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Abstract: The development and application of computational data mining
techniques in financial fraud detection and business failure prediction has
become a popular cross-disciplinary research area in recent times involv-
ing financial economists, forensic accountants and computational modellers.
Some of the computational techniques popularly used in the context of fi-
nancial fraud detection and business failure prediction can also be effectively
applied in the detection of fraudulent insurance claims and therefore, can be
of immense practical value to the insurance industry. We provide a compara-
tive analysis of prediction performance of a battery of data mining techniques
using real-life automotive insurance fraud data. While the data we have used
in our paper is US-based, the computational techniques we have tested can
be adapted and generally applied to detect similar insurance frauds in other
countries as well where an organized automotive insurance industry exists.
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1. Introduction

The annual cost of settlements from fraudulent insurance claims in Australia
was estimated at $1.4 billion dollars in 1997, which added $70 to the annual
premium of each insurance policy (Baldock, 1997). These figures are likely to be
much higher today as fraud is a growing problem (Morley et al., 2006). While dif-
ficult to quantify, the cost is estimated to have increased more than 450% for UK
banking card fraud from 1996 to 2007 and also for worldwide telecommunications
fraud from 1999 to 2009 (Hand, 2010). The Insurance Council of Australia (ICA)
and all major Australian insurance companies' are no doubt aware of the cost of
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fraud and through their websites are spreading this information to the public to
make sure insurance fraud is not viewed as a victimless crime. Online services
as well as the ICA’s 24-hour telephone hotline are also provided for reporting
suspected insurance fraud, almost always with an option for anonymity.

Wilson (2009) has stated that automotive insurance fraud is a global prob-
lem. He also outlines that it is costly to automotive insurance businesses, their
customers and other general consumers. Insurance businesses have costs from in-
vestigating potential fraud and opportunity costs of additional funds that legally
must be set aside for all claims. Automotive insurance customers will pay higher
premiums and have longer waits for legitimate settlements. This includes more
expensive insurance for other businesses, which will in turn be passed on to gen-
eral consumers through higher prices of goods and services. Thus, the cost to
society is much higher than the settlements from fraudulent claims. For exam-
ple, while fraudulent claim settlements in Australia were estimated at 1.4 billion
dollars annually, the total cost to society was estimated to be as high as 9 billion
dollars (Baldock, 1997). It should also be noted that insurance companies have
further motivations as they can achieve a competitive advantage over rivals by
being better at detecting insurance fraud.

Automated statistical techniques for insurance fraud are designed to assist
detection of fraudulent claims in a time efficient manner. If successful, this would
reduce the costs of fraud outlined in the previous paragraph. However, statistical
techniques are inferior to humans at adapting to totally new situations, which do
occur in the constantly changing world of insurance fraud, for example, once a
specific type of fraud is detected and preventative measures put in place a new
type of fraud usually emerges. There is also a risk that those who commit fraud
will learn how to conceal their behaviour over time if statistical models are too
rigid and predictable. Therefore, statistical techniques should complement, not
replace, existing human specialists (Belhadji et al., 2000).

The remainder of this paper is structured as follows. Issues with statisti-
cal models for detecting automotive insurance fraud are discussed before a brief
look at other research in the field. The main techniques presented in this paper,
namely decision trees and survival analysis, are then explained and analysed for
automotive insurance fraud detection. This is followed by an explanation of the
data and methodology used in a study that empirically assesses these techniques.
Following this, we also have included a separate section where we have demon-
strated an application of neural networks to a bootstrapped data set based on the
same automotive insurance fraud data that has been used in the other four com-
putational techniques; to provide a more exhaustive coverage of our comparative
analysis of the prediction performances of alternative computational approaches.
After that, concluding remarks on the problem as well as the methods are noted
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to round off the paper.

2. Automotive Insurance Fraud Detection
2.1 Some Issues for Statistical Models in the Field

It is important for a fraud detection model to minimise both types of misclas-
sification errors.

e Missing fraudulent claims (Type I error — Failed Alarm) is costly in terms
of the claim settlement and moreover the success of the fraud might en-
courage more fraudulent claims. Baldock (1997) estimated the proportion
of fraudulent insurance claims to be between 3% and 10% and even higher
for automotive insurance, but the number of claims rejected as fraudulent
was less than 1%;

e Falsely classifying legitimate claims as fraudulent (Type II error — False
Alarm) produces wasted costs of investigation plus a potential loss in busi-
ness reputation resulting from slow and poor handling of legitimate claims.

Baldock (1997) found that that the proportion of insurance claims rejected
for fraudulence was between 0.1% and 0.75%. This situation, often referred to
as “class imbalance” or “needle in a haystack”, presents challenges for statistical
models. For example, a simple approach that assumes all claims are legitimate
will be more than 99% accurate because of the low rate of fraudulence, but such
a model is useless in practice. Bolton and Hand (2002) demonstrates this point
with the following example. If 0.1% of claims are fraudulent, then even with
a model of 99% accuracy in classifying fraudulent and legitimate claims then
only 9 out of 100 claims classified as fraudulent would indeed be so, which is
large amount of costly Type II error. Overall, the class imbalance and unequal
misclassification costs is important information that must be considered when
developing and testing models.

