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The Case for Hyperplane Fitting Rotations in Factor Analysis:
A Comparative Study of Simple Structure
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Abstract: Hyperplane fitting factor rotations perform better than conven-
tional rotations in attaining simple structure for complex configurations.
Hyperplane rotations are reviewed and then compared using familiar exam-
ples from the literature selected to vary in complexity. Included is a new
method for fitting hyperplanes, hypermax, which updates the work of Horst
(1941) and Derflinger and Kaiser (1989). Hypercon, a method for confir-
matory target rotation, is a natural extension. These performed very well
when compared with selected hyperplane and conventional rotations. The
concluding sections consider the pros and cons of each method.

Key words: Factor analysis, factor rotation, hyperplane fitting, simple struc-
ture.

1. Introduction: Hyperplane Fitting and Simple Structure

Hyperplane fitting rotations (HFRs) are special cases of the more general
class of procrustean rotations in factor analysis that attempt to fit a given factor
pattern matrix to a partially specified target matrix. With HFRs the target ma-
trix contains zero loadings in specified positions. This article reviews and then
compares the HFRs one to the other and to other popular rotations using well-
known examples to assess simple structure. Two new methods, the exploratory
hypermax and confirmatory hypercon, update the methods of Horst (1941) and
Derflinger and Kaiser (1989). It is argued that hyperplane fitting rotations are
superior to familiar analytic rotations when factor structures are complex (vari-
ables load on more than one factor). Fortunately too, these also usually perform
well with low complexity data; hence their applicability is fairly general.

Numerous studies have compared factor rotations; to cite just a few, there
are the classic studies of Hakstian (1971) and Hakstian and Abell (1974), and
more recently, of Jennrich (2006, 2007), Asparouhov and Muthén (2009), and
Sass and Schmidt (2010). Examples for this study were chosen to be: (a) fa-
miliar to psychologists, (b) of interest to behavioral scientists, and (c) varied in
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complexity. The concepts of simple structure, complexity, and hyperplane fitting
are considered next.

1.1 Simple Structure as the Goal of Rotation in Factor Analysis

In the early days of factor analysis rotations were not always conducted.
Spearman (1904) believed that a single factor provided evidence for a general
factor of intelligence, accounting for most of the correlations between his mental
tests. Other early researchers found multiple factors of intelligence, yet failed
to rotate their solutions. But Thurstone (1947) argued for multiple factors and
insisted that these are more interpretable when rotated, for only thus could simple
structure be attained. His criteria were:

1. Each row of the factor pattern matrix should have at least one zero.

2. For m common factors, each column should have at least m zeros.

3. Every pair of columns should have several entries that vanish in one but
not the other.

4. For every column pair a large proportion of variables should have vanishing
entries in both columns, if there are four or more factors.

5. For every column pair there should only be a small number of non-vanishing
entries in both columns.

The first condition is the most crucial, whereas the others provide stability
in over determining the model (Yates, 1987; Browne, 2001). Under fairly general
conditions it is possible to find m − 1 zeros for each column (Browne, 2001).
In practice researchers can focus mainly on the first point. After this, all else
being equal, a decision can be made as to which of two or more rotations works
best for a given problem by subjective judgment (Asparouhov and Muthén, 2009;
Browne, 2001; Rozeboom, 1992).

Multidimensional test constructors seek “perfect” or complexity one struc-
ture, in which each variable loads on only one factor. Rotated solutions, when
they show that variables have high loadings on their appropriate factors and low
loadings on the rest, are often presented in support of a test’s validity. But draw-
ing the line between high and low loadings (.30 or .40, for instance) is subjective
(Cudeck and O’Dell, 1994).

