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Abstract: In this paper we propose a new bivariate long-term distribu-
tion based on the Farlie-Gumbel-Morgenstern copula model. The proposed
model allows for the presence of censored data and covariates in the cure
parameter. For inferential purpose a Bayesian approach via Markov Chain
Monte Carlo (MCMC) is considered. Further, some discussions on the model
selection criteria are given. In order to examine outlying and influential ob-
servations, we develop a Bayesian case deletion influence diagnostics based
on the Kullback-Leibler divergence. The newly developed procedures are
illustrated on artificial and real HIV data.
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1. Introduction

Multivariate survival data are present in various areas. Considering partic-
ularly bivariate survival data, we can observe two lifetimes for a same client,
patient or equipment. For instance, in the medical area we can have interest in
studying the lifetimes of paired human organs, as kidneys and eyes, and double
recurrence of a certain disease. In industrial applications this type of data can
occur for systems whose duration times depend on the durability of two com-
ponents. For instance, the damages of dual generators in a power plant or the
lifetimes of motors in a twin-engine airplane. In financial applications we may
have bivariate lifetimes until default.

In general, multivariate survival data are correlated and the study of that de-
pendence has been focus of many researches. In literature, an extensive list of pa-
pers on modeling multivariate survival data can be found, for example Aslanidou

∗Corresponding author.



512 Francisco et al.

et al. (1998), Gao et al. (2006), Hougaard (2000) and Hanagal (2011). Clayton
(1978), Vaupel et al. (1979), Hougaard (1986), Oakes (1989), Wienke (2011) and
Hanagal (2011) consider frailty models in that one or more random effects are
included in the model in order to model the dependence between the observations.

More recently, the copula models (see for instance, Embrechts et al. (2003),
Trivedi and Zimmer (2005), Chiou and Tsay (2008), Nelsen (2006), Zhang et
al. (2010) and Jaworski (2010)) have become a popular tool to model the de-
pendence of multivariate data, especially in biological areas, actuarial sciences
and finances. A copula is a function that connects the marginal distributions
to restore the joint distribution. Different copula functions represent different
dependence structures between variables (Nelsen, 2006). By comparing to the
joint distribution approach, a copula model is a more convenient tool in studying
the dependence structure. Indeed it is more flexible in applications, since, when
the scatter of the data does not fit any known family of joint distributions, it
may be difficult to specify the joint distribution. Using copulas, however, we can
first estimate the marginal distributions and then estimate the copula. Another
advantage of the copula modeling is its relatively mathematical simplicity. Also,
it is possible to build a variety of dependence structures based on parametric or
non-parametric models for the marginal distributions.

In survival analysis, models based on copulas are considered in Hougaard
(1989), Oakes (1989), Shih and Louis (1995) and Gustafson et al. (2003). Partic-
ularly, from a Bayesian perspective, Romeo, Tanaka and Pedroso de Lima (2006)
considered an application of the Archimedian copula family for modeling the de-
pendence of bivariate survival. In their analysis, the authors considered a Weibull
distribution for the marginal distributions of the bivariate lifetime components.

A difficulty arises if a part of the population is not susceptible to the event
of interest. For instance, in bivariate clinical studies a population can respond
favorably to a treatment, being considered cured. Univariately, models which
consider that part of the population is cured have been widely developed and
are usually called long term survival models. Perhaps the most popular type of
cure rate model is the mixture model introduced by Boag (1949) and Berkson
and Gage (1952). In this model, it is assumed that a certain proportion of the
patients, say p, are cured, in the sense that they do not present the event of
interest during a long period of time and can be seen as to be immune to the
cause of failure under study. Later on, the literature on mixture long-term model
is extensive and and interested readers can refer to Maller and Zhou (1996), Peng
et al. (1998), Rodrigues et al. (2009), Mazucheli et al. (2009) and Perdona and
Louzada-Neto (2011) amongst others.

In this paper, considering a parallel path to the work of Romeo, Tanaka and
Pedroso de Lima (2006), but differently from them, for the first time, we consider
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a bivariate distribution based on the Farlie-Gumbel-Morgenstern (FGM) copula
(see, Conway (1983)) with long term survival models as marginal distributions.

The main objective of the paper is to present the FGM long-term bivariate
survival copula model and to develop diagnostic measures from a Bayesian per-
spective based on the Kullback-Leibler (K-L) divergence as proposed by Peng and
Dey (1995). For each individual lifetime variable we consider long-term Weibull
mixture models with covariates included in the cure proportion. For inferen-
tial purpose joint estimation was performed and a sampling based approach via
Markov Chain Monte Carlo (MCMC) was considered. Applications on artificial
and on a real HIV data illustrate our approach.

The paper is organized as follows. Section 2 presents a survival bivariate
model by considering a FGM copula distribution. Section 3 presents the Bayesian
inferential procedure as well as some discussions on the model selection criteria are
given. Section 4 a Bayesian case deletion influence diagnostics based on the K-L
divergence is presented. Section 5 illustrates our approach on an artificial dataset
generated according to the proposed bivariate model and on a real HIV dataset,
where we also compare the fitting of our model with usual copula models, namely,
the Positive Stable, Frank and Clayton ones, as well as with the independence
case. Some final remarks in Section 6 ends the paper.

