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Abstract: Missing data is a common problem in statistical analyses. To
make use of information in data with incomplete observation, missing values
can be imputed so that standard statistical methods can be used to analyze
the data. Variables with missing values are often categorical and the miss-
ing pattern may not be monotone. Currently, commonly used imputation
methods for data with a non-monotone missing pattern do not allow di-
rect inclusion of categorical variables. Categorical variables are converted to
numerical variables before imputation. For many applications, the imputed
numerical values for those categorical variables must then be converted back
to categorical values. However, this conversion introduces bias which can
seriously affect subsequent analyses. In this paper, we propose two direct
imputation methods for categorical variables with a non-monotone missing
pattern: the direct imputation approach incorporated with the expectation-
maximization algorithm and the direct imputation approach incorporated
with a new algorithm: the imputation-maximization algorithm. Simulation
studies show that both methods perform better than the method using vari-
able conversion. An application to real data is provided to compare the
direct imputation method and the method using variable conversion.

Key words: Bias, categorical variable, HIV, missing values, multiple impu-
tation.

1. Introduction

In many survey and observational data systems, some critical variables may
have missing values. These variables can be either numerical or categorical. For
example, some demographic variables are categorical and they are important
to identify population groups of interest. Although methods for handling or
imputing missing values for numerical variables has been extensively discussed in
the literature (e.g., Rubin, 1978; 1987; 1996), research on how to impute missing
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values in categorical variables is limited, particularly when the missing pattern
is not monotone. A dataset with multiple variables is said to have a monotone
missing pattern when variables in the dataset can be sorted in an order such that
when a variable is missing for an observation, then all subsequent variables are
missing for the observation.

There are many methods to handle data with a monotone missing pattern,
for example, the propensity score method (Rosenbaum and Rubin, 1983) and the
discriminant function method (Brand 1999, pp. 95-96). However, for data with
a non-monotone missing pattern, the only method that has been widely used is
the Markov Chain Monte Carlo (MCMC) method (Schafer, 1997) although other
methods are available, for example, the multiple imputation using chained equa-
tions (van Buuren and Oudshoorn, 1999). When the variables with missing values
are categorical, imputation of missing values has not been adequately addressed.
Schafer (1997) introduced a saturated multinomial model from a Bayesian per-
spective. Allison (2001) proposed a method using MCMC with each categorical
variable expressed by a group of dummy variables. During the imputation pro-
cess, the dummy variables are treated as numerical variables. After imputation,
the imputed numerical values for the dummy variables are converted back to
categorical values for the original categorical variables. Although the MCMC
method is unbiased under appropriate assumptions, the variable conversion in-
troduces bias (Horton et al., 2003, Ake, 2005, Song et al., 2010). In this paper, we
use the saturated multinomial model to impute data with a non-monotone miss-
ing pattern of categorical variables and compare the performance of this approach
with the one based on the MCMC method.

Our work was motivated by a missing data problem in the US national HIV
case surveillance system. The system collects many variables and most of them
are categorical. Among the categorical variables is the case’s HIV transmission
category, which summarizes the multiple risks that the individual may have taken
by selecting the one through which HIV was most likely to have been acquired.
Transmission category is an important variable that identifies the populations at
high risk of HIV infection. However, for a substantial proportion of the HIV cases
reported to the Centers for Disease Control and Prevention (CDC) risk factor
information is missing so their transmission category is unknown. The proportion
of HIV cases with unknown transmission category has been increasing in recent
years. In 1994, less than 20% of HIV cases were reported to the CDC without a
transmission category, while in 2007, the proportion increased to approximately
40% (Harrison et al., 2008). In addition, there are other numerical and categorical
variables with missing values in the HIV surveillance database and the missing
pattern of these variables is not monotone.

The data collected by the HIV surveillance system is the cornerstone for



Direct Imputation of Categorical Variables 467

monitoring and characterizing the epidemic and for planning and evaluating HIV-
related prevention and care programs at the local, state and national level in the
United States (CDC, 2010). Handling the missing data in this database is es-
sential to reducing or controlling the biases in all subsequent analyses. In this
paper, we introduce two imputation methods for categorical variables with a
non-monotone missing pattern. The two methods use multinomial distributions
to model categorical variables and impute missing values directly from multino-
mial distributions. Therefore, they reduce the bias introduced by the method
that converts variables from categorical to numerical before imputation and then
from numerical back to categorical after imputation. The proposed methods are
described in the next section. To compare the performance of the proposed meth-
ods and the method for numerical variables with variable conversions (the MCMC
method with variable conversion or simply the MCMC method), we conducted
a simulation study. The simulation study design and results are presented in
Section 3. We also applied one of the proposed imputation methods to the HIV
surveillance database, which has plenty of missing data, and compared results
with those derived from the MCMC method.

2. Imputation Methods

Let X = (X1, X2, · · · , Xr) denote the set of all the variables of interest,
where r is the total number of variables and all variables are categorical. For
an observation of X (called an observed case), say x, there are two possible
outcomes: no value is missing on any of the r variables (called a complete case
or observation) or at least one of the variables has a missing value (called an
incomplete case or observation). Let S be the set of all observed cases with or
without missing components, Sk the set of all observed complete cases, and Sm

the set of all observed incomplete cases. For an incomplete observation x in Sm,
we denote the set of covariates with known values byXk, and the set of covariates
with missing values by Xm. If Y is a subset of (X1, X2, · · · , Xr), we denote by
x(Y ) the set of values taken by the variables in Y . Also, we denote x(Xk) by
xk and x(Xm) by xm.

Without loss of generality, we use positive integers to represent the levels
of each variable and 0 for missing values. Thus, x(Y ) = 0 means that the
observation has missing values for all of the variables in Y . Our goal is to
substitute missing values in all incomplete observations with plausible values so
that we have data sets with complete information on every observation for further
statistical analyses.

Suppose that the joint probability distribution function PX(·) is known. For
an observation x in Sm, X = Xk ∪Xm. The probability distribution of Xm

conditional on Xk = xk is given by
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P(Xm|Xk)(Xm = xm|Xk = xk) =
Pr(Xm = xm,Xk = xk)∑

x:x(Xk)=xk
PX(x)

=
PX(xm,xk)∑

x:x(Xk)=xk
PX(x)

(1)

Our imputation method replaces the missing values of x(Xm) with random values
generated from the above conditional probability distribution, as follows. (1)
Estimate the joint probability distribution function PX(·) using all observed cases
with or without missing values. (2) Draw a random sample from the conditional
distribution for each observation with missing values. (3) Repeat (1) and (2)
to obtain multiple imputed values for each missing value. Note that the joint
probability distribution function from (1) is only an estimate. Multiple samples
from the same estimate will be correlated. Thus, one should not draw multiple
samples at step (2) to obtain multiple imputed values for each missing value.

The joint distribution PX of X is unknown. It has to be estimated from the
observed data. The distribution of X can be considered as multinomial. The
possible values of X are combinations of all possible values of all variables in
X. If the dataset has no missing values, then the maximum likelihood estimator
(MLE) for PX is the frequency distribution of the data. If the dataset contains
missing values and these values are missing not completely at random, then the
joint distribution PX of X cannot be estimated by only using data with com-
plete information on all variables. However, if missing values are missing not
completely at random but conditionally at random based on the observed data,
then we can use all observed data (including observations with missing values)
to estimate the joint distribution.

We consider data with a non-monotone missing pattern and missing values are
missing conditionally at random. We describe two iterative methods to estimate
the joint distribution. The first method is based on the expectation-maximization
(EM) algorithm (Dempster et al., 1977, Little and Rubin, 1987), and the second
method is based on an imputation-maximization (IM) algorithm described later
in this section. The EM algorithm requires that the data are organized in the
form of Table 1, where xi, i = 1, 2, · · · , n, are all possible values of X, and f(xi)
is the frequency of xi or the total number of cases with the value xi. The EM
algorithm is as follows:

Table 1: Data format

X Frequency
x 1 f (x 1)
x 2 f (x 2)
...

...
xn f (xn)
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1. Posit an initial estimate for the joint distribution PX(·). This can simply
be a uniform distribution, or estimated from the complete cases.

2. E-step: For an incomplete case with x = (xk,xm), estimate the probability
distribution of Xm conditional on Xk = xk by substituting the current
estimate of PX(·) into (1). Make a table in the form of Table 1, where
the X-column contains all combinations of levels of the variables of X
satisfying y(Xk) = xk and the frequencies are the respective estimated
conditional probabilities. This is equivalent to splitting the case into several
“fractional” cases. (Each row in the table represents a “fractional” case
since the frequency is a probability.)

3. M-step: Combine all fractional cases from the allocation of incomplete
cases in Step 2 with the original complete cases to form a new data set.
The new dataset has no missing values and is used to update the current
MLE of the joint distribution PX(·).

4. Repeat the E-step and M-step until there is no significant change in the
estimate of the joint distribution PX(·).

The EM algorithm allocates fractions of incomplete (or partially classified) cases
to form new data sets without missing values according to the estimated condi-
tional distribution. However, we can also randomly allocate the partially classified
cases to create a dataset for the next step. This is equivalent to filling in the miss-
ing values of an incomplete case by plausible values. So, instead of distributing
a case in Sm into multiple fractional cases in Step 3 of the EM algorithm, we
distribute the case as a whole into only one of the possible values of Xm based on
a draw from the conditional distribution determined by (1). This idea is similar
to the one used in imputation so we call it the Imputation-Maximization (IM)
algorithm.

Both algorithms will converge if the estimate of the joint distribution of X
computed from complete cases does not severely deviate from the true distribu-
tion. This is usually the case when there are a reasonable number of complete
cases. Further, it is easy to verify that the IM algorithm creates a Markov chain
(Schafer, 1997)

(X(1)
m ,θ(1)), (X(2)

m ,θ(2)), · · · ,
which converges to the conditional distribution of Xm given Xk, where θ is the
parameter vector of the joint distribution of X. Hence, the IM algorithm is
essentially a MCMC type of method.

An extreme case is that, for an incomplete observation x there is no complete
observation y with y(Xk) = xk, which implies that the set

{y : y(Xk) = xk and P̂X(y) 6= 0}
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is empty, where P̂X refers to any estimate of PX(·) that appears in the computing
process of the EM or IM algorithm. Consequently, the conditional probability
distribution of Xm given Xk = xk cannot be estimated from (1) in the iterative
process of the EM or IM algorithm. Therefore, this type of incomplete observa-
tion must be excluded from the computing process of the EM or IM algorithm
for estimating the joint probability distribution of X. Fortunately, in practice
such observations are rare when the number of covariates is small but the total
number of observations is not small. In such cases, we suggest using the follow-
ing approximation method to estimate the conditional probability distribution of
Xm given Xk = xk.

Let P̂X be an estimate of the joint probability distribution of X obtained by
the EM or IM algorithm. Let Y be the largest subset of Xk such that the set

{y : y(Y ) = xk(Y ) and P̂X(y) 6= 0}

is not empty. Then

P̂Y (Xm = xmi |Xk = xk) =

∑
y:y(Y )=xk(Y ) and y(Xk)=xmi

P̂X(y)∑
y:y(Y )=xk(Y ) P̂X(y)

is an approximation to the conditional probability of Xm = xmi given Xk = xk

and can be used for imputing missing values. If the largest subset Y is not
unique, then we estimate the conditional probability distribution of Xm given
Xk = xk by the average of the probability distributions P̂Y (·|Xk = xk) and use
this distribution to fill in the missing values.

3. Simulation Studies

We have proposed two direct imputation methods, one based on the EM al-
gorithm and the other based on the IM algorithm. To evaluate the performance
of the two methods, we conducted two simulation studies. The general design
of the simulation studies is as follows. Given the joint distribution of a set of
categorical variables, we simulate 1,000 random samples, each with 1,000 cases
from the given joint distribution. For each simulated random sample, a num-
ber of cases were selected. For each selected case, some variables’ values were
removed and 10 plausible values were imputed for each missing value using each
of the three imputation methods: the MCMC method with variable conversion
and the two proposed direct imputation methods. Ten datasets with complete
information were generated. Each data set was analyzed to estimate the joint and
marginal distributions of the given categorical variables. Finally, estimates for
each probability (p) from the 10 imputed data sets were combined by using the
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standard multiple imputation procedure. The following statistics were computed
from the 1,000 simulated random samples for each imputation method.

• the average of the estimates for p: p̂,

• the bias (average of (p̂− p)),

• the relative bias (r-bias, average of 100× (p̂− p)/p),

• the average length (AveLen) and the coverage rate (CR) of the 95% confi-
dence intervals.

The details of the two simulation studies are described in the next two subsections.

3.1 Simulation Study I: Single Variable with Missing Value

We first consider a simple missing data problem where there are only two
variables in the data set, both categorical, and only one can have missing values.
Call these two variables X and Y . See Table 2 for the joint and marginal prob-
ability distributions of X and Y . Suppose that the probability of missing Y is
0.35 if X = 1, 0.25 if X = 2, and 0.20 if X = 3. The missing value probabilities
and distribution of X and Y are chosen to match those of AIDS cases among
males with age ≥ 13 at AIDS diagnosis: X is the variable for race/ethnicity
groups: non-Hispanic Blacks, Hispanics, and non-Hispanic Whites, distributed
as 45%, 20% and 35%, respectively. Y represents the variable for transmission
categories: men who have sex with men (MSM) only, injection drug use (IDU)
only, MSM and IDU, and high-risk heterosexual contact. The percentages for
each of the four groups are 65%, 10%, 5% and 20% for non-Hispanic Blacks,
65%, 15%, 5% and 15% for Hispanics, and 85%, 5%, 5% and 5% for non-Hispanic
Whites, respectively.

Table 2: Joint and marginal distributions of X and Y in Simulation Study I

Y

X 1 2 3 4 Total

1 0.2925 0.0450 0.0225 0.0900 0.45
2 0.1300 0.0300 0.0100 0.0300 0.20
3 0.2975 0.0175 0.0175 0.0175 0.35

Total 0.7200 0.0925 0.0500 0.1375 1.00

3.2 Simulation Study II: Two Variables with Missing Value
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Now, we consider a more complex missing data problem where several vari-
ables in the data could have missing values and the missing pattern is non-
monotone. Suppose that there are three categorical variables: X,Y, and Z with
the joint probability distribution specified in Table 3. We note that the variables
Y and Z result from splitting the variable Y in the previous simulation study.
We assume that Y and Z could have missing values, but X does not have any
missing values. Similar to simulation study I, the probability of missing either Y
or Z depends on X with the probability 0.35 when X = 1, 0.25 when X = 2, and
0.20 when X = 3. Among those with either Y or Z missing, the probability of
missing Y only is 0.50, missing Z only is 0.30, and missing both Y and Z is 0.20.

Table 3: Joint and marginal distributions of X, Y , and Z in Simulation Study II

Y = 1 Y = 2

X Z = 1 Z = 2 Z = 1 Z = 2 Total

1 0.2925 0.0450 0.0225 0.0900 0.45
2 0.1300 0.0300 0.0100 0.0300 0.20
3 0.2975 0.0175 0.0175 0.0175 0.35

Total 0.7200 0.0925 0.0500 0.1375 1.00

P (Y = 1) = 0.8125 P (Y = 2) = 0.1875
P (Z = 1) = 0.7700 P (Z = 2) = 0.2300

3.3 Simulation Results

In the analysis of the simulated data, we first ignored the incomplete or par-
tially classified cases and used only the complete cases to estimate the joint and
marginal distributions under each simulation setting as this approach is com-
mon practice. We then applied the MCMC method and the two direct impu-
tation methods to impute missing values and used them to estimate the joint
and marginal distributions. Results for missing values in a single variable are
presented in Tables 4 (joint distribution) and 5 (marginal distribution). Results
for missing values in two variables with a non-monotone missing pattern are
presented in Tables 6 (joint distribution) and 7 (marginal distribution).

In both simulation settings, the estimates based on complete cases only are
seriously biased. This is because missing value in both settings is not completely
at random. This bias was removed or reduced by imputing values for data with
incomplete information.

The biases associated with the complete case analysis are significantly re-
duced, but not completely eliminated by the MCMC method (Tables 4-7). The
remaining bias is caused by the conversion from the imputed numerical values
back to the categorical values. In Simulation Study I, the largest relative bias is



Direct Imputation of Categorical Variables 473

Table 4: Simulation Study I: Estimated joint probability distribution of (X,Y )

X Y p p̂ bias r-bias AveLen CR

No imputation (using only the complete cases)

1 1 0.2925 0.2636 -0.0289 -9.9% 0.064 56.2%
1 2 0.0450 0.0404 -0.0046 -10.3% 0.029 86.5%
1 3 0.0225 0.0202 -0.0023 -10.2% 0.020 87.7%
1 4 0.0900 0.0806 -0.0094 -10.5% 0.040 80.7%
2 1 0.1300 0.1351 0.0051 3.9% 0.050 93.2%
2 2 0.0300 0.0311 0.0011 3.6% 0.025 94.3%
2 3 0.0100 0.0101 0.0001 1.2% 0.014 92.4%
2 4 0.0300 0.0309 0.0009 2.9% 0.025 95.3%
3 1 0.2975 0.3295 0.0320 10.7% 0.069 54.6%
3 2 0.0175 0.0194 0.0019 10.8% 0.020 93.7%
3 3 0.0175 0.0195 0.0020 11.5% 0.020 93.8%
3 4 0.0175 0.0198 0.0023 13.0% 0.020 94.2%

Imputation based on MCMC method

1 1 0.2925 0.2970 0.0045 1.5 % 0.063 93.9%
1 2 0.0450 0.0444 -0.0006 -1.3 % 0.031 91.6%
1 3 0.0225 0.0198 -0.0027 -12.0 % 0.020 85.4%
1 4 0.0900 0.0891 -0.0009 -1.0 % 0.042 91.3%
2 1 0.1300 0.1313 0.0013 1.0 % 0.044 93.4%
2 2 0.0300 0.0287 -0.0013 -4.4 % 0.023 91.6%
2 3 0.0100 0.0090 -0.0010 -10.0 % 0.013 89.8%
2 4 0.0300 0.0305 0.0004 1.5 % 0.024 95.8%
3 1 0.2975 0.2954 -0.0021 -0.7 % 0.058 93.8%
3 2 0.0175 0.0183 0.0008 4.5 % 0.019 95.0%
3 3 0.0175 0.0160 -0.0015 -8.8 % 0.016 88.3%
3 4 0.0175 0.0208 0.0032 18.6 % 0.021 95.9%

Direct imputation incorporated with EM algorithm

1 1 0.2925 0.2923 -0.0002 -0.1% 0.062 93.5%
1 2 0.0450 0.0450 0.0000 0.0% 0.030 92.9%
1 3 0.0225 0.0225 0.0000 0.2% 0.022 92.7%
1 4 0.0900 0.0899 -0.0001 -0.1% 0.041 93.3%
2 1 0.1300 0.1299 -0.0001 -0.1% 0.044 94.4%
2 2 0.0300 0.0300 0.0000 -0.1% 0.024 92.7%
2 3 0.0100 0.0101 0.0001 0.7% 0.014 91.2%
2 4 0.0300 0.0299 -0.0001 -0.3% 0.024 93.4%
3 1 0.2975 0.2978 0.0003 0.1% 0.058 94.1%
3 2 0.0175 0.0175 0.0000 0.1% 0.018 92.7%
3 3 0.0175 0.0175 0.0000 0.1% 0.018 93.0%
3 4 0.0175 0.0175 0.0000 0.0% 0.018 93.3%

Direct imputation incorporated with IM algorithm

1 1 0.2925 0.2930 0.0005 0.2% 0.062 93.9%
1 2 0.0450 0.0448 -0.0002 -0.3% 0.030 93.6%
1 3 0.0225 0.0223 -0.0002 -1.0% 0.021 91.6%
1 4 0.0900 0.0900 0.0000 0.0% 0.041 93.3%
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Table 4: (continued) Simulation Study I: Estimated joint probability distribu-
tion of (X,Y )

X Y p p̂ bias r-bias AveLen CR

Direct imputation incorporated with IM algorithm

2 1 0.1300 0.1298 -0.0002 -0.2% 0.044 94.0%
2 2 0.0300 0.0300 0.0000 0.0% 0.024 93.2%
2 3 0.0100 0.0100 0.0000 0.2% 0.014 91.7%
2 4 0.0300 0.0302 0.0002 0.6% 0.024 93.5%
3 1 0.2975 0.2976 0.0001 0.0% 0.058 95.3%
3 2 0.0175 0.0174 -0.0001 -0.4% 0.018 93.2%
3 3 0.0175 0.0173 -0.0002 -0.9% 0.018 93.9%
3 4 0.0175 0.0175 0.0000 -0.1% 0.018 92.9%

Table 5: Simulation Study I: Estimated marginal probability distributions of
X and Y

p p̂ bias r-bias AveLen CR

No imputation (using only the complete cases)

X = 1 0.4500 0.4047 -0.0453 -10.1% 0.072 30.9%
2 0.2000 0.2071 0.0071 3.6% 0.059 91.7%
3 0.3500 0.3881 0.0381 10.9% 0.071 44.9%

Y = 1 0.7200 0.7281 0.0081 1.1% 0.065 91.4%
2 0.0925 0.0908 -0.0017 -1.8% 0.042 92.2%
3 0.0500 0.0498 -0.0002 -0.4% 0.032 95.0%
4 0.1375 0.1312 -0.0063 -4.6% 0.049 90.3%

Imputation based on MCMC method

X = 1 0.4500 0.4503 0.0003 0.1% 0.062 94.7%
2 0.2000 0.1994 -0.0006 -0.3% 0.049 93.8%
3 0.3500 0.3504 0.0004 0.1% 0.059 94.2%

Y = 1 0.7200 0.7236 0.0036 0.5% 0.066 92.4%
2 0.0925 0.0914 -0.0011 -1.2% 0.042 88.3%
3 0.0500 0.0448 -0.0052 -10.5% 0.029 79.1%
4 0.1375 0.1403 0.0028 2.0% 0.052 91.2%

Direct imputation incorporated with EM algorithm

X = 1 0.4500 0.4498 -0.0002 0.0% 0.062 94.3%
2 0.2000 0.1998 -0.0002 -0.1% 0.050 94.6%
3 0.3500 0.3503 0.0003 0.1% 0.059 94.4%

Y = 1 0.7200 0.7200 0.0000 0.0% 0.064 93.7%
2 0.0925 0.0925 0.0000 0.0% 0.041 93.9%
3 0.0500 0.0502 0.0002 0.3% 0.031 93.6%
4 0.1375 0.1374 -0.0001 -0.1% 0.049 93.9%

Direct imputation incorporated with IM algorithm

X = 1 0.4500 0.4501 0.0001 0.0% 0.062 95.0%
2 0.2000 0.2000 0.0000 0.0% 0.050 94.4%
3 0.3500 0.3499 -0.0001 0.0% 0.059 95.0%

Y = 1 0.7200 0.7204 0.0004 0.1% 0.064 94.5%
2 0.0925 0.0923 -0.0002 -0.2% 0.041 93.4%
3 0.0500 0.0496 -0.0004 -0.8% 0.031 93.3%
4 0.1375 0.1377 0.0002 0.1% 0.049 92.9%
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Table 6: Simulation Study II: Estimated joint probability distribution of
(X,Y, Z)

X Y Z p p̂ bias r-bias AveLen CR

No imputation (using only the complete cases)

1 1 1 0.2925 0.2643 -0.0282 -9.7% 0.064 59.4%
1 1 2 0.0450 0.0404 -0.0046 -10.2% 0.029 87.3%
1 2 1 0.0225 0.0202 -0.0023 -10.3% 0.020 87.3%
1 2 2 0.0900 0.0811 -0.0089 -9.9% 0.040 83.0%
2 1 1 0.1300 0.1347 0.0047 3.6% 0.050 94.2%
2 1 2 0.0300 0.0311 0.0011 3.5% 0.025 95.3%
2 2 1 0.0100 0.0102 0.0002 1.8% 0.014 92.1%
2 2 2 0.0300 0.0307 0.0007 2.4% 0.025 95.6%
3 1 1 0.2975 0.3289 0.0314 10.5% 0.069 55.8%
3 1 2 0.0175 0.0196 0.0021 12.0% 0.020 94.2%
3 2 1 0.0175 0.0194 0.0019 10.6% 0.020 93.9%
3 2 2 0.0175 0.0196 0.0021 11.9% 0.020 95.1%

Imputation based on MCMC method
1 1 1 0.2925 0.2889 -0.0036 -1.2% 0.059 94.3%
1 1 2 0.0450 0.0480 0.0029 6.5% 0.031 95.8%
1 2 1 0.0225 0.0260 0.0035 15.8% 0.024 95.6%
1 2 2 0.0900 0.0874 -0.0026 -2.9% 0.038 93.4%
2 1 1 0.1300 0.1294 -0.0006 -0.5% 0.043 93.1%
2 1 2 0.0300 0.0295 -0.0005 -1.6% 0.023 94.5%
2 2 1 0.0100 0.0101 0.0001 1.2% 0.014 96.2%
2 2 2 0.0300 0.0303 0.0003 1.1% 0.023 96.3%
3 1 1 0.2975 0.2947 -0.0028 -0.9% 0.057 94.1%
3 1 2 0.0175 0.0187 0.0012 6.9% 0.019 96.1%
3 2 1 0.0175 0.0183 0.0008 4.7% 0.019 96.5%
3 2 2 0.0175 0.0186 0.0011 6.4% 0.018 97.2%

Direct imputation incorporated with EM algorithm

1 1 1 0.2925 0.2927 0.0002 0.1% 0.058 94.9%
1 1 2 0.0450 0.0450 0.0000 0.1% 0.029 93.0%
1 2 1 0.0225 0.0224 -0.0001 -0.3% 0.021 91.2%
1 2 2 0.0900 0.0899 -0.0001 -0.1% 0.039 93.8%
2 1 1 0.1300 0.1303 0.0003 0.2% 0.043 94.9%
2 1 2 0.0300 0.0300 0.0000 0.1% 0.023 93.5%
2 2 1 0.0100 0.0100 0.0000 0.4% 0.014 91.4%
2 2 2 0.0300 0.0299 -0.0001 -0.3% 0.023 93.7%
3 1 1 0.2975 0.2972 -0.0003 -0.1% 0.057 95.0%
3 1 2 0.0175 0.0175 0.0000 0.0% 0.017 92.9%
3 2 1 0.0175 0.0174 -0.0001 -0.3% 0.018 92.6%
3 2 2 0.0175 0.0175 0.0000 0.1% 0.017 93.5%

Direct imputation incorporated with IM algorithm

1 1 1 0.2925 0.2925 0.0000 0.0% 0.058 94.4%
1 1 2 0.0450 0.0449 -0.0001 -0.3% 0.029 92.8%
1 2 1 0.0225 0.0226 0.0001 0.4% 0.022 92.2%
1 2 2 0.0900 0.0900 0.0000 0.0% 0.039 93.9%
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Table 6: (continued) Simulation Study II: Estimated joint probability distri-
bution of (X,Y, Z)

X Y Z p p̂ bias r-bias AveLen CR

Direct imputation incorporated with IM algorithm

2 1 1 0.1300 0.1301 0.0001 0.1% 0.043 94.8%
2 1 2 0.0300 0.0298 -0.0002 -0.6% 0.023 93.1%
2 2 1 0.0100 0.0099 -0.0001 -0.5% 0.014 91.1%
2 2 2 0.0300 0.0302 0.0002 0.6% 0.023 93.5%
3 1 1 0.2975 0.2975 0.0000 0.0% 0.057 94.9%
3 1 2 0.0175 0.0175 0.0000 0.1% 0.017 93.3%
3 2 1 0.0175 0.0174 -0.0001 -0.4% 0.018 92.8%
3 2 2 0.0175 0.0175 0.0000 0.1% 0.017 93.1%

Table 7: Simulation Study II: Estimated marginal probability distributions of
X, Y , and Z

p p̂ bias r-bias AveLen CR

No imputation (using only the complete cases)

X = 1 0.4500 0.4059 -0.0441 -9.8% 0.072 31.8%
2 0.2000 0.2066 0.0066 3.3% 0.059 94.5%
3 0.3500 0.3874 0.0374 10.7% 0.071 43.8%

Y = 1 0.8125 0.8189 0.0064 0.8% 0.056 91.0%
2 0.1875 0.1811 -0.0064 -3.4% 0.056 91.0%

Z = 1 0.7700 0.7775 0.0075 1.0% 0.061 91.7%
2 0.2300 0.2225 -0.0075 -3.3% 0.061 91.7%

Imputation based on MCMC method
X = 1 0.4500 0.4503 0.0003 0.1% 0.062 94.7%

2 0.2000 0.1994 -0.0006 -0.3% 0.049 93.8%
3 0.3500 0.3504 0.0004 0.1% 0.059 94.2%

Y = 1 0.8125 0.8091 -0.0034 -0.4% 0.054 94.9%
2 0.1875 0.1909 0.0034 1.8% 0.054 94.9%

Z = 1 0.7700 0.7675 -0.0025 -0.3% 0.056 95.2%
2 0.2300 0.2325 0.0025 1.1% 0.056 95.2%

Direct imputation incorporated with EM algorithm

X = 1 0.4500 0.4501 0.0001 0.0% 0.062 94.8%
2 0.2000 0.2002 0.0002 0.1% 0.050 94.6%
3 0.3500 0.3497 -0.0003 -0.1% 0.059 95.2%

Y = 1 0.8125 0.8127 0.0002 0.0% 0.054 93.4%
2 0.1875 0.1873 -0.0002 -0.1% 0.054 93.4%

Z = 1 0.7700 0.7701 0.0001 0.0% 0.054 94.1%
2 0.2300 0.2299 -0.0001 0.0% 0.054 94.1%

Direct imputation incorporated with IM algorithm

X = 1 0.4500 0.4500 0.0000 0.0% 0.062 94.6%
2 0.2000 0.2001 0.0001 0.0% 0.050 94.2%
3 0.3500 0.3499 -0.0001 0.0% 0.059 94.6%

Y = 1 0.8125 0.8123 -0.0002 0.0% 0.054 93.6%
2 0.1875 0.1877 0.0002 0.1% 0.054 93.6%

Z = 1 0.7700 0.7700 0.0000 0.0% 0.054 95.3%
2 0.2300 0.2300 0.0000 0.0% 0.054 95.3%
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18.6%, which occurred when X = 3 and Y = 4 while in Simulation Study II, the
largest relative bias is 15.8%, which occurred when X = 1, Y = 2 and Z = 1.
The method for estimating a proportion by the corresponding sample proportion
is less efficient when the proportion is small so the bias introduced by variable
conversion is in general more severe in this case. However, in both simulation
studies, all the relative biases are less than one percent by the direct imputation
methods. In fact, the simulation results show that the direct methods are almost
unbiased. This is expected since the direct imputation methods bypass variable
conversion, an important source for biases.

From Simulation Study I, we see that the confidence intervals perform com-
parably for the three methods (Tables 4-5). However, from Simulation Study
II, we see that the coverage probabilities of the 95% confidence intervals based
on the MCMC method are higher when the probability p is low (Tables 6-7).
The computation of the confidence intervals is based on a normal approximation,
which is poor when the probability of interest is close to zero or one. Thus, we
computed the average lengths and coverage rates from 1,000 simulated random
samples, each with 1,000 cases, without any missing values. Results from the two
direct methods are similar to those observed for simulated random samples with-
out missing values. So, it seems that the direct methods would create imputed
data sets which are closer to samples from the correct distribution (results not
shown).

Finally, as noted, the variable Y in Study I is split into two variables in Study
II (Y and Z). When the variable Y in Study I is missing, then one of the two
variables Y or Z in Study II must be missing, but they need not both be missing.
Therefore, more information is lost in study I than in study II. This explains why
the MCMC approach is not as biased in Study II.

4. Application

In this section, we apply both the direct IM-imputation method and the
MCMC method to imputing missing values of categorical variables in the US na-
tional HIV case surveillance data. This dataset contains all AIDS cases diagnosed
since the early 1980s and reported to CDC by June of 2009. We examined only
AIDS cases diagnosed between 2000 through 2007. There were about 300,000
adults and adolescents (aged 13 years or older) diagnosed with AIDS during this
time period. Among them 21% had unknown transmission category (19% among
males and 29% among females).

Having a missing value for transmission category was correlated with many
variables. They include, but are not limited to, sex, race/ethnicity, birth country,
age at diagnosis, geographic region of residence at diagnosis, population size of
metropolitan statistical area (MSA) of residence, year of diagnosis, and the type
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of facility where the person was diagnosed. In addition to missing transmission
category, other variables could be missing. For example, 14% of AIDS cases had
missing birth country and 18% had missing diagnosis facility type. Both variables
are correlated with the transmission category variable. Also, the missing pattern
of these variables is not monotone.

Note that except for age, year of diagnosis, and population size of MSA of
residence, all the above variables are categorical. Population size is reported
as one of a small number of categories in the surveillance database, and for
presentation and analysis purposes, we have likewise used age groups and time
intervals to categorize these two variables into a small number of categories. With
all other variables being categorical, the distribution of AIDS cases stratified by
these variables can be viewed as multinomial. Therefore, missing values of these
variables can be imputed using the methods proposed in this paper.

Based on the proportion of data with missing values, we choose to impute
10 plausible values for each missing value to achieve a 95% relative efficiency
(Rubin 1987, p. 114). Because the numbers of transmission categories for males
and females are different, we performed the imputation separately for males and
females. The relative differences between the two methods in estimating the
distribution probabilities ranged from−5.3% to 2.9%. The difference is significant
for both female transmission category proportions and for the male heterosexual
proportion. The direct method estimate is higher for the heterosexual proportion
in both male and female population groups (Table 8).

5. Summary

In this paper, we evaluated two direct approaches for filling in missing values
of categorical variables, which were motivated by the problem of imputing missing
HIV transmission category in the national HIV case surveillance database. The
methods described here are applicable to any situation where only categorical
data are involved. The MCMC method often assumes that the joint distribution
of the variables under consideration is multivariate normal, which may not be
true in practice. In contrast, direct imputation approaches impose no assumption
on the joint distribution of a set of categorical variables. However, the natural
distribution for a discrete variable is multinomial. Hence, one may consider that
the joint distribution is multinomial. This is another attractive feature of the
proposed methods.

Note that both IM and EM algorithms perform equally well and their differ-
ences are hardly distinguishable. In addition, as they are almost equally efficient
in terms of computing time and both algorithms are fast, using either one of them
should be practical.
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