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Abstract

It is hypothesized that short-term exposure to air pollution may influence the transmission of
aerosolized pathogens such as COVID-19. We used data from 23 provinces in Italy to build
a generalized additive model to investigate the association between the effective reproductive
number of the disease and air quality while controlling for ambient environmental variables
and changes in human mobility. The model finds that there is a positive, nonlinear relationship
between the density of particulate matter in the air and COVID-19 transmission, which is in
alignment with similar studies on other respiratory illnesses.
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1 Introduction
Poor air quality is a well-documented public health concern, causing respiratory illnesses, neg-
atively impacting cardiovascular health, and decreasing life expectancy (Delfino et al., 2005;
Krewski, 2009; Lelieveld et al., 2015; Janssen et al., 2013). Especially harmful is fine particulate
matter (with diameter less than 2.5 μm, called PM2.5) suspended in the air (Delfino et al., 2005;
Laden et al., 2000; Schwartz et al., 1996). These particles, which are mainly created by indus-
trial combustion processes and atmospheric reactions, can deeply penetrate the lungs and cause
damage to the respiratory system over time (Xing et al., 2016; Tucker, 2000). Furthermore, it is
hypothesized that viruses may attach themselves to these suspended particles and infect hosts
upon inhalation (Ciencewicki and Jaspers, 2007; Liang et al., 2014; Contini and Costabile, 2020;
Jiang et al., 2020). This effect is particularly pronounced in cities with extreme levels of air
pollution, such as Beijing, where cases of influenza have been shown to increase with the density
of PM2.5 in the air (Ciencewicki and Jaspers, 2007; Liang et al., 2014; Feng et al., 2016; Su et al.,
2019; Jiang et al., 2020).

Since December 2019, when the novel coronavirus SARS-CoV-2 was first identified in
Wuhan, China, it has erupted into a global pandemic (Zhu et al., 2020a; Jiang et al., 2020;
Zhu et al., 2020b). Many risk factors and comorbidities have been found, including obesity, pre-

✩This is an updated version from the one released in April 2021. The update corrected the unit of PM2.5 to
AQI in Figures 3–4 and a few places involving it in the text.
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existing health conditions such as diabetes or hypertension, and advanced age (Richardson et al.,
2020; Yang et al., 2020). An increase in environmental factors such as air pollution, temperature,
and humidity have also been found to be associated with increased COVID-19 case counts early
in the pandemic in China (Zhu et al., 2020b; Jiang et al., 2020), however the effects of PM2.5

remain largely unexplored as the pandemic continues to develop. Furthermore, recent events
such as raging wildfires in the western United States have increased concentrations of PM2.5 in
the air (O’Dell et al., 2019; Jaffe et al., 2008); it would be useful to understand whether these
changes can affect the spread of COVID-19.

In this paper, we analyze the effective reproductive number (Rt) of the disease, which is
the average number of secondary infections caused by an infectious individual on day t . Because
of this time dependency, Rt acts as a measurement of daily transmission intensity and as a
result, is frequently utilized for decision-making during a pandemic (Lipsitch et al., 2011). After
using the open-source software rt.live (Systrom et al., 2020) to calculate Rt in 23 provinces in
Italy, we studied its association with PM2.5 using a generalized additive models (GAM). In the
GAM, we also controlled for other environmental variables, including humidity, temperature,
and changes in mobility due to lockdown. We found that at levels of PM2.5 greater than about
70 AQI (equivalent to 21 μg/m3), poor air quality is positively correlated with increased Rt of
COVID-19. Furthermore, we performed a 23-fold cross-validation procedure in order to test the
sensitivity of the model on each province and test for selection bias. We found that our model
was robust against this test.

2 Methods

2.1 Study Area

In order to ensure that we had sufficient data to extract meaningful results, we considered
only Italian provinces that reported more than 2000 cumulative cases of COVID-19 during
the study period of February 24, 2020 to August 1, 2020. We then removed locations where
environmental data was unavailable, resulting in the final study area of the 23 provinces shown
in Figure 1. These provinces accounted for over 63% of total Italy’s COVID-19 cases over the
time frame.

2.2 Data

The environmental variables included in the study were daily median temperature, relative hu-
midity, and PM2.5. Temperature and relative humidity were collected from the NOAA Integrated
Surface Database using the worldmet package in R (Carslaw, 2020), while PM2.5 data was taken
from the World Air Quality Index (https://aqicn.org/).

We also controlled for the effects of lockdown by incorporating data from province-specific
Google Community Mobility Reports (https://google.com/covid19/mobility/), which quantify
the daily change in aggregate mobility compared to a pre-pandemic baseline. The dataset was
generated using anonymized data from Google Maps to measure daily visitors in six categories
of locations: residential areas, retail locations, transit stations, grocery stores, parks, and work-
places. In order to gain perspective on how mobility has changed due to the pandemic, these
measures were divided by a median value of visitors for that location for that day of the week,
which was measured prior the onset of the pandemic. For this study, we took our mobility vari-
able to be the change in mobility in residential areas; however, we found similar results when

https://aqicn.org/
https://google.com/covid19/mobility/
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Figure 1: A geospatial heat map with locations of the 23 provinces included in the study, colored
by the cumulative number of COVID-19 cases as of August 1, 2020.

we substituted data from any of the other five categories of locations provided in the Google
Community Mobility Reports.

Daily tests counts and confirmed cases were collected directly from the Italian Department
of Civil Protection (https://github.com/pcm-dpc/COVID-19) and were used to estimate the
value of the effective reproductive number, Rt .

Rt was estimated using an open source model from Systrom et al. (2020) called rt.live,
which we adapted to be compatible with our data. Notably, the model estimates total cases by
scaling confirmed cases according to testing volume. It also approximates a time series of cases
by day of infection using an onset delay distribution which was empirically driven by data from
Xu et al. (2020) while assuming a five day incubation period as evidenced by work from Lauer
et al. (2020). Finally, it uses the generation time derived by Nishiura et al. (2020) with mean
4.7 days and standard deviation 2.9 days to estimate Rt .

The time series of new COVID-19 cases, mobility, PM2.5, median temperature, median
humidity, and Rt from February 24, 2020 to August 1st, 2020 are shown in Figure 2. The peak
in cases occurred between March 14th and April 18th in each province then cases steadily
decreased. The effective reproductive number however decreases until mid-April and starts to
increase again in most provinces over the summer. A seasonal increase in temperature is present
as the data was collected from late winter to mid-summer, while humidity and PM2.5 do not
follow any obvious trends. Descriptive statistics of our data are available in Table 1.

https://github.com/pcm-dpc/COVID-19
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Table 1: Mean, standard deviation, minimum, and maximum of each variable considered across
all cities and days, including the estimated value of Rt .

Mean SD Min Max

Daily Cases 42.29 76.93 0 868
Daily Tests 968.93 1136.27 0 18256
Temperature (◦C) 18.06 6.60 0.50 36
Relative Humidity (%) 63.84 17.67 11.50 100
PM2.5 (AQI) 48.52 21.67 5 172
Mobility Decrease (%) 15.57 12.31 −9 47
Rt 0.94 0.24 0.57 2.12

2.3 Statistical Model
Following other studies on the effects of ambient environmental variables on viral transmission
(Peng et al., 2005; Colon-Gonzalez et al., 2013; Prata et al., 2020; Xie and Zhu, 2020; Talmoudi
et al., 2017; Feng et al., 2016), we used a generalized additive model (GAM) to analyze the
COVID-19 pandemic. The GAM is a semi-parametric extension of the generalized linear model
in which the response variable (relative transmission rate) relies on a linear combination of
smooth functions of the predictor variables (humidity, PM2.5, temperature, and mobility). Our
GAM was defined using a Gaussian distribution and the following equation:

log(Rt,i) = s(Mobilityt,i) + s(Tempt,i) + s(Humt,i) + s(PM2.5t,i
) + λi, (1)

where t denotes the date, i denotes the province, and s(·) denotes the thin plate basis spline used
to smooth the data. Parameters of the splines were estimated using the GCV method, and the
splines were constrained to have at most five degrees of freedom. This constraint was imposed
to minimize overfitting while accurately describing the trends of the data. The results of the
model were robust to changes in the degrees of freedom, signifying that we effectively captured
the trends in the data.

We chose our predictor variables to be the percent decrease in mobility (Mobilityt,i), median
temperature (Tempt,i), median humidity (Humt,i), and median PM2.5 (PM2.5t,i

). We also included
the fixed effect of each province with the intercept λi to account for local differences. Finally,
we selected our response variable to be the log-transformed effective reproductive number (Rt,i).
Choosing our response variable in this way allowed us to avoid lagging any of our predictor
variables, as the effective reproductive number is already adjusted for the delay between the day
of infection and the day the case was reported (Systrom et al., 2020). Furthermore, choosing the
logarithm transformation allows the model to be interpreted more naturally as we can see the
effects of the predictor variables on a relative scale rather than an absolute scale (Gelman and
Hill, 2007).

The model was tested for robustness in two ways. First, we constructed the model for each
province individually in order to ensure that the trends present in the global data set were
also present in local data sets. Next, we cross-validated the model on our data by removing
one province from the global data set, training the model on the 22 remaining provinces and
using this model to predict Rt for the removed province. We then repeated this process for each
province in order to ensure that no province had an overstated effect on the model.

The GAM was computed using the mgcv package in R (Wood, 2011).
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Figure 2: The time series of daily cases, temperature, humidity, and PM2.5 in 23 Italian provinces.
Each line represents one province and the colors are grouped by region.

3 Results
Output from the GAM in Equation (1) is shown in Figure 3. These plots depict the partial
effect of each predictor variable on the effective reproductive number Rt determined by the
evaluate_smooth function in the gratia package in R (Simpson, 2021). The 95% confidence
intervals are shown in gray. Negative values indicate a decrease in Rt , while positive values
indicate an increase in Rt . If the confidence interval includes zero, there is no effect.

The percent change in mobility had a positive effect on Rt . This is a very intuitive result; as
people stay at home more, the effective reproductive number decreases. Increased temperature
showed a negative effect on the effective reproductive number up until around 25◦C. Humidity
had a somewhat positive effect when under 50% and a negligible effect at greater values. PM2.5

had no effect at levels between 0 and 70 AQI, but showed a strong positive effect for larger
values. All predictor variables were significant with p-values of less than 2 × 10−16. The model
had an adjusted coefficient of determination R2 = 0.67.

The model was fit to each province individually which revealed similar qualitative effects
for each predictor as observed in the global data set (Figure 4). Variability at higher PM2.5

values exists due to a small number of observations per province. Firenze (Toscana), Napoli
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Figure 3: Each plot shows the partial effects of change in mobility, PM2.5, temperature, and
humidity on the expected value of log(Rt). The 95% confidence intervals are depicted in gray.
Rt increases as mobility increases, PM2.5 has negligible effect for values between 0–70 AQI but
displays a strong positive effect at higher values, temperature has a negative relationship with
Rt , and humidity has a slight positive effect under 50% but a negligible effect at higher values.

(Campagnia) and Roma (Lazio) do not exhibit the same increasing trend for PM2.5 as the other
provinces but all had very few observations above 75 AQI and no observations above 100 AQI.
Similarly, variability in the effect of humidity below 50% can also be explained by a small sample
size in this range per province.

Additionally, the model was trained on the data with one province removed at a time and
the mean squared error was calculated after predicting on the removed province (Figure 5).
Prediction error was lower in regions where we had data from multiple provinces, and higher in
regions where less data was available. Illustrating this, Napoli, Roma, and Verona were the only
provinces in their respective regions from which we collected data, and they had the highest
mean squared prediction errors.
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Figure 4: Each line shows the partial effect for each predictor variable when fitting a GAM to
each province separately. Lines were colored by region which shows that the biggest outliers
come from regions with only a small number of observations.

4 Discussion
The COVID-19 pandemic has affected millions of people around the world. Poor air quality is
also considered a public health issue, associated with long-term health effects such as weak-
ened cardiovascular health and decreasing life expectancy (Delfino et al., 2005; Krewski, 2009;
Lelieveld et al., 2015; Janssen et al., 2013). Past studies have also shown an association between
high concentrations of particulate matter less than 2.5 μm in diameter and an increase in in-
fluenza transmission (Su et al., 2019). Thus we hypothesize that even short-term exposure to
elevated PM2.5 may lead to a higher risk of COVID-19 transmission. Although any analysis to
understand transmission is confounded by many variables, such as temperature, humidity, social
distancing or the quality of data, our results show that air pollution may be associated with
a higher effective reproduction rate of the virus. We showed the generalized additive model’s
results to be robust. When each province was removed from the data pool, a GAM constructed
from the remaining provinces could predict case counts in the excluded province.

Our study is novel in its use of effective reproductive number as the dependent variable
for the GAM. Although this parameter Rt is commonly calculated to estimate the growth of a
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Figure 5: A geospatial heat map of mean squared prediction error from the cross validation
process. The error is lowest in the Lombardi region, where we had the most observations, and
highest in the regions of Campagni, Lazio, and Veneto where we used data from one province
each.

pandemic (Lipsitch et al., 2011; Rubin et al., 2020; Pan et al., 2020), our use of it in a GAM
analyzing the impact of other variables on disease spread is novel. As we were interested in a daily
change in virus transmission, we chose to use the assumptions of an established model to account
for the many unknowns in the data, such as the lag between contracting the virus and showing
symptoms, and the one between taking a test and receiving a positive result. Furthermore, we
use a longer timescale than comparable models of the COVID-19 pandemic, including both the
initial wave of cases as well as the subsequent decline. Finally, we account for changes in human
behavior during the pandemic using Google mobility data, while the majority of contemporary
papers have not incorporated this or any similar metric.

We found statistically significant relationships of mobility, temperature, humidity, and PM2.5

on COVID-19 transmission. It is well established that the reduction in mobility as a result of
national lockdowns has been very effective at reducing the spread of COVID-19 (Kraemer et al.,
2020; Zhu et al., 2020c), which is clear from our results as well. The magnitude of this effect
explains why it was essential to include in our analysis. We also found an increase in temperature
was associated with a decrease in Rt . We are hesitant to ascribe excessive significance to this
finding given the strong serial correlation of temperature and the limited data we have available.
Nevertheless, we can still compare our findings to those of other studies of COVID-19. Lee et al.
(2020) used a linear model on data from 166 countries to note a negative correlation between
temperature and COVID-19 cases. They also found a significant correlation between humidity
and COVID-19 cases, albeit with a noticeably smaller effect than that of temperature. Both of
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these are supported by our results. Furthermore, Prata et al. (2020) used a non-linear model
in Brazil to find a noticeable decrease in transmission as temperature increased from 17◦C to
24◦C and little change between 24–27◦C, which was similar to our findings. Studies of China
such as those by Xie and Zhu (2020) and Ma et al. (2020) have found the opposite result. They
report positive nonlinear trends between temperature and disease incidence in January and
February. Possible reasons for this disagreement may be model selection, confounding variables,
or a limited range of data (Lee et al., 2020).

Our results regarding PM2.5 were also largely consistent with previous studies on COVID-19
and other respiratory illnesses. Feng et al. (2016), Liang et al. (2014), Janssen et al. (2013), Su
et al. (2019), Jiang et al. (2020), Zhu et al. (2020b), and Zhu et al. (2020c) observed that PM2.5

was positively correlated to the transmission of various viruses including coronaviruses and in-
fluenza viruses. Although most of these studies used linear models to establish a correlation, Feng
et al. (2016) reported a nonlinear trend with little correlation between infection rates for PM2.5

values below 70 μg/m3, followed by a linearly increasing trend for PM2.5 values between 70 and
150 μg/m3, equivalent to the range 158–200 AQI. This trend is in agreement with our results,
though we found that PM2.5 had an effect at lower AQI levels. Overall, it seems the majority of
studies agree that a statistically significant relationship between PM2.5 and viral transmission
exists. The common hypothesis for this is two-fold. First, fine particulate matter has been re-
ported to damage the respiratory system, possibly resulting in “a temporary immunosuppressive
pulmonary microenvironment” (Feng et al., 2016; Donaldson and Tran, 2002; Li et al., 1996; Kim
and Kang, 1995; Lee et al., 2014). Second, PM2.5 is sufficiently small that it can stay suspended
in the air for prolonged stretches of time, making it, and any pathogen that may have bound
itself to it, susceptible to inhalation. In fact, a recent finding from the Italian province of Berg-
amo provides evidence that SARS-CoV-2 does bind to particulate matter in the air (Setti et al.,
2020). Both of these hypotheses could imply that particulate matter allows greater exposure
to the virus as well as a greater susceptibility to infection following exposure. However, more
research is needed to understand the underlying mechanisms and the degree of additional risk.

As pollution levels rise around the world (Shaddick et al., 2020), it is important to study
their impact on respiratory disease. Even now, events such as wildfires in the western United
States drive PM2.5 levels to extreme highs (Liu et al., 2016; Xie et al., 2020). Thus, our findings
may predict an association between the fires and higher incidences of COVID-19 transmission.
Furthermore, as the climate continues to change, this association may be important to note in
future outbreaks of respiratory illnesses.

Another pervasive issue in the pandemic is the disproportional incidence of COVID-19 on
low-income and ethnic communities, particularly in the United States (Yancy, 2020; Hooper
et al., 2020; Brandt et al., 2020). Understanding the causes of this disparity would allow for pol-
icymakers to implement more effective measures of controlling the spread in these communities.
To this end, it has been established that low-income and ethnic communities are disproportion-
ately exposed to high levels of PM2.5 (Brandt et al., 2020; Tessum et al., 2019). The results of
our study indicate that it is possible that some of the increased disease transmission in these
communities may be attributed to higher levels of air pollution. Unfortunately due to a lack of
available data, we were unable to directly investigate this using a subgroup analysis; however,
we bring it up as an important issue that warrants further consideration.

In addition to PM2.5, temperature, and humidity, it is possible to consider other environ-
mental variables. Other studies have identified possible relationships between COVID-19 trans-
mission and PM10, SO2, NO2, and O3 (Zhu et al., 2020c; Jiang et al., 2020; Fronza et al., 2020).
We did not include these in our study for a variety of reasons. There were very few days where
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any province reported unhealthy NO2 levels (>150 AQI), and as a result, we unsurprisingly
found no strong effect. Likewise, O3 measurements were missing from a significant number of
provinces, and the O3 that was reported seldom reached even moderately unhealthy (>100 AQI)
levels. PM10 and SO2 measurements were similarly unavailable for a large number of provinces
and thus were omitted from study.

There are several limitations to our study. While we attempt to control for the seasonal vari-
ation of atmospheric variables in our model, an entire seasonal cycle of the COVID-19 pandemic
has not been observed, making a full seasonal analysis infeasible at this time. Many confounding
variables may influence PM2.5 levels, and they are difficult to disentangle. Furthermore, since
our study focuses on Italy, we do not know if these findings would be consistent in other areas.
Future work would include expanding this study to multiple countries in different regions, such
as the southern hemisphere, and to countries with a less homogeneous government response to
test if our results hold on a global scale.

5 Conclusion
Our results suggest that mobility, temperature, humidity, and short-term exposure to PM2.5

are all possible risk factors for COVID-19. While the effects of temperature, humidity, and
mobility have all been subjects of large-scale global studies on the pandemic (Kraemer et al.,
2020; Lee et al., 2020), PM2.5 has received less attention. However, because PM2.5 can change
significantly due to both long-term, predictable events (such as an increase in PM2.5 in winter
months) as well as short-term, less predictable events (such as wildfires), it is important to try
to understand how it may impact the pandemic. We find that PM2.5 has a negligible correlation
with Rt for healthy air quality, but as PM levels increase to moderately unhealthy amounts,
a strong positive correlation emerges. This provides evidence for the long-standing hypothesis
that short-term exposure to air pollution is a risk factor for respiratory illnesses. Although the
results of our study are consistent with other works, this should still be considered a preliminary
study as larger scale data sets are needed to confirm a global trend.

Supplementary Material
The data and R code used to generate these results, as well as figures for individual cities in the
validation process, are included in the supplementary files. A README is provided to describe
the data available, how to generate each figure presented in the paper, and where important
variables should be found in the code.
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