Complexity one structure is difficult to achieve. Setting too many loadings to
zero in confirmatory factor analysis (CFA) can have a distorting effect on the so-
lution, producing, for example, factor correlations that are too high (Asparouhov
and Muthén, 2009). But the problem is not unique to CFA, as the magnitude
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of the correlations between factors in exploratory factor analysis (EFA) depends
in part on the method of rotation. A common misunderstanding of Thursto-
nian principles is to assume that finding the simplest structure is synonymous
solely with reducing complexity, as it is sometimes measured by simplicity in-
dexes (Kaiser, 1974; Bentler, 1977; and Lorenzo-Seva, 2003). These are useful
when complexity one structure is sought (Fleming, 2003). But simply lowering
mid-range loadings can elevate these. Rather, assessment should be based on lo-
cating the near zero elements and minimizing these: “It is generally felt, however,
that a loading matrix with a fair number of small values is simpler than one with
mostly intermediate values” (Jennrich, 2006, p. 180).

Popular rotations designed to minimize complexity do produce good simple
structure solutions when the underlying structure is even moderately complex
(Browne et al., 2010). However, they perform poorly when many complexities
are present.

1.2 Hyperplane Resolution and Simple Structure

Planar rotations of axes in m dimensions attempt to maximize the hyperplane
count, or number of zero loadings, by careful placement of the factor axes close
to the boundaries of the hyperplanes. This is done with HFRs by forming target
matrices containing zeros in specified positions, with remaining elements free to
vary. A discrepancy function based on the difference between the unrotated and
target rotated matrices is then minimized. This can be expressed as: Λ = AT−B,
where A(p ×m) is the factor pattern matrix to be transformed, T(m ×m) the
transformation matrix, Λ the new pattern, and B(p×m) the partially specified
target. The function to be minimized is:

Q(Λ) = ||AT−B||2. (1)

A itself may be an orthogonal rotation of an initial factor matrix F, in which
case the scaling of F differs among the methods; and some HFRs require that
diag(T−1T−1′) = I. Methods thus differ in (a) the scaling of the variables prior to
a pre-rotation, (b) the specification of B, and (c) whether or not T is restricted;
thus we have either a restricted or an unrestricted least-squares problem, the
former requiring multiple iterations. Details are given in Section 2 for hypermax
and other HFR methods are reviewed in 3.1 and 3.2.

1.3 Criterion for Comparing Rotations

There is no recognized “gold standard” for assessing simple structure (Jen-
nrich, 2007, p. 323), but the method proposed here, comparing averages (root-
mean-squares, or RMS) of loadings in the hyperplane, seems appropriate for
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this task. In all examples there is a clear break between hyperplane and salient
elements for hypermax and for most other rotations as determined by sorted ab-
solute loadings (SAL) plots (Jennrich, 2006, 2007). Those below the break are
considered to be in the hyperplane, and those with the lowest RMS for these are
considered to be the best rotations (see Figure 1 for SAL examples).
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Figure 1: Sorted absolute loading plot illustrating selected rotations based on
Thurstone’s 26-variable box problem

2. The Hypermax Rotation

Psychometric work in hyperplane fitting dates back to Tucker (1940) and
Horst (1941). Tucker sought to minimize potential hyperplane loadings whereas
Horst’s method, as modified by Derflinger and Kaiser (1989; called “Horst-
Hilsch”, or HH), minimizes instead the ratio of hyperplane to salient (non-
hyperplane) loadings. (Horst maximized the ratio of the salient to total elements,
but this is equivalent to minimizing the preceding ratio). Both presume that
there is a way to identify the hyperplane elements in the target matrix. When
achieved by an automated algorithm, the rotation is exploratory; when the zeros
are pre-specified, it is confirmatory. We shall refer to the rotation part of the HH
algorithm as the Horst-Derflinger-Kaiser (HDK) method. Let A(p×m) be a row
normalized pattern matrix resulting from a varimax rotation. Then find for each
factor:
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Kj = A
′
oAo, a matrix(m×m),where Ao consists only of the rows of A that are

in the hyperplane for factor j.

Lj = A
′
xAx, a matrix(m×m),where Ax consists of the remaining rows of A.