2. The Bivariate Long-Term Survival Model Based on the FGM Copula

In order to define a copula we first suppose that Cφ is a joint survival function
with density function cφ on [0, 1]2 for φ ∈ R. Then, let (T1, T2) denote the paired
failure times, Spopj and fpopj denote, respectively, the marginal long-term survival
functions and the marginal long-term density function of Tj , j = 1, 2. Consider
(T1, T2) comes from the Cφ copula for some φ then the joint survival and density
function of (T1, T2) are given by

Spop(t1, t2) = Cφ(Spop1(t1), Spop2(t2)), t1, t2 > 0, (1)

and

fpop(t1, t2) = cφ(Spop1(t1), Spop2(t2))fpop1(t1)fpop2(t2), t1, t2 > 0, (2)

respectively. Notice that the marginal distributions and the dependence structure
can be visualized separately and this dependence structure is represented by a
copula.

The marginal distributions of Tj , j = 1, 2, were assumed to be driven by
a mixture model (Maller and Zhou, 1996). The idea is to enable modeling a
proportion of long-term survivors. Mixture models for long-term survivors have
been widely used for fitting data where some individuals may never suffer the
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cause of failure under study (Maller and Zhou, 1996). In this type of modeling,
it is assumed that, due to some unobserved prognostic factors, a certain fraction
pj of the population is immune to the cause of failure under study or a long-term
survivor. The survivor function for the entire population can be written as

Spopj (tj) = pj + (1− pj)S0 (tj) , (3)

j = 1, 2, where S0 (tj) denotes the survival function for the non-cured group in the
population. The long-term survivors cannot be identified but we can infer their
presence in a data set if many of the largest times are censored. Common choices
for S0 (tj) are the Gompertz, Exponential and Weibull distributions. Yamaguchi
(1992) considered the generalized log-gamma distribution for the cure rate in the
context of accelerated failure-time regression models. Peng, Dear and Denham
(1998) proposed a generalized F mixture model for the cure rate, which includes
the most popular survival models as particular cases. Perdoná and Louzada-Neto
(2011) proposed a general failure rate model which accommodates comprehensive
families of cure rate models as particular cases.

Following Conway (1983), considering the Farlie-Gumbel-Morgenstern distri-
bution, hereafter FGM copula, we have the copula distribution function given
as

Cφ(u, v) = uv[1 + φ(1− u)(1− v)], (4)

where 0 ≤ u, v ≤ 1 and −1 ≤ φ ≤ 1. For φ > 0 we have evidence for positive
dependence between u and v. For φ < 0 we have evidence for negative dependence
between u and v.

Consider (T1, T2) comes from the FMG copula (4) then the joint long-term
survival of (T1, T2) is given by

Spop(t1, t2) = Spop1(t1)Spop2(t2)(1 + φ(1− Spop1(t1))(1− Spop2(t2))), (5)

where φ parameter measures the intensity of the dependence between the life-
times. Observe that when φ = 0, Spop(t1, t2) = Spop1(t1)Spop2(t2), leading to the
conclusion that the random variables T1 and T2 are independent.

3. Inference

For inference, we adopt a full Bayesian approach. The likelihood function,
prior distributions for the parameters in the model, details of the MCMC algo-
rithm and the model comparison are presented below.

Let (Ti1, Ti2) denote the i -th bivariate lifetime and (Ci1, Ci2) the censored
bivariate lifetime, for i = 1, · · · , n. Suppose that (Ti1, Ti2) and (Ci1, Ci2) are
independent. For each individual i observed quantities are represented by the
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random variables tij = min(Tij , Cij) and δij = I(tij = Tij), which denotes a
censorship indicator, j = 1, 2.

Let Spop(t1|γ1) and Spop(t2|γ1) be the survival functions of Ti1 and Ti2, respec-
tively, where γ1 and γ2 are parameter vectors of q1 and q2 elements associated
to each one of the marginal distributions.

Considering the bivariate survival function Spop(t1, t2|φ,γ1,γ2) given in (5),
the contribution of the i -th individual for the log-likelihood of θ = (φ,γ1,γ2) is
given by

`i(θ) = δi1δi2 log

(
∂2Spop(t1, t2|θ)

∂ti1∂ti2

)
+ δi1(1− δi2) log

(
−∂Spop(t1, t2|θ)

∂ti1

)
(6)

+δi2(1− δi1) log

(
−∂Spop(t1, t2|θ)

∂ti2

)
+ (1− δi1)(1− δi2) logSpop(t1, t2|θ).

3.1 Prior and Posterior Densities

The use of the Bayesian method besides being an alternative statistical ap-
proach, it allows the incorporation of previous knowledge of the parameters
through an informative prior distribution. When there is not such previous knowl-
edge one may consider a non-informative prior structure. For instance, in order
to carry out a Bayesian inference procedure for the bivariate survival model of
giving in (5), consider as in Section 2, that the parametric distribution family of
the marginal lifetimes T1 and T2 are known and indexed by the parameter vectors,
γ1 and γ2, respectively. In order to guarantee proper posteriors, we adopt proper
priors with known hyper-parameters. Thus, we consider a prior distribution of
θ = (φ,γ1,γ2) given by

π(θ) ∝ (1− φ)r1−1(1 + φ)r2−1
2∏
j=1

π(γj). (7)

(7) implies that (1−φ)/2 follows a Beta(r1, r2) distribution, π(γj) is the prior
distribution of γj and that γ1, γ2 and φ are mutually independent. Besides,
φ ∈ (−1, 1).

Combining (7) with the likelihood function, L(θ) = exp(
∑n

i=1 `i(θ)), where
`i(θ) is given in (6), we straightforwardly obtain the joint posterior distribution
of θ, π(θ|D), where D is the observed dataset.

For parametric specification of the marginals it is possible to introduce covari-
ates in each one of the components γj , j = 1, 2. For simplicity and to avoid re-

strictions in the parametric space, we consider pj = exp(x>j βj)/(1 + exp(x>j βj)),
where βj is corresponding to the vector of unknown coefficients of order mj × 1,
associated to the covariates xj , j = 1, 2.
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3.2 Computation

In the Bayesian approach, the target distribution for inference is the posterior
of the parameters of interest. For this, we need to obtain the marginal posterior
densities of each parameter, which are obtained by integrating the joint posterior
density with respect to each parameter.

We point out that for any marginal distribution of T1 and T2 the joint posterior
distribution is not tractable analytically but Markov chain Monte Carlo (MCMC)
methods such as the Gibbs sampler, can be used to draw samples, from which
features of the marginal posterior distributions of interest can be inferred (Gilks,
Richardson and Spiegelhater, 1996). For the estimation procedure we consider
joint estimation where all the model parameters are estimated simultaneously in
the MCMC algorithm. The Gibbs sampler is an iterative procedure of a broad
class of methods generically named Markov Chain Monte Carlo (MCMC). Many
practical aspects of the MCMC methodology are described in Gelfand and Smith
(1990) and Gamerman and Lopes (2006). This method is applicable in situations
where one is not able to generate samples directly from the joint posterior density.
It however requires the full conditional densities for generating samples.

We assume Tj with a Weibull mixture distribution which survival distribution
is given by (3) with parameters αj and λj , and pj = exp(β0j+β1jx)/(1+exp(β0j+
β1jx)), j = 1, 2. We choose the following independent prior distributions: βkj ∼
N(µkj , σ

2
kj), λj ∼ Gamma(aj , bj) and αj ∼ Gamma(cj , dj), where k = 0, 1 and

j = 1, 2.
Combining the likelihood function (6) and the prior distribution (7), we can

obtain the joint posterior density of all unobservables which is not tractable
analytically but MCMC methods such as the Gibbs samples, can be used to
draw samples, from which features of marginal posterior distributions of interest
can be inferred. The full conditional posterior densities for each parameter is
given by

π(φ|D, θ(−φ)) ∝ (1− φ)r1−1(1 + φ)r2−1
( n∏
i=1

∆i

)
,

π(β0j |D, θ(−β0j)) ∝
( n∏
i=1

f δipopj

(
1 + eβ0j+β1jxi

)−(1−δji)
∆i

)
e
−1

2σ2
0j

(β2
0j−2µ0jβ0j)

,

π(β1j |D, θ(−β1j)) ∝
( n∏
i=1

f δipopj

(
1 + eβ0j+β1jxi

)−(1−δji)
∆i

)
e
−1

2σ2
1j

(β2
1j−2µ1jβ1j)

,

π(λj |D, θ(−λj)) ∝
( n∏
i=1

f δipopj

(
1− pji

)(1−δji)
4i

)
λ
n+aj−(1+

n∑
i=1

δji)

j

×e
−λj
[
bj+

n∑
i=1

t
αj
ji (1−δji)

]
,
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and

π(αj |D, θ(−αj)) ∝
( n∏
i=1

f δipopj

(
1− pji

)(1−δji)
4i t

(αj−1)(1−δji)
ji

)
α
cj−1
j

×e
−
[
djαj+

n∑
i=1

λjt
αj
ji (1−δji)

]
,

for j = 1, 2 with D = (t1, t2,d1,d2,x), fpopj = −S′popj(tji),

∆i = ν(1−δ1)(1−δ2)
1i

νδ1δ22i νδ1(1−δ2)
3i

νδ2(1−δ1)
4i

,

ν1i = 1 + φ

2∏
j=1

(1− Spopj(tji)),

ν2i = 1 + φ
(

1 +
2∏
j=1

(1− 2Spopj(tji))
)
,

ν3i = 1 + φ
(

1− 2Spop1(tji)− Spop2(tji) + 2
2∏
j=1

Spopj(tji)
)
,

and

ν4i = 1 + φ
(

1− Spop1(tji)− 2Spop2(tji) + 2
2∏
j=1

Spopj(tji)
)
.

The conditional densities above do not belong to any known parametric den-
sity family. In order to generate our samples we then implement an Metropolis-
Hasting algorithm within Gibbs iterations (Chib and Greenberg, 1995). The
simulations were performed using the OpenBUGS software (Spiegelhalter et al.,
2007). OpenBUGS codes are available by mailing to one of the authors.

3.3 Model Comparison Criteria

In the literature, there are various methodologies which intend to analyze the
suitability of a distribution, as well as selecting the best fit among a collection
of distributions. In this paper we shall inspect some of the Bayesian model
selection criteria; namely, the deviance information criterion (DIC) proposed by
Spiegelhalter et al. (2002), the expected Akaike information criterion (EAIC)
by Brooks (2002), and the expected Bayesian (or Schwarz) information criterion
(EBIC) by Carlin and Louis (2001) was used. These criteria are based on the
posterior mean of the deviance, E{D(θ)}, which is also a measure of fit and can
be approximated from the MCMC output by

Dbar =
1

V

V∑
v=1

D(θv),



518 Francisco et al.

where the index v indicates the v-th realization of a total of V realizations and

D(θ) = −2

n∑
i=1

log(g(t1i, t2i|θ)),

where g(·) is a likelihood function given by

g(t1i, t2i|θ) =



fpop1(t1i)fpop2(t2i)(1 + φ(1− 2Spop1(t1i))(1− 2Spop2(t2i))),
if δ1i = 1 and δ2i = 1,

fpop1(t1i)Spop2(t2i)(1 + φ(1− 2Spop1(t1i))(1− Spop2(t2i))),
if δ1i = 1 and δ2i = 0,

Spop1(t1i)fpop2(t2i)(1 + φ(1− Spop1(t1i))(1− 2Spop2(t2i))),
if δ1i = 0 and δ2i = 1,

Spop1(t1i)Spop2(t2i)(1 + φ(1− Spop1(t1i))(1− Spop2(t2i))),
if δ1i = 0 and δ2i = 0,

for i = 1, · · · , n, where fpopj(·) and Spopj(·), j = 1, 2, are Weibull mixture density
function and Weibull mixture survival function, respectively. The EAIC, EBIC
and DIC criteria can be calculated using the MCMC output by means of ÊAIC =
Dbar + 2q, ÊBIC = Dbar + q log(n) and D̂IC = Dbar + ρ̂D = 2Dbar − Dhat,
respectively, where q is the number of parameters in the model and ρD is the
effective number of parameters, defined as E{D(θ)}−D{E(θ)}, where D{E(θ)}
is the deviance evaluated at the expected values of the posterior distributions,
which can be estimated as

Dhat = D

(
1

V

V∑
v=1

φ(v),
1

V

V∑
v=1

α
(v)
1 ,

1

V

V∑
v=1

α
(v)
2 ,

1

V

V∑
v=1

λ
(v)
1 ,

1

V

V∑
v=1

λ
(v)
2 ,

1

V

V∑
v=1

β1
(v),

1

V

V∑
v=1

β2
(v)

)
.

Comparing alternative models, the preferred model is the one with the small-
est criteria values.

Another criteria which is one of the most used in applied works is derived from
the conditional predictive ordinate (CPO) statistics. For a detailed discussion on
the CPO statistics and its applications to model selection, see Gelfand, Dey
and Chang (1992). Let D the full data and D(−i) denote the data with the
i -th observation deleted. We denote the posterior density of θ given D(−i) by
π(θ|D(−i)), for i = 1, · · · , n. For the i -th observation, the CPOi (Chen, Ibrahim
and Sinha, 2001) can be written as

CPOi =

∫
Θ
g(t1i, t2i|θ)π(θ|D(−i))dθ, i = 1, · · · , n.
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For the proposed model a closed form of the CPOi is not available. However, a
Monte Carlos estimate of CPOi can be obtained by using a single MCMC sample
from the posterior distribution π(θ|D). Let θ1, θ2, · · · , θQ be a sample of size Q
of π(θ|D) after the burn-in. A Monte Carlo approximation of CPOi (Chen, Shao
and Ibrahim, 2000) is given by

ĈPOi =

1

q

Q∑
q=1

1

g(t1i, t2i|θq)


−1

.

A summary statistics of the CPOi’s is B =
∑n

i=1 log(ĈPO). The larger is the
value of B, the better is the fit of the model.

4. Bayesian Case Influence Diagnostics

The best known perturbation schemes are based on case deletion (Cook and
Weisberg, 1982), in which the effects are studied instead of completely removing
cases from the analysis. This reasoning shall form the basis for our Bayesian
global influence methodology. Then, it will be possible to determine which sub-
jects might be influential for the analysis. In order to investigate if some of
the observations are influential for the analysis, we considered a Bayesian case
influence diagnostic procedure based on the Kullback-Leibler (K-L) divergence
between P and P(−i), denoted by K(P, P(−i)), where P denotes the posterior
distribution of θ for the full data, and P(−i) denotes the posterior distribution of
θ dropping the i -th observation. Specifically,

K(P, P(−i)) =

∫
π(θ|D) log

[
π(θ|D)

π(θ|D(−i))

]
dθ. (8)

The K(P, P(−i)) measures the effect of deleting of i -th observation from the
full data on the joint posterior distribution of θ. As pointed by Peng and Dey
(1995) and Weiss (1996), it may be difficult for a practitioner to judge the cutoff
point of the divergence measure so as to determine whether a small subset of
observations is influential or not. In this context, we will use the proposal given
by Peng and Dey (1995) and Weiss (1996) by considering the following. Consider
a biased coin, which has success probability p. Then the divergence between the
biased and an unbiased coin is

K(P, P(−i)) = K(f0, f1) =

∫
− log

(
f0(x)

f1(x)

)
f1(x)dx, (9)

where f0(x) = px(1−p)1−x and f1(x) = 0.5, x = 0, 1. Now if K(f0, f1) = dK-L(p)
then it can be easily checked that dK-L, satisfies the following equation

dK-L(p) = − log[4p(1− p)]
2

. (10)
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It is not difficult to see that dK-L increases as p moves away from 0.5. In
addition, dK-L(p) is symmetric about p = 0.5 and dK-L achieves its minimum at
p = 0.5. In this point, dK-L(0.5) = 0 and f0 = f1. Therefore, if we consider
p > 0.80 (or p ≤ 0.20) as a strong bias in a coin, then dK-L(0.80) = 0.223. Then,
this equation implies that i -th case is considered influential when K(P, P(−i)) >
0.223.

Similarly, the calibration value of K(P, P(−i)) for the i -th case can be obtained
by solving the equation K(P, P(−i)) = − log[4pi(1−pi)]/2 for pi. After some alge-

braic manipulation it can be shown that pi = {1 +
√

1− exp[−2K(P, P(−i))]}/2.

This equation implies that 0.5 ≤ pi ≤ 1. That is, if pi > 0.8 then the i -th case is
considered influential.

For our case it can be shown that (8) can be expressed as a posterior expec-
tation

K(P, P(−i)) = logEθ|D{[g(t1i, t2i|θ)]−1}+ Eθ|D{log[g(t1i, t2i|θ)]} (11)

= − log(CPOi) + Eθ|D{log[g(t1i, t2i|θ)]},

where Eθ|D(·) denotes the expectation with respect to the joint posterior π(θ|D).
Thus (11) can be estimated by sampling from the posterior distribution of θ via
MCMC methods. Let θ1, θ2, · · · , θQ be a sample of size Q of π(θ|D). Then, a
Monte Carlo estimate of K(P, P(−i)) is given by

̂K(P, P(−i)) = − log(ĈPOi) +
1

Q

Q∑
q=1

log[g(t1i, t2i|θq)]. (12)

5. Application

In this section, results from simulation studies and a real data example are
presented in order to illustrate the performance of the proposed methodology.

5.1 Artificial Data

In this section we consider an artificial sample generated according to (5),
assuming that the observed individual lifetime Tj has a Weibull distribution with
parameters αj and λj with probability density function given by

f(tj) = αjλjt
αj−1
j exp

{
−λjt

αj
j

}
, j = 1, 2. (13)

The artificial bivariate data (Ti1, Ti2), i = 1, · · · , n, was generated assuming
n = 160 according to the following steps: First we generated

Ti1 = (−log(1− ui1)/λ1)1/α1 ,
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where ui1 ∼ U(0, 1). Next Ti2 was generated using a random variable ui2 ∼
U(0, 1) and the solution of the nonlinear equation, wi+φ(2u1i−1)(w2

i −wi)−ui2 =

0, considering Ti2 = (−log(1− wi)/λ2)1/α2 . The covariates xi were generated
from a Bernoulli distribution with parameter 0.5. For each lifetime tj , for each
covariate level, x (0 or 1), we have a proportion of long-term survivals. We fixed
the pkj values, representing the cure rate for the level k for the lifetime j, for
k = 0, 1 and j = 1, 2. For each covariate level from each generated lifetime tj
we fixed a cutoff point t∗kj , which was chosen so that the higher times represent
the amount of pkj% of long-term survivals. The following values were considered:
p01 = 0.5, p11 = 0.1, p02 = 0.3, p12 = 0.2, α1 = 2, α2 = 1.5, λ1 = 0.5, λ2 = 0.1
and φ = 0.6.

For sake of illustration we also compare our FGM bivariate copula model
with some bivariate survival models induced by some well known copula models,
namely, Positive Stable Frailty (PSF), Clayton and Frank copulas (Hougaard
(1986), Clayton (1978) and Frank (1979)). The joint survival function of the
PSF model is given by (Hougaard, 1986),

Spop(t1, t2) = ((− ln(Spop1(t1)))
1
φ + (− ln(Spop2(t2)))

1
φ )φ, φ ∈ (0, 1]. (14)

When φ→ 1, we obtain Spop(t1, t2) = Spop(t1)Spop(t2).
The joint survival function induced by the Clayton copula is given by,

Spop(t1, t2) =
(
Spop1(t1)−φ + Spop2(t2)−φ − 1

)−1/φ
, φ ∈ <+. (15)

When φ→ 0, we obtain Spop(t1, t2) = Spop1(t1)Spop2(t2). While, the joint survival
function induced by the Frank copula is given by,

Spop(t1, t2) = logφ

(
1 +

(φSpop1(t1) − 1)(φSpop2(t2) − 1)

φ− 1

)
, φ ∈ (0, 1). (16)

When φ→ 1, we obtain Spop(t1, t2) = Spop1(t1)Spop2(t2). For more details on the
PSF, Clayton and Frank copulas interested readers can refer to Nelsen (2006).

The following independent priors were considered to perform the Gibbs sam-
pler: αj ∼ Gamma(1, 0.001), λj ∼ Gamma(1, 0.001), βkj ∼ N(0, 103), k = 0, 1,
j = 1, 2. For parameter of PSF model we assume φ ∼ Beta(1, 1), for Clayton
copula φ ∼ Gamma(1, 0.001), for Frank copula φ ∼ Beta(1, 1) and for FGM
copula that 1

2(1 − φ) ∼ Beta(1, 1), such choices guarantee that φ ∈ (−1, 1) and
ensure non-informativeness. For each generated data set we simulate two chain
of size 50, 000 for each parameter, disregarding the first 10, 000 iterations to elim-
inate the effect of the initial values and to avoid autocorrelation problems, we
consider a spacing of size 20, obtaining a effective sample of size 4, 000 upon
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which the posterior inference is based on. For each sample the posterior mean of
the parameter and the EAIC, EBIC, DIC and B are recorded.

The simulations were performed using the OpenBUGS software (Spiegelhalter
et al., 2007). The Bayes estimates were based on posterior samples recorded ev-
ery 20-th iteration from 50, 000 Gibbs samples after a burn-in of 10, 000 samples.
The MCMC convergence was monitored according to the methods recommended
by Cowless and Carlim (1996) (CODA package). The number of iterations is con-
sidered sufficient for the approximate convergence since in all cases the Gelman-
Rubin diagnostic is very close to 1.

Table 1 presents the summary for the FGM bivariate long-term survival model
parameters. Table 2 presents the Bayesian criteria for the FGM, PSF, Frank and
Clayton models. The FGM model outperforms is better when compared to the
other models in all considered criteria.

Table 1: Simulated data. Posterior mean, standard deviation (SD) and HPD
(95%) interval for the FGM bivariate long-term survival model parameters

Parameter Mean SD HPD (95%)

Time 1 α1 2.087 0.178 (1.745; 2.457)
λ1 0.674 0.078 (0.528; 0.837)
β01 -0.427 0.301 (-1.055; 0.115)
β11 -2.056 0.550 (-3.161; -1.031)

Time 2 α2 1.716 0.163 (1.406; 2.044)
λ2 0.108 0.024 (0.067; 0.159)
β02 -1.133 0.347 (-1.86; -0.538)
β12 -0.563 0.484 (-1.541; 0.362)

Copula φ 0.668 0.204 (0.230; 0.977)

Table 2: Simulated data. Bayesian criteria

Model
Bayesian criteria

EAIC EBIC DIC B

FGM 939.650 967.326 930.400 -465.243

PSF 947.184 974.860 937.300 -469.120

Frank 941.447 969.124 932.400 -466.336

Clayton 940.140 967.8161 931.100 -465.642

In Table 1, the 95% HPD intervals for φ are large. In order to verify what
conditions are needed to get narrower intervals we performed a simulation study in
which we vary the φ parameter values and the sample size n, with φ = 0.2, 0.6, 0.8
and n = 100, 200, 300, 400, 500. The other parameters were fixed the same values
as in Subsection 5.1: p01 = 0.5, p11 = 0.1, p02 = 0.3, p12 = 0.2, α1 = 2, α2 = 1.5,
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λ1 = 0.5 and λ2 = 0.1. For each set up 1,000 generated samples were considered,
from which we fitted our modeling and retrieve the amplitude of the 95% HPD
interval for φ. The results of this study were condensed in Table 3, where we can
observe that the amplitude 95% HPD interval becomes narrower with the sample
size. This fact is more evident for large values of φ.

Table 3: Amplitude of the 95% HPD interval for parameter φ

n
φ

0.2 0.6 0.8

100 0.789 0.725 0.739

200 0.717 0.663 0.675

300 0.637 0.567 0.583

400 0.521 0.465 0.449

500 0.482 0.438 0.416

600 0.363 0.383 0.278

5.2 Influence of Outlying Observations

One of our main goals in this study is to show the need for robust models to
deal with the presence of outliers in the data. In order to do so, we use the same
sample previously simulated. We selected cases 5, 35, 95 (both observed lifetimes)
and 142 (lifetime 1 is observed and lifetime 2 is censored) for perturbation. The
perturbation scheme were structured as following. To create influential observa-
tion artificially in the dataset, we choose one, two or three of these selected cases.
For each case we perturbed one or both lifetimes as follows t̃i = ti + 5St, i = 1, 2,
where St is the standard deviations of the ti’s. For case 5 we perturbed only the
lifetime t1 and for case 35, the lifetime t2, and for cases 95 and 142, both lifetimes
were perturbed.

The MCMC computations were made in a similar fashion to those in the last
section and further to monitor the convergence of the Gibbs samples we also used
the methods recommended by Cowless and Carlim (1996). Table 4 shows that the
posterior inferences are sensitive to the perturbation of the selected case(s). In
Table 4, Dataset (a) denotes the original simulated data set with no perturbation,
and Datasets (b) to (g) denote datasets with perturbed cases.

Table 5 displays the fit of different cases of the perturbed data set. We can
observe that the original simulated data (Dataset (a)) had the best fit.

Now we consider the sample from the posterior distributions of the parame-
ters of the model based on the FGM bivariate survival model to compute the K-L
divergence and calibration of this divergence, as describe in Section 4. The re-
sults in Table 6 show, before perturbation (Dataset (a)), that all the selected cases
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Table 4: Simulated data. Posterior means and standard deviations (SD) for the
FGM bivariate survival model parameters according to different perturbation
schemes

Data Perturbed

Parameters

names case α1 λ1 β01 β11 α2 λ2 β02 β21 φ
Mean Mean Mean Mean Mean Mean Mean Mean Mean
SD SD SD SD SD SD SD SD SD

a None 2.087 0.674 -0.427 -2.056 1.716 0.108 -1.133 -0.563 0.668
0.178 0.078 0.301 0.550 0.163 0.024 0.347 0.484 0.204

b 5 1.815 0.606 -0.684 -2.475 1.713 0.108 -1.139 -0.546 0.648
0.156 0.081 0.397 1.202 0.165 0.024 0.383 0.487 0.216

c 35 2.084 0.666 -0.451 -2.049 1.402 0.131 -1.567 -1.000 0.664
0.186 0.082 0.298 0.637 0.124 0.025 0.579 1.084 0.199

d 95 1.761 0.589 -0.755 -2.602 1.361 0.131 -1.876 -1.108 0.714
0.143 0.078 0.413 1.177 0.121 0.024 0.899 1.395 0.194

e {5, 35} 1.827 0.604 -0.662 -2.287 1.384 0.130 -1.753 -1.030 0.624
0.154 0.077 0.355 0.819 0.128 0.025 0.719 1.303 0.219

f {35,95} 1.753 0.586 -0.744 -2.728 1.257 0.134 -2.409 -1.611 0.667
0.143 0.080 0.399 1.238 0.098 0.025 1.204 1.666 0.202

g {5,35,95} 1.657 0.545 -0.916 -3.237 1.258 0.132 -2.615 -1.549 0.628
0.127 0.075 0.496 1.514 0.102 0.024 1.302 1.777 0.219

h 142 1.710 0.600 -0.719 -2.622 1.738 0.105 -1.112 -0.503 0.690
0.135 0.078 0.378 1.250 0.155 0.023 0.316 0.441 0.206

i {95,142} 1.599 0.540 -1.012 -3.453 1.408 0.132 -1.538 -0.566 0.722
0.117 0.072 0.521 1.495 0.115 0.025 0.530 0.688 0.192

Table 5: Simulated data. Bayesian criteria for each perturbed version fitting
bivariate model based on the FGM bivariate survival model parameters accord-
ing to different perturbation schemes

Data names
Bayesian criteria

EAIC EBIC DIC B
a 939.650 967.326 930.400 -465.243
b 955.960 983.637 946.500 -474.896
c 958.307 985.983 947.800 -476.402
d 974.706 1002.382 962.600 -485.541
e 974.323 1002.000 963.000 -485.467
f 984.981 1012.658 973.000 -489.721
g 994.623 1022.299 982.600 -494.208
h 958.374 986.051 948.200 -475.905
i 986.177 1013.854 975.700 -491.553

are not influential with small K(P, P(−i)) and related calibration close to 0.622.
However, after perturbations (Datasets (b) to (g)), the K(P, P(−i)) increases and
the corresponding calibrations become larger than 0.80, indicating those cases
are influential.

In the Figure 1 shows the K(P, P(−i)) for the FGM bivariate survival model.
Clearly we can see that K(P, P(−i)) performed well to identifying influential
case(s), providing larger K(P, P(−i)) when compared to the other cases.
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Table 6: Simulated data. Case influence diagnostics

Data names Case number K(P, P(−i)) Calibration

a 5 0.013 0.581
35 0.031 0.622
95 0.021 0.602
142 0.030 0.621

b 5 1.629 0.990
c 35 2.324 0.998
d 95 3.759 1.000
e 5 1.514 0.988

35 2.162 0.997
f 35 0.526 0.903

95 2.551 0.998
g 5 0.439 0.882

35 0.593 0.917
95 1.799 0.993

h 142 2.006 0.995
i 95 3.465 1.000

142 0.845 0.951

5.3 HIV Dataset

Opportunistic infections are important causes of morbidity and mortality in
people with Human immunodeficiency virus (HIV), and deaths and hospitaliza-
tions are the major events resulting from these infections. In addition, oppor-
tunistic infections are important indicators of the impact of interventions in the
HIV-infected population (Candiani et al., 2007). Moreover, HIV-infected persons
are subject to numerous infectious and neoplastic complications related to their
disease. In general, apart from infections acquired in living outside the hospital
when hospitalized, the HIV-infected individual is also more susceptible to hospi-
tal infections by his possible poor health condition. Some of these risk factors for
nosocomial infections, particularly those of nosocomial bloodstream are the use
of invasive devices, antibiotic exposure and length of stay in hospital (Tumbarello
et al., 1998).

Overall, the general health condition of the patient admitted to the service as
well as the occurrence of an infection acquired during hospitalization, can further
extend his length of stay in hospital. In addition, the HIV-infected patient may
require one or more hospital admissions and length of stay in this environment
can contribute significantly to serious complications, which may lead to death of
the patient. Moreover, the timing of a given hospitalization may somehow depend
on the time the patient been hospitalized previously. So it seems reasonable to
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Figure 1: Artificial data. Index plot of K(P, P(−i)) from fitting a bivariate
survival model based on FGM copula

consider a long-term modeling to assess two times of hospitalization with a cop-
ulating dependence structure according to the variable gender, in order to see
whether gender impacts the times of hospitalization.

In this context, we consider here 135 patients older than 18 years of age with
HIV seen at the Serviço de Doenças Infecciosas e Parasitárias (DIP), Universi-
dade Federal do Triângulo Mineiro (UFTM), Brazil, diagnosed with HIV between
January 1996 and December 1998. The times of first (T1) and second (T2) hos-
pitalization (in days) were modeled according to the gender of the patient. The
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HIV data is an unpublished dataset and it was not statistically analyzed by other
works in the best of our knowledge.

We then applied the proposed methodology to the HIV dataset. Figure 2
shows the scatter plot between (T1) and (T2), the index plot of K(P, P(−i)) from
fitting the bivariate survival model based on FGM copula and the Kaplan-Meier
curves for the variables T1 and T2, dichotomized by the gender, along with the fit
of the FGM Copula model with Weibull mixture marginals to real data, which
will be presented later. Focusing only on the empirical curves, we clearly observe
the presence of long-term survivals, since some of the curves stabilize above zero,
leading to an indicative of long-term survivals.
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Figure 2: Real data. Scatter plot of T1 vs T2 (upper left panel). Index plot
of K(P, P(−i)) from fitting the bivariate survival model based on FGM copula
(upper right panel). Kaplan-Meier curves for the variables T1 (lower left panel)
and T2 (lower right panel) along with the fit of the FGM Copula model with
Weibull mixture marginal

The data was analyzed though our approach by adopting the model in (5)
with Weibull mixture marginals as in (13). The Bayes estimates were based
on posterior samples recorded every 20-th iteration from 50, 000 Gibbs samples
after a burn-in of 10, 000 samples. We choose the following independent prior
distributions: αj ∼ Gamma(1, 0.001), λj ∼ Gamma(1, 0.001), βkj ∼ N(0, 103),
k = 0, 1, j = 1, 2 and (1 − φ)/2 ∼ Beta(1, 1), such choices guarantee that φ ∈
(−1, 1) and ensure non-informativeness. To monitor the convergence of the Gibbs
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samples we uses the methods recommended by Cowless and Carlim (1996).

In Table 7 we report posterior summaries for the parameters of the FGM
long-term bivariate survival copula model considering Weibull marginal mixture
distribution. Following Gelman, Carlin and Rubin (2006), we have checked the
sensitivity of the routine use for gamma prior on the variance components and
found that results are fairly robust under different priors. We also checked the sen-
sitivity of the analysis for the variance component parameters for various choices
of prior parameters by changing only on a parameter at a time and keeping all
other parameters constant at their default values. The posterior summaries of
the parameters do not present remarkable difference and not impair the results
in Table 7. The HPD confidence intervals for β11 and β12 containing zero speaks
against the gender impact in the times of hospitalization. These results are cor-
roborated by the similarity between fitted bivariate survival FGM copula model
curves under the Kaplan-Meier curves for the variables T1 and T2, dichotomized
by the gender presented in Figure 2.

Table 7: HIV data. Summary results from the posterior distribution, mean
and standard deviation (SD) for parameter under model based on FGM copula

Parameter Mean SD HPD (95%)

Time 1 α1 1.332 0.127 (1.088; 1.569)
λ1 0.040 0.012 (0.020; 0.069)
β01 -2.084 0.972 (-4.615; -0.697)
β11 0.658 0.970 (-1.138; 2.999)

Time 2 α2 1.457 0.140 (1.194; 1.747)
λ2 0.040 0.013 (0.019; 0.070)
β02 -0.695 0.448 (-1.692; 0.081)
β12 -0.759 0.514 (-1.717; 0.301)

Copula φ 0.559 0.259 (0.021; 0.966)

Although we have reanalyzed the data of HIV considering only the parameters
that were significant (in Table 7), the amplitude of 95% HPD interval for φ showed
no significant change. This fact was already expected, since the parameter φ is
estimated regardless of the choice of the marginal. As pointed out by Romeo,
Tanaka and Pedroso de Lima (2006), since the choice of the marginal distributions
does not depend on a particular choice of a copula, it makes sense to consider
the estimation of the marginals and the dependence parameters separately.

Table 8 presents the K-L divergences and related calibrations for the five
observations which present the largest calibration values. Clearly we observe the
procedure identifies the lifetime 61 as a possible influential case (corresponding
calibration greater than 0.8). The result is corroborated by the K(P, P(−i)) for
the FGM bivariate survival model shown in upper right panel of Figure 2.
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Table 8: Real data. Bayesian case influence diagnostic

K(P, P(−i)) Calibration

18 0.175 0.772
22 0.146 0.752
34 0.143 0.749
61 0.379 0.864
110 0.166 0.766

Besides the proposed FGM bivariate survival model, we also fitted to the data
the bivariate survival models induced by a PSF, Clayton and Frank copulas, as
presented in Section 5.1. Table 9 presents the model comparison criteria discussed
in Section 3 for comparing the FGM long-term bivariate survival copula model
with Weibull mixture marginal distribution with its particular independence case,
as well as the long-term bivariate survival models induced by the PSF, Frank and
Clayton copulas considering Weibull mixture distributions as marginals. Based
on all Bayesian criteria, there is positive evidence in favor The FGM modeling,
indicating that the FGM long-term bivariate survival copula model can be seen
as a competitor to the well known bivariate survival models induced by the PSF,
Frank and Clayton copulas commonly used in literature for fitting bivariate life
time data.

Table 9: Real data. Bayesian criteria

EAIC EBIC DIC B

FGM 1319.258 1345.406 1311.000 -655.054
PSF 1319.812 1345.959 1311.000 -655.541

Frank 1322.804 1348.951 1316.000 -657.745
Clayton 1325.070 1351.217 1317.000 -659.217

Independence 1328.210 1351.450 1324.000 -662.220

6. Some Final Remarks

In this paper, we present the FGM long-term bivariate survival copula model.
Parameter estimation is based on a Bayesian approach via MCMC. We propose
a Bayesian case influence diagnostic based on the Kullback-Leibler divergence in
order to study the sensitivity of the Bayesian estimates under perturbations in
the model/data. Finally, we illustrate our approach with an artificial and a real
dataset.

In the two-step approach, the marginal parameters are estimated first and
then, the copula parameter is estimated in a second step. This approach provides
consistent, but not efficient estimators using a frequentist approach. However,
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from the Bayesian perspective, one can estimate all the model parameters simul-
taneously in the MCMC algorithm such that the assumption of independence in
the first step is avoided. We however considered a two-step estimation method.
We omitted the results since they are similar to those obtained by considering
the joint estimation approach.
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Candiani, T. M. S., Pinto, J., Araújo Cardoso, C. A., Carvalho, I. R., Dias, A.
C. M., Carneiro, M. and Goulart, E. A. (2007). Impact of highly active
antiretroviral therapy (HAART) on the incidence of opportunistic infec-
tions, hospitalizations and mortality among children and adolescents living
with HIV/AIDS in Belo Horizonte, Minas Gerais State, Brazil. Caderno de
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Universidade Federal do Triângulo Mineiro
Praç Manoel Terra 330 - Centro
CEP: 38015-050 - Uberaba-MG, Brazil
pereira gilberto@yahoo.com.br