To maintain initial accuracy levels, models implemented in industry will need
to be continually updated with new information. This is a challenge as there is
a continual flow of new claims. Fan et al. (2004) presents a method involving
decision trees to handle streaming data that is shown to have good results on a
credit card fraud example. In addition to accuracy, automated techniques need
to produce classifications in a timely fashion to ensure usefulness.

Another issue relevant to developing fraud detection models is the difficulty
in obtaining real-world data for legal and competitive reasons (Wilson, 2009;
Phau et al., 2005). And even given data mostly shows deemed rather than true
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2. This means that models are

being trained to repeat mistakes made in the past. There is also a flow-on bias
when comparing existing and new methods in that the existing methods have an
advantage since they contributed to the actual classification of the real-world test
data.

fraudulence, as that is not known in many cases

3. Introduction to the Research Field

Phua et al. (2005) provide an excellent review of automated fraud detection
methods that includes references to other review papers such as Bolton and Hand
(2002) who review a subset of fraud detection fields. Phua et al. (2005) reveal
that the majority of fraud literature is credit card fraud, while automotive insur-
ance fraud came in fourth place. Automotive insurance fraud can be categorised
further into different types of fraud schemes as discussed in Wilson (2009) and
Phua et al. (2005).

There are many research approaches to the area of automotive insurance fraud
and they overlap, for example, research into new statistical techniques can reveal
new explanatory variables as being important discriminators. The research into
automotive insurance fraud more recently includes

e Incorporating other theories into statistical techniques, such as optimal au-
diting theory into a regression model (Dionne et al., 2009);

e Studying the process taken by companies to optimise existing detection
methods, such as Morley et al. (2006) who found analysing industry prac-
tices can improve the implementation of statistical detection methods;

e Discerning what explanatory variables are important, such as Ganon (2006)
who refutes previous suggestions that insurance fraud is more likely to be
committed by “average offenders” rather than professionals (Phua et al.,
2005) with findings that previous indiscretions such as excessive gambling,
license suspension, and tax evasion are significant classifiers in a model for
automobile fraud detection;

e Using unsupervised statistical approaches, such as principal component
analysis (Brockett et al., 2002);

e Using supervised statistical techniques such as logit analysis (Wilson, 2009)
and more complex techniques as presented in this paper to classify claims.

2This is more of a problem for supervised, rather than unsupervised, statistical techniques.
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Additionally, Viaene et al. (2002) studied fraudulence in 1399 personal in-
jury protection claims against automotive insurance policies in Massachusetts and
found that Seed.5 decision trees to be a poor classifier that was outperformed by
other techniques such as logit analysis. Phau et al. (2004) attained accuracy im-
provements by combining See4.5, back-propagation artificial neural networks and
a naive Bayes model when applied to more than 15,000 cases of automotive in-
surance fraud. Performance assessment was conducted with consideration for the
different misclassification costs by using a practical cost minimisation approach,
and it is interesting to note that See4.5 was a very important predictor as part
of the hybrid model. Very recently, Bhowmick (2011) attempted a comparison of
DT-based methods with naive Bayesian classification in detecting auto insurance
fraud (which is in essence similar to but albeit narrower in scope to what we have
done in this work).

Given that a breakthrough will probably not come from applying a technique
to one dataset (Hand, 2010), there is much research still to be done on using
decision trees in automotive insurance fraud. While See4.5 performed poorly in
one study on one type of automotive insurance, it performed well in a larger
study with other techniques. Furthermore, its successor Seeb is yet to be used
in automotive insurance fraud, which has found success in detecting eBay auc-
tion fraud (Chau and Faloutsos, 2005) and is generally preferred over See4.5 in
healthcare fraud (Li et al., 2008). Other decision trees such as CART are also
yet to be applied to automotive insurance fraud, but have outperformed Seeb in
other areas such as predicting business failure (Gepp and Kumar, 2008).

Survival analysis techniques that have been used extensively in analysis of
medical treatments and shown promise in predicting business failure, are new to
automotive insurance fraud and other areas of fraud detection. Insurance fraud
studies have been criticised for a lack of time information in data (Phau et al.,
2005), such as time-dependent explanatory variables or time-series data, which
is interesting as one of the features of survival analysis models is the ability to
exploit temporal information.