δj = (t
′
jKjtj)/(t

′
jLjtj), the ratio of two quadratic forms, is the quantity to be

minimized. Min(δj) is the resulting smallest eigenvalue, and tj is its cor-

responding eigenvector. Differentiating leads to the eigen equation:

(Kj − δjLj)tj = 0. (2)

After determining each tj the matrix T(m ×m) = [t1, · · · , tm] is assembled
and the transformation can proceed as Λ∗ = AT. To obtain the factor pattern
Λ, a final rescaling is needed. Letting D= diag(T

′
T)−1, compute the pattern as:

Λ = Λ∗D−(1/2). (3)

Tucker’s method was employed by Lawley and Maxwell (1964), Jöreskog
(1966), and Kaiser and Cerny (1978). But Derflinger and Kaiser found that
this algorithm did not work well with certain problems. Also, as the ratio of two
quadratic forms, their procedure (unlike Tucker’s) is a scale-free method. For
the Tucker method the minimization requires solving for the smallest eigenvalue
and corresponding eigenvector of (Kj − δjI)tj = 0. But unlike (2), this equation
cannot be solved uniquely without a further restriction on the eigenvector length;
so the usual restriction is that t

′
jtj − 1 = 0.

2.1 The Hypermax Algorithm in Four Steps

The HH rotation updated Horst by defining a method for identifying hy-
perplane elements (step 2 below) and introducing the HDK rotation (discussed
above and in step 3). For hypermax, the weighted varimax pre-rotation was in-
troduced (step 1) as well as the double-iteration, which was added to provide
greater accuracy (step 4).

1. Weighted varimax pre-rotation and row normalization. Both the Kaiser-
Cerny (KC) and HH methods use varimax as a preliminary rotation of an
initial factor matrix before applying the HDK transformation. Although
HH was an improvement over the KC rotation, it still did not work in the
presence of high complexity. Thurstone’s (1947) 26-variable box problem is
one example for which this, as do most rotations, fails to recover the known
simple structure. The hypermax fix for this problem is to use weighted
varimax (Cureton and Mulaik, 1975) as the preliminary rotation. An alter-
native to Kaiser’s row normalization, this gives greater weight to variables
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closer to the boundary of the hyperplanes. The effect is to better handle
variable complexity.

Following this initial rotation, the variables should again be Kaiser (row)
normalized before applying the final rotation; otherwise the results can be
quite distorted.

2. Identifying hyperplane elements. To identify hyperplane elements, Der-
flinger and Kaiser compute a function for each column j of this rotated
factor pattern A as:

fj =

[∑
i

(a2ij)
1/b/p

]b/2

, (4)

where fj is an absolute power mean that can be varied with the parameter
b, and p is the number of variables. The a2ij are squared elements of A.
They stated that selecting b = 4 was consistently the most effective in their
experience. The computations in this case are: fj = (mean of square-roots
of absolute loading values)2. The KC, HH, and hypermax rotations all
employ this method for identifying hyperplane elements.

3. Applying the HDK rotation in hypermax, and row and column rescaling.
When Kaiser normalization is applied to the rows, it is customary following
the HDK rotation to return them to the original variable metric by de-
normalizing. But column rescaling must also be done, so the rotation is
completed by applying (3).

4. Double iteration. This is an important addition to the KC, HH, and hyper-
max rotations. If, following the final transformation, fj is recomputed via
(4), occasionally it will identify additional elements in the hyperplane for
one or more of the factors. When this is the case, the rotation should be
repeated to include these elements.

3. Other Rotations Used in This Study

3.1 An Overview of Exploratory Hyperplane Rotations

Promax (Hendrickson and White, 1964) is a straightforward unrestricted
least-squares solution to (1) in which the target matrix B is formed by pow-
ering elements of a varimax or other orthogonally rotated matrix (usually powers
of 2, 3, or 4) while retaining the signs of the original loadings. Rows of the target
are normed, and columns are rescaled so that the largest loading is 1.0. Note
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that with promax the target contains approximate rather than exact zeros. The
final step is a column rescaling using (3).

Promaj (Trendafilov, 1994), a method similar to promax, uses the technique
of vector majorization (see Marshall and Olkin, 1979, for theoretical rationale),
which slightly lowers the size of the salient loadings, but replaces the lowest with
exact zeroes, purportedly for a better fit. Let aj be a column of loading matrix
A to be majorized, having elements aij . We then find corresponding vector bj
for the target matrix B as: bij = sign(aij)[max(a2

ij − cj , 0)]1/2. The constant cj
is computed as follows. Let µj be the mean of the a2

ij , then let cj be the value of
these squared loadings that is closest to, but less than, µj .

Promin (Lorenzo-Seva, 1999) is similar to hypermax because it begins with a
preliminary weighted varimax rotation, but salient elements are determined as the
mean of the squared loadings plus 1/4 of the standard deviation of each column
of the rotated pattern. This is followed by applying Browne’s (1972) restricted
procrustean rotation (see 3.3). Lorenzo-Seva viewed promin as an improvement
over promax, and also as a simpler approximation to Kier’s (1994) simplimax, a
method that is considered next.

With simplimax (1) is minimized by restricted least-squares, so that diag(T−1

T−1
′
) = I at each step. Simplimax proceeds by alternation, first minimizing the

transformation matrix T for a given B, then vice versa, by using many random
orthogonal starts for T with different numbers of zeros for each. Thus it uses more
random starts than other methods. Each start is rotated by Browne’s method, as
with promin. One then decides on the final solution by selecting over the range
of solutions with differing hyperplane counts. This is not necessarily the function
with the minimum value; instead one may plot the functions to find a break,
similar to the scree test for the number of factors.

3.2 Confirmatory Hyperplane Fitting Rotations: Browne’s Method
and Hypercon

Browne (1972) showed how to rotate a factor matrix A to fit a partially
specified target matrix B directly while restricting the transformation vectors to
unit length. He rotated A column by column in a sequence of pairwise elementary
rotations, transforming one factor into the plane of the other at each step.

Let B be the partially pre-specified target matrix and C consists of zeros and
ones, to match the target, with cij and bij as elements of C and B, respectively,
and λij an element of rotated matrix Λ. The function to be minimized can be
expressed as:

f(Λ) =

p∑
i=1

m∑
j=1

cij(λij − bij)2
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using Newton-Raphson iterations, with the restriction on unit vector length main-
tained at each step. As a confirmatory rotation in the CEFA program (Browne
et al., 2010), Browne’s method is called TARROT (TARget ROTation).

The hypercon rotation is simply the application of the HDK rotation to a
target matrix in which the zero elements are pre-specified. Unlike TARROT,
hypercon is not a direct rotation; thus the rotated matrix must be rescaled
column-wise using (3). It is less general than TARROT because it only applies
to hyperplane fitting, whereas TARROT is a general procrustes method. But
also unlike TARROT, hypercon is non-iterative, and is therefore very fast. As
will be seen, hypermax/hypercon and Browne’s method in simplimax/TARROT,
give virtually identical results in the ensuing examples.

3.3 Other (Non-Hyperplane Fitting) Rotations Used for Comparison

Additional rotations, selected from the most popular, include (1) the orthog-
onal varimax (Kaiser, 1958); (2) direct oblimin (Jennrich and Sampson, 1966),
for which two values of the obliqueness parameter were used: 0 (quartimin) and
−3; (3) the Harris-Kaiser (1964) orthoblique rotation with eigenvalue power pa-
rameter set to 0 (“independent clusters”) and to .5 (“proportional”, see p. 361)
for their “Class II” methods; (4 and 5) weighted promax (Cureton and Mulaik,
1975); and weighted oblimin (Lorenzