatively low
power: the actual level of the test can be substantially less than the nominal level
and the standard error of the mean can be relatively high when sampling from a
heavy-tailed distribution. Both methods M2 and M3 are more satisfactory, with
M2 usually giving the best results. With very few exceptions, the estimated Type
I error probability using M2 is closer to the nominal level compared to using M3.

Table 3. Estimated type I error probabilities, a = .05, n =30, ny = 10, no =0

g h p M1 (p) ML (p¢) M2 M3
0.0 0.0 0.0 051 043 055 058
0.0 0.0 0.5 046 046 053 050
0.0 0.5 0.0 029 032 050 057
0.0 0.5 05 025 .030 046 054
0.5 0.0 0.0 044 037 058 058
0.5 0.0 0.5 044 037 048 048
0.5 0.5 0.0 025 025 052 058
0.5 0.5 0.5 021 .025 043 047
1.0 0.0 0.0 035 029 057 058
1.0 0.0 0.5 014 012 034 048
1.0 0.5 0.0 016 022 051 058
1.0 0.5 0.5 010 007 027 049

For the heavy-tailed distributions, where and M1 (u) and M1 (u¢) have es-
timated Type I error probabilities well below the nominal level, the simulations
were repeated with B = 600, but very similar results were obtained.

A few additional simulations were run where the two marginal distributions
differ in shape. As expected, based on results summarized in Wilcox (2005), the
method for comparing means can be unsatisfactory in terms of Type I errors and
probability coverage when the marginal distributions differ in skewness, but the
percentile bootstrap method with a 20% trimmed mean performed reasonably
well. For example, if the first distribution is standard normal and the second is
lognormal, shifted so that the measures of locations being compared are equal,
M1 (u) has an estimated Type I error probability of .082 with n; = ng =5 and
p = 0. For M1 (p) it is .030, and for M2 and M3 the estimates are .065 and
.074. Very similar results are obtained when p = .5. Again M2 is best with only
a slight decrease in control over the probability of a Type I error.

Altering the marginal variances can make matters worse when comparing
means. For example, if the standard normal is replaced by a normal distribution
with standard deviation .25, even with no missing data, the estimated Type I
error is .108 using M1 (u) and only .062 using M3.
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3.1 Comments on power

At some level, power comparisons are meaningless because three different
measures of location are being used. Under general conditions, for example, the
difference between the marginal means is not equal to the difference between the
marginal 20% trimmed means. So situations can be constructed where M1 (u)
can have more power than M1 (u¢) and the reverse is true as well. And an added
complication is that the levels of the various methods can differ. Nevertheless,
some comments about power under a common shift in location might help provide
a useful perspective.

First consider bivariate normality where the marginal distributions have pop-
ulation means 0 and .5. With p = 0, N = 30, and n; = ne = 5, power for
methods M1 (p), M1 (), M2 and M3 was estimated to be .346, .274, .389 and
414, respectively. For p = .5 the estimates were .560, .439, .512, and .561. So
although the mean has optimal efficiency, the level of method M1 (u) is less than
the Type I error probability associated with methods M2 and M3 making it pos-
sible for methods M2 and M3 to have power approximately the same or a bit
higher than M1 (u).

Now consider the situation where the marginal distributions are g-and-h dis-
tributions with ¢ = 0 and h = .5. Shifting the second marginal distribution by
.8, power (with p = 0) for the four methods is now .148, .307, .488 and .520. Now
the sample mean has the worst efficiency, which combined with an actual level of
only .024 when testing at the .05 level, results in relatively poor power.

4. Concluding Remarks

In summary, both versions of method M1 were found to be less satisfactory
relative to methods M2 and M3. However, if there is a specific interest in com-
paring the marginal 20% trimmed means, rather than making inferences about
the 20% trimmed mean of X —Y ', M1 appears to avoid Type I error probabilities
greater than the nominal level. But when using M1 with the goal of comparing
the marginal means, the Type I error probability can be well above the nom-
inal level. All indications are that M2 is a bit more satisfactory than M3 in
terms of Type I errors, with both methods performing reasonably well among
the situations considered. In terms of power, M3 is a bit more satisfactory than
M2. But as stressed, M2 and M3 are based on different measures of location,
so when dealing with data from actual studies, M2 might have higher power in
some situations.



12 Rand R. Wilcox

References

Allis, P. D. (2001). Missing Data. Sage.

Boik, R. J. (1987). The Fisher-Pitman permutation test: A non-robust alternative to
the normal theory F test when variances are heterogeneous. British Journal of
Mathematical and Statistical Psychology 40, 26-42.

Bradley, J. V. (1978). Robustness? British Journal of Mathematical and Statistical
Psychology 31, 144-152.

Cochran, W. G. (1977). Sampling Techniques (3rd Ed.). Wiley.

Daniels, M. J. and Hogan, J. W. (2008). Missing Data in Longitudinal Studies: Strate-
gies for Bayesian Modeling and Sensitivity Analysis. Chapman and Hall/CRC.

Davidson, R. and MacKinnon, J. G. (2000). Bootstrap tests: How many bootstraps?
Econometric Reviews 19, 55-68.

Dombhof, S., Brunner, E. and Osgood, D. (2002). Rank procedures for repeated measures
with missing values. Sociological Methods and Research 30, 367-393.

Efron, B. and Tibshirani, R. J. (1993) An Introduction to the Bootstrap. Chapman and
Hall.

Hall, P. (1988a). On symmetric bootstrap confidence intervals. Journal of the Royal
Statistical Society, Series B 50, 35-45.

Hall, P. (1988b). Theoretical comparison of bootstrap confidence intervals. Annals of
Statistics, 16, 927-953.

Hall, P. and Wilson, S. R. (1991). Two guidelines for bootstrap hypothesis testing.
Biometrics , 47, 757-762.

Hoaglin, D. C. (1985) Summarizing shape numerically: The g-and-h distributions. In
Exploring data tables, trends, and shapes. (Editec by D. Hoaglin, F. Mosteller and
J. Tukey, 461-515). Wiley.

Ibrahim, J. G., Chen, M. H. and Lipsitz, S. R. (1999). Monte Carlo EM for missing
covariates in parametric regression models. Biometrics 55, 591-596.

Ibrahim, J. G., Lipsitz, S. R. and Horton, N. (2001). Using auxiliary data for parameter
estimation with nonignorable missing outcomes. Applied Statistics 50, 361-373.

Jockel, K.-H. (1986). Finite sample properties and asymptotic efficiency of Monte Carlo
tests. Annals of Statistics 14, 336-347.

Keselman, H. J., Lix, L. M. and Kowalchuk, R. K. (1998). Multiple comparison proce-
dures for trimmed means. Psychological Methods, 3, 123-141.

Liang, H., Su, H. and Zou, G. (2008). Confidence intervals for a common mean with
missing data with applications in an AIDS study. Computational Statistics and
Data Analysis 53, 546-553.



Comparing Two Dependent Groups with Missing Values 13

Little, R. J. A. and Rubin, D. (2002). Statistical Analysis with Missing Data, 2nd Ed.
Wiley.

Liu, R. G. and Singh, K. (1997). Notions of limiting P values based on data depth and
bootstrap. Journal of the American Statistical Association 92, 266-277.

Ludbrook, J. (2008). Outlying observations and missing values: how should they be
handled? Clinical and Exzperimental Pharmacology and Physiology 35, 670-678.

McKnight, P. E., McKnight, K. M., Sidani, S. and Figueredo, A. J. (2007). Missing
Data: A Gentle Introduction. Guilford Press.

Racine, J. and MacKinnon, J. G. (2007). Simulation-based tests than can use any
number of simulations. Communications in Statistics-Simulation and Computation
36, 357-365.

Rogan, J. C., Keselman, H. J. and Mendoza, J. L. (1979). Analysis of repeated measure-
ments. British Journal of Mathematical and Statistical Psychology, 32, 269-286.

Romano, J. P. (1990). On the behavior of randomization tests without a group invari-
ance assumption. Journal of the American Statistical Association 85, 686-692.

Rubin, D. B. (1976). Inference and missing data. Biometrika 63, 581-592.
Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys. Wiley.
Staudte, R. G. and Sheather, S. J. (1990). Robust Estimation and Testing. Wiley.

Tukey, J. W. (1960). A survey of sampling from contaminated normal distributions.
In Contributions to Probability and Statistics (Edited by I. Olkin et al.). Stanford
University Press.

Wang, Q. H. and Rao, J. N. K. (2002). Empirical likelihood-based inference in linear
models with missing data. Scandanavian Journal of Statistics, 29, 563-576.

Westfall, P. H. and Young, S. S. (1993). Resampling Based Multiple Testing Wiley.

Wilcox, R. R. (2005). Introduction to Robust Estimation and Hypothesis Testing, 2nd
Ed. Academic Press.

Wilcox, R. R. (2006). A note on inferences about the median of difference scores.
Educational and Psychological Measurement 66, 624-630.

Wu, P.-C. (2002). Central limit theorem and comparing means, trimmed means one-step
M-estimators and modified one-step M-estimators under non-normality. Unpub-
lished doctoral disseration, Dept. of Education, University of Southern California.

Received July 20, 2009; accepted August 26, 2009.

Rand R. Wilcox

Dept of Psychology

University of Southern California
Los Angeles, CA 90089, USA
rwilcox@usc.edu