4. Introduction to, and Analysis of, the Various Techniques

4.1 Survival Analysis

Survival analysis (SA), also known as duration analysis, techniques analyse
the time until a certain event. They have been widely and successfully used
in biomedical sciences (Kaliaperumal, 2005), but are relatively new to business
applications. While other techniques model insurance fraud detection as a classi-
fication problem, SA models it as a timeline using functions such as the common
survival or hazard function. The survival function S(¢) indicates the probability
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that an individual survives until time ¢. When applied to insurance fraud detec-
tion, an individual could be a policy owner and survival represents no fraudulent
claims being made (or alternatively an individual could be modelled as a policy).
Contrastingly, the hazard function h(¢) indicates the instantaneous rate of death
or fraudulence at a certain time t.

There are many different SA techniques including regression-based models
that are well suited for making predictions. These regression-based models define
relationships between one of the descriptor functions (usually survival or hazard)
and a set of explanatory variables. The most prominent is the semi-parametric
proportional hazards (PH) model defined by Cox (1972), but there are alterna-
tives such as fully-parametric PH models, accelerated failure time (AFT) models
and Aalen’s additive model. Cox’s PH model is defined as follows:

h(t) = ho(t)eX Be. (1)

e hy(t) is the non-parametric baseline hazards function that describes the
change in the hazard function over time. The flexibility from not having
to specify the hazard distribution is one of the key reasons for the model’s
popularity; and,

o ¢X'B+¢ describes how the hazard function relates to the explanatory vari-

ables (X)) and is the parametric part of the model, where 3 is a vector of

variable coefficients and ¢ a constant estimated by a method very similar
to the maximum likelihood method as described by Kalbfleisch and Pren-

tice (1980). Once statistical significance has been established the size of a

variable’s coefficient does indicate the magnitude of its impact.

The survival function is then computed as follows:
S(t) =e AWM, (2)

Here H(t) is the cumulative hazard function from time 0 to ¢. The propor-
tional hazards assumption of PH models, such as the Cox model, requires that a
unit change in an explanatory variable has a constant multiplicative effect over
time. For example, a PH model might show that a policy change doubles the
hazard rate of a fraudulent claim, but it could not handle a situation where a
policy change doubles the hazard rate initially but has a lesser effect in sub-
sequent years if a fraudulent claim is not made within a year. However, the
proportional hazards assumption, which is also not required for AFT or Aalen’s
models, can be alleviated to a large extent by extending the Cox model to include
time-dependent explanatory variables. This can be done with modern statistical
packages using a variety of functions to relate explanatory variables and time.
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Analysis of SA

SA models can incorporate information from time series (or longitudinal)
insurance fraud data, while handling delayed entry and early exit from studies.
For example, SA models could consider the number of claims made against a
policy each year in addition to the average number of claims per year. This
means that SA is different from discriminant analysis (DA) and logit analysis
(LA) that assume the process of fraud remains stable over time, which is usually
not the case (Hand, 2010).

Unlike cross-sectional models, one SA model could make predictions of fraud-
ulent claims both at the time and before the claims are made. Furthermore, both
the easily interpretable survival function and hazard function are available for
analysis over time. SA models are also able to model time-dependent explana-
tory variables. This can allow the coefficients of explanatory variables to change
over time, which has been found to happen such as in business failure prediction
(Laitinen and Luoma, 1991).

SA techniques, particularly the Cox model, can suffer from multicollinear-
ity problems, but these can be easily avoided by using standard forward and
backward variable selection procedures. They can also handle differing misclas-
sification costs in the same way as DA and LA. All three techniques can produce
a probability of fraudulence, which is then compared with a cut-off value ranging
between 0 and 1 to determine whether the classification is fraudulent or legiti-
mate. Usually this cut-off value is set to 0.5 representing equal misclassification
costs, but this value can be changed to represent varying misclassification costs.

Once a policy owner makes a fraudulent claim they are considered to be
“dead” by the SA model, which will mean they will have to be re-entered into
the model using delayed entry if their policy is not cancelled. This might cause
implementation hassles. There are also suggestions that SA models are sensitive
to changes in the training dataset, so it is important that they are tested on
numerous datasets before drawing any general conclusions.

4.2 Decision Trees

Decision trees (DTs), also known as classification trees, are binary trees® that
assign data to predefined groups. The tree is built by a recursive process from
top to bottom using splitting rules. These rules are usually univariate, but the
same variable can be used in zero, one or many splitting rules. When applied
to classification problems terminal nodes represent classification groups. Figure
1 shows a simple hypothetical DT for automotive insurance fraud detection that
classifies claims as either legitimate or fraudulent.

3A binary tree means that each non-terminal node leads to exactly two other nodes.
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Figure 1: Example DT where “Urban” indicates a rural (0) or urban (1) based
policy

Similar to supervised learning with neural networks, DT building algorithms
are used to manage the creation of DTs by:

e Choosing the best discriminatory splitting rule at each non-terminal node;
and,

e Managing the complexity (number of terminal nodes) of the DT. Most al-
gorithms first create a complex DT and then ‘prune’ the DT to the desired
complexity, which involves replacing multiple node sub-trees with single
terminal nodes. Pre-pruning is also possible at the initial creation phase,
which creates a simpler tree more efficiently with the risk of reduced accu-
racy.

Different building algorithms can be used to generate different DTs that often
have a large variation in classification and prediction accuracy. Such algorithms
include Classification and Regression Trees (CART) (Breiman et al., 1984), Quin-
lan’s Iterative Dichotomiser 3 (ID3) (Quinlan, 1986) and an extension of it called
Seeb, a newer version of See4.5 (Quinlan, 1993).

Analysis of DTs

The major advantages of DTs are that they are non-parametric, can easily
model interactions between explanatory variables and are simple to interpret and
develop into automated techniques. Unlike parametric DA and LA models, DTs
do not need to consider transforming variables as they do not make assumptions
about underlying distributions.

The interpretation of DT is simple with univariate splitting rules and an easy
to understand graphical representation. This allows for simple identification of
significant variables by comparing their proximity to the root node, where the
root node contains the most significant variable*. Thus, DTs only identify the

“If a variable appears in more than one splitting rule then its significance is measured by the
smallest distance to the root node.
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relative significance of variables, unlike DA and LA that quantify each variable’s
significance and impact.

DTs still have the predictive power of a multivariate approach as there are
sequences of univariate rules that lead to each classification. Furthermore, these
sequences can naturally model interactions between variables without including
interaction terms as is required with both DA and LA. Although linear com-
binations of variables could be used in splitting rules the potentially increased
predictive power is not commonly thought to outweigh the increase in complexity
and difficulty of interpretation.

DTs can handle missing values and qualitative data (Joos et al., 1998). They
can also take different misclassification costs for Type I and Type II Error as
inputs, which can then be incorporated into the DT building process at all stages.
This is preferable to adjusting the cut-off values after model generation as is done
with DA, LA and SA. Arbitrary assignment of cut-off values has been a criticism
of DA and LA.

Derrig and Francis (2008) did a fairly exhaustive comparison of DT-based
data-mining methods relevant to binomial classification problems. A major dis-
advantage of DTs is that they do not output the probability of classification as a
legitimate or fraudulent claim and consequently no distinction is made between
claims in the same classification. DTs building algorithms have also been criti-
cised for not reviewing previous rules when determining future rules (Zopounidis
and Dimitras, 1998), but there is no evidence to suggest that this will reduce
classification or prediction accuracy ability. Interestingly, DTs also suffer from
the same weakness as SA techniques in that their construction is sensitive to
small changes in the training dataset (Sudjianto et al., 2010).

4.3 Hybrid Models

Gepp and Kumar (2008) also trialled hybrid DA and LA models that incor-
porated Cox survival function outputs, but found them to be unsuitable for use
on a business failure dataset.

DTs have been used with other comparable techniques, especially domain-
specific expert techniques, for forecasting. The primary field of application has
been medical diagnostics, for example, Zeli¢ et al. (1997) diagnosed sports injures
using DT's in conjunction with Bayesian rule-based classification. More recently,
Kumar et al. (2009) applied a combination of rule-based and ID3 DT case-based
reasoning for domain-independent decision support for the intensive care unit of
a hospital. Medical cases are often scenario-specific so techniques that combine
rule and case based reasoning perform well and interestingly DTs can be used to
construct libraries of these cases (Nilsson and Sollenborn, 2004). Chrysler (2005)
observed that DTs can also be an efficient method for a knowledge engineer to
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use for developing rule-based expert techniques. Bala et al. (1995) combined
genetic algorithms and ID3 DT's for robust pattern detection and Braaten (1996)
showed that cluster analysis can be combined with DTs.

The predictive power of DTs can be further ‘boosted’ by applying the pre-
dictive function iteratively in a series and recombining the output with nodal
weighting in order to minimise the forecast errors. Commercial software that can
perform DT boosting are available, such as DTREG (http://www.dtreg.com/).
Studies using boosted DT include Chan, Fan and Prodromidis (1999) who used
a variant of the AdaBoost DT boosting algorithm for detecting fraudulent credit
card transactions and Sudjianto (2010) demonstrating that AdaBoost and Log-
itBoost can outperform standard DT's in money laundering detection.

Data Analysis and Methodology

This study is designed to empirically assess the suitability of a SA and DT
technique new to the area of automotive insurance fraud. Wilson’s (2009) study
that used LA to detect potential automotive insurance fraud will be extended to
include a SA Cox regression and Seeb DT, as well as a traditional DA model for
comparison purposes.

Dataset

The dataset used for this research is an unaltered copy of the data used by
Wilson (2009), which can be referred to for more details. Table 1 shows the main
properties of this dataset.

Methodology

DA, LA, Cox and Seeb models were developed based on the dataset just de-
scribed. The in-sample classification ability of all four models was then compared.
As a result of their frequency and diverse success, DA and LA serve as excellent
benchmarking techniques for the Cox and See5 models. As done by Wilson (2009)
the models will not be tested on hold out data because of the small dataset.

Developing complex models reduces their implementation efficiency, interpre-
tation and often its accuracy on new data as the principle of parsimony suggests.
Hand (2010) mentions two fraud detection studies that select only a small subset
of possible explanatory variables in their chosen model. Although this paper anal-
yses only in-sample classification, it includes only statistically significant variables
in final models to assist with future extension of the methodology to include tests
on hold-out data. Moreover, the settings used to develop these models are based
upon research into business failure prediction that yielded promising empirical
results (Gepp, Kumar and Bhattacharya, 2009; Gepp and Kumar, 2008).

PASW Statistics 18 (formerly SPSS) was used to develop the DA, LA and
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Table 1: The variables used in the computational techniques to identify the
fraudulent claims

Property Value

Source Initial claim of loss obtained from the Claims Investigation Unit
(CIU) of an unnamed US insurance company

Claim type Stolen and subsequently recovered vehicles

Sample Size 98 total: 49 fraudulent and 49 legitimate

Dependent Variable:

Fraudulent (1) Claim denied because it was deemed fraudulent by the CIU
Legitimate (0) Claims for which there was no involvement of the CIU

Explanatory Variables (6):

YRS Number of years the claimant has been a policy owner

CLMS Total number of claims the claimant has filed with the insurance
company

CLMSYEAR Claims per year calculated as CLMS/YRS where the minimum

value of YRS is set to 1 to avoid division by zero

JUA Boolean variable indicating whether (1) or not (0) the claim is
being made on a Joint Underwriting Association policy, which
indicates it was placed by the State

NEWBUS Boolean variable indicating whether (1) or not (0) the claim is
being made on a new (less than 1 year old) policy

DATEGAP Time difference (in months) between insurance claim and the
the police report being filed

SA-Cox models with the cut-off values for classification set to 50% indicating
equal misclassification costs. Furthermore, all these models were developed us-
ing forward stepwise selection methods with the significance level boundaries for
variable entry and variable removal set to 5% and 10% respectively.

The Cox model also requires a time (until fraud or legitimate claim) variable
that had to be created — all values were set to the same (0) time as the data is
cross-sectional. The fact that the data is cross-sectional also means that the PH
assumption of the Cox model can’t be violated.

The See5 model was developed using Release 2.07° with the following settings.

e The default setting of equal misclassification costs;

e The ‘minimum cases per leaf node’ option was set to 2 to prevent pre-
pruning; and,

e The ‘pruning CF’ option was set to 5%. This controls tree complexity
whereby larger values result in less pruning. ‘Pruning CF’ is expressed as a
percentage similar to the significance level for the other models, such that
each sub-tree is not pruned if it is significant at the ‘pruning CF’ level.

5 Available from http://www.rulequest.com
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Results

The resulting LA model as presented by Wilson (2009), which is significant
at the 1% level, is:

Logit Y = —1.135+ 0.671CLMSYEAR + 1.60INEWBUS. (3)
Here, probability that the i¢th claim is fraudulent is obtained as follows:
P(claim; is fraudulent) = e209% Y /(1 4 gLogit Yy, (4)
The DA model is also significant at the 1% level with the following equation:
Discriminant Score = —0.717 + 2.341INEWBUS. (5)

Converting the DA score into a probability of fraud is complex compared with
LA, but in this case it is analogous to 80.2% chance of fraud if it is a new policy
otherwise a 35.1% chance of fraud. Note that if the significance level for variable
entry were raised slightly to 5.4% then CLMSYEAR would be included in the
model.

The Cox model resulted in the following survival analysis function, which can
be interpreted in this case as the probability of a claim being legitimate.

70.55460'777 NEWBUS

St=0)=e (6)
So,
P(claim, is fraudulent) = 1 — S;(t = 0). (7)

The model is significant at the 1% level with a significance figure of 0.7%. In-
terestingly, none of the remaining explanatory variables warrant inclusion in the
model even at the 20% significance level.

The Seeb model includes only the NEWBUS variable as summarised in Table
2 below, remembering that it does not output probability of group classification.
It is also interesting to note that the same tree is generated even if the ‘pruning
CF’ level is raised to 20%.

Table 2: Seeb output (the model chose to include only one of the six explanatory
variables)

NEWBUS input variable See5 DT Classification

0: not a new policy 0: legitimate

1: new policy 1: fraudulent
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In this case, the resulting DA, SA and Seeb models are all equivalent with
their classifications as represented by the table above. The in-sample classification
accuracy of these models is summarised in Table 3 below:

Table 3: In-sample classification results of the DA, SA and See5 techniques
compared to logit

Predicted Classification

by DAT, SA and See5 by LA
Actual Legitimate Fraud Correct Legitimate Fraud Correct
Legitimate 43 6 88% 40 9 82%
Fraud 25 24 49% 20 29 59%
Overall 68.4% 70.4%

By increasing the significance level for variable entry to 5.4% and including the
CLMS variable in the DA model, the accuracy can be increased to 69.4%.

All the models have produced similar classification accuracy and are superior
to a 50% accurate naive approach of classifying all observations as fraudulent (or
legitimate). It is also clear that all the models are better detectors of legitimate,
rather than fraudulent, claims. LA is superior in classifying fraudulent claims as
well as having slightly superior classification accuracy, but the other models are
better at classifying legitimate claims.

Three cases follow that illustrate the use of the four models, which could be
undertaken by programming in a spreadsheet or standard computer language.
Note that the probabilities always differ between techniques, which indicate that
varying the misclassification costs in a larger study might result in significant
accuracy differences between the models.

Case 1: a claim for a policy holder who has an average of 1 claim per year
and does not represent a new policy. The model outputs are tabulated in Table
4 below:

Table 4: Case 1: classification predictions for each of the four computational
techniques

Model Probability that claim is fraudulent Predicted Classification

LA 38.6% Legitimate
DA 35.1% Legitimate
SA 42.5% Legitimate
Seeb N/A Legitimate

Case 2: a claim for a policy holder who has an average of 1 claim per year
and does represent a new policy. The model outputs are tabulated in Table 5
below:



550 Adrian Gepp, J. Holton Wilson, Kuldeep Kumar and Sukanto Bhattacharya

Table 5: Case 2: classification predictions for each of the four computational
techniques

Model Probability that claim is fraudulent Predicted Classification

LA 75.7% Fraudulent
DA 64.9% Fraudulent
SA 70.0% Fraudulent
Seeb N/A Fraudulent

Case 3: a claim for a policy holder who has an average of 2 claims per year
and does not represent a new policy. The model outputs are tabulated in Table
6 below:

Table 6: Case 3: classification predictions for each of the four computational
techniques

Model Probability that claim is fraudulent Predicted Classification

LA 55.2% Fraudulent
DA 35.1% Legitimate
SA 42.5% Legitimate
Seeb N/A Legitimate

Artificial Neural Networks (ANNs)

We have, as a means of providing an even wider coverage of our comparative
analysis, also developed, trained and run a back-propagation ANN model hav-
ing the simplest possible architecture with only one layer of hidden neurons. Of
course, more involved architectural variations are possible as is also the prospect
of developing an evolutionarily optimal network configuration (using e.g., poly-
ploid Genetic Algorithm (pGA) optimizer) but we felt that this is best left to a
separate research project altogether.

ANNs have sometimes been used in the past in conjunction with other ana-
lytical tools — for example; Ohno-machado et al. (1995) developed an ANN that
estimates survival time more accurately than traditional methods. DTs have also
been used in conjunction with ANNs to alleviate some of its black-box nature
(Abbass et al., 1999) and extract decision rules without any assumptions about
the internal structure (Schmitz et al., 1999). However applications of ANNs as a
stand-alone tool in insurance fraud detection haven’t been extensively tried be-
fore and so the literature is rather thin on this topic. ANNs however have been
proposed before as a potent financial fraud detection tool both with respect to
financial statement frauds as well as asset misappropriation frauds (Busta and
Weinberg, 1998; Bhattacharya, Xu and Kumar, 2011) as they have been observed
to fare better in terms of prediction performance on large, complex data sets as
compared to linear discriminant analysis and logistic regression models.
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A major bottleneck with training and applying ANNs is the size of the data
set. ANNs typically work best with large data sets (e.g., data sets having one
thousand or more data points) since the data set needs to be partitioned into
training, test and blind subsets with the training subset typically consuming at
least two-thirds of the entire data set for best learning results (especially in com-
plex data sets). Since our original data set had only 98 data points, we proceeded
to bootstrap the data set using a Monte Carlo methodology via probability mass
functions derived from the actual data distributions of the fraudulent (i.e. “17)
and legitimate (i.e. “0”) cases. Following the standard Monte Carlo approach,
the original data set was bootstrapped to a thousand data points with seven hun-
dred data points in the training set and the remaining in the test set. Effectively
this is equivalent to a random sampling with replacement from the original data
set with the sample size set at 100 and then repeat the process 10 times (7 times
to get the training set and 3 times to get the test set).

Our back-propagation ANN architecture is schematically represented in Fig-
ure 2 below:

Figure 2: A fully connected, back-propagation, three-layer ANN having a single
hidden layer

As stated, our ANN had 3 layers, an input layer consisting of the six input
variables, a single hidden layer with three neurons and a single-neuron output
layer to record the output as a binary digit (i.e. “1” if the claim is fraudulent
and “0” if the claim is legitimate). We used the Neuralyst v1.4™ software (that
basically runs as a Microsoft Excel™ add-in) to develop our ANN model as
configured above. All network learning parameters were retained as per default
Neuralyst settings. A hyperbolic transfer function with a floating point calculator
was used as it was observed to perform better in terms of the root-mean-square
error in the training set as compared to the sigmoid, Gaussian and step functions.
Results obtained (after 10,000 training epochs) are presented in Tables 7 and 8.
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Tables 7 and 8: ANN training & test set predictions for the bootstrapped data
(1000 data points)

Network Run Results (Training set) Network Run Results (Training set)
0.144803 Root-Mean-Square Error 0.575412 Root-Mean-Square Error

700 Number of Data Items 300 Number of Data Items
619 Number Right 169 Number Right
81 Number Wrong 131 Number Wrong
88% Percent Right 56% Percent Right
12% Percent Wrong 44% Percent Wrong

The results show that the ANN was able to detect the underlying pattern in
the training data set well enough to get 88% correct predictions (i.e. where a
fraudulent claim was correctly categorized “1” and a legitimate claim was cor-
rectly categorized “0”). However the test set predictions were not that impressive
with the ANN correctly predicting only 169 (i.e. about 56%) of the 300 test data
points. Nevertheless even our simple ANN model shows enough promise to be
perhaps a good supplementary technique in conjunction with DT or SA. Whether
ANNSs can be satisfactory “stand alone” techniques remains to be further tested;
with other architectures than simply back-propagation.

Re-running the SA and See5 models with a larger (bootstrapped) data
set to confirm validity

As the original data set of fraudulent vis-a-vis legitimate claims is of a rela-
tively small size with only ninety eight data points, there can be questions about
the validity of the SA and DT prediction results we had obtained earlier. To
further confirm the validity of these models, we used a larger dataset (consisting
of exactly the same bootstrapped test set of three hundred data points as was
used in the ANN model). SA and See5 prediction results with the augmented
data set are as follows:

Table 9: DT and SA model predictions with an augmented (bootstrapped)
data set (300 data points)

Seeb and SA model predictions

Actual Legitimate Fraud  Correct
Legitimate 134 15 90%

Fraud 76 75 50%

Overall 69.7%
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The above results show that both the SA and Seeb5 models performed well on
new test data without dropping from their training accuracy which corroborates
the evidence we got with the original data.

Concluding Discussion

All the LA, DA, SA and Seeb models included the NEWBUS variable, which
indicates it was the most important in discriminating between fraudulent and
legitimate claims. This is consistent with popular incentive strategies designed
to encourage policy owners to retain existing policies.

LA had slightly superior classification accuracy, but all four models performed
comparably with near 70% overall accuracy. These results support further testing
of Cox and Seeb models as automotive insurance classifiers, particularly as DT
and SA models are known for being sensitive to training datasets. Other tech-
niques can need to be tested, such as the hybrid models mentioned previously
along with other SA models and DT models, particularly CART that outper-
formed Seeb in predicting business failure.

Analysis on a much larger dataset is desirable. This would allow for hold-out
sample tests as indicated by Wilson (2009). These hold-out sample tests should
also have more realistic proportions of fraudulent/legitimate claims rather than
the synthetic even split in the data used here. Ideally this larger dataset would
also contain a large number of explanatory variables so the nature of fraudulent
claims can be better understood. Examples of useful explanatory variables to be
included are the number of policies held by a claimant, the regularity of policy
changes and details of the claimant’s criminal history. It would be advantageous
to also include claims referred to the CIU but not subsequently deemed fraudulent
as legitimate claims in the training dataset. The reason for this is if models
detected these claims before referral then money would be saved by reducing the
number of wasteful CIU investigations. Additionally, the use of time-series data
might help improve classification accuracy and enable the capabilities of a SA
model to be properly tested. The DT and SA approaches introduced in this paper
each offer their own advantages. DTs offer an easy to interpret and implement
non-parametric model that still has the power of a multivariate approach able
to model interactions between variables. Contrastingly, applying SA models in a
time-series analysis using both the hazard and survival functions has the potential
to reveal more information about automotive insurance fraud, for example, any
change in the probability of making a fraudulent claim as the years of policy
ownership increase could be useful when designing loyalty programs.

A simple back-propagation ANN model with a 6-3-1 architecture was also

trained and run to extend the coverage of our comparative performance analysis
of the different techniques. We presented the ANN results separate from the
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other four techniques because the ANN model used a bootstrapped data set as
ANNSs typically perform best with large data sets and our original data set had
only 98 data points. However the results show promise in terms of using ANNs
as a supplementary method. A larger data set would also make comparisons over
varying misclassification costs viable. In the absence of a large, accessible data
set of fraudulent automotive insurance claims, we resorted to augmenting the
original set via bootstrapping to obtain a bigger data set necessary to effectively
train an ANN model. The test data set for the ANN model served as a ‘spin-off’
to re-test the Seeb and SA models and confirm their performance with larger data
sets.

To round off, it is unlikely that the field of automotive insurance fraud de-
tection will be advanced by finding that one statistical model that is superior in
all situations. However, as more studies are conducted using new data and new
techniques, understanding of the process of fraud and the ability to match sit-
uations with the most appropriate technique will improve. When implementing
statistical models to detect automotive insurance fraud it is important to consider
case-specific issues such as resource constraints and to retain human staff in the
process to benefit from their superior ability to handle the constant change in

the field.
Appendix

The original data set (Tables 10 and 11) used to run our numerical models is
provided hereunder as supplementary material for the benefit of future researchers
wishing to reproduce/improve on our obtained results.

Table 10: Original data set (identifiers removed) of fraudulent automotive in-
surance claims

Sorted data (fraud occurred):
yrsmemb date gap clms jua newbus clmsyear

0.21
0.25
0.33
0.33
0.35
0.40
0.53
0.59
0.60
0.63
0.67
0.76
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Table 10: (continued) Original data set (identifiers removed) of fraudulent
automotive insurance claims

Sorted data (fraud occurred):
yrsmemb date gap clms jua newbus clmsyear

13 0 0 1 0 0 0.77
14 0 0 2 0 0 0.78
15 0 0 2 0 0 1.00
16 0 0 2 0 0 1.00
17 1 0 2 0 0 1.00
18 1 0 2 0 0 1.00
19 1 0 2 0 0 1.00
20 1 0 2 0 0 1.00
21 1 0 2 0 0 1.00
22 1 0 2 0 0 1.00
23 2 1 3 0 0 1.00
24 2 1 3 0 0 1.00
25 2 1 3 0 0 1.00
26 2 1 3 0 1 1.00
27 3 1 3 0 1 1.00
28 3 1 3 0 1 1.00
29 4 1 3 0 1 1.00
30 4 1 3 0 1 1.00
31 4 1 3 0 1 1.11
32 5 1 4 0 1 1.25
33 ) 1 5 0 1 1.40
34 5 2 5) 0 1 1.40
35 5 2 5 0 1 1.50
36 5 2 6 0 1 1.61
37 8 2 6 0 1 1.75
38 8 2 7 0 1 2.00
39 9 2 7 0 1 2.00
40 12 3 9 0 1 2.00
41 14 3 9 0 1 2.00
42 17 3 9 1 1 2.00
43 17 4 10 1 1 2.25
44 18 5 10 1 1 3.00
45 26 7 14 1 1 3.00
46 31 7 24 1 1 3.00
47 32 9 25 1 1 3.00
48 33 10 25 1 1 3.00
49 33 52 53 1 1 3.00




556 Adrian Gepp, J. Holton Wilson, Kuldeep Kumar and Sukanto Bhattacharya

Table 11: Original data set (identifiers removed) of valid automotive insurance
claims (control set)

Sorted data (no fraud occured):
yrsmemb dategap clms jua newbus clmsyear

1 0 0 1 0 0 0.10
2 0 0 1 0 0 0.19
3 1 0 1 0 0 0.20
4 1 0 1 0 0 0.20
5) 1 0 1 0 0 0.22
6 1 0 1 0 0 0.23
7 1 0 1 0 0 0.26
8 1 0 1 0 0 0.27
9 1 0 1 0 0 0.27
10 2 0 1 0 0 0.31
11 2 0 1 0 0 0.33
12 2 0 1 0 0 0.33
13 2 0 1 0 0 0.33
14 3 0 1 0 0 0.34
15 3 0 2 0 0 0.40
16 3 0 2 0 0 0.40
17 3 0 2 0 0 0.46
18 4 0 2 0 0 0.48
19 4 0 2 0 0 0.50
20 5 0 2 0 0 0.50
21 5 0 3 0 0 0.56
22 5 0 3 0 0 0.60
23 5 0 4 0 0 0.67
24 5 0 4 0 0 0.73
25 6 1 5 0 0 0.73
26 9 1 5 0 0 0.73
27 9 1 6 0 0 0.75
28 10 1 6 0 0 0.76
29 11 1 6 0 0 0.81
30 11 1 6 0 0 0.85
31 11 1 6 0 0 0.88
32 11 1 6 0 0 0.97
33 13 1 7 0 0 0.97
34 15 1 8 0 0 1.00
35 17 1 8 0 0 1.00
36 17 1 8 0 0 1.00
37 22 1 9 0 0 1.00
38 23 1 9 0 0 1.00
39 23 1 120 0 1.00
40 25 1 14 0 0 1.00
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Table 11: (continued) Original data set (identifiers removed) of valid automo-
tive insurance claims (control set)

Sorted data (no fraud occured):
yrsmemb dategap clms jua newbus clmsyear

41 26 2 14 0 0 1.00
42 29 2 15 0 0 1.17
43 29 2 16 0 0 1.50
44 30 3 19 0 1 1.50
45 31 3 20 0 1 2.00
46 32 4 22 0 1 2.00
47 33 5 26 0 1 2.00
48 35 6 28 0 1 2.33
49 42 7 32 0 1 3.00
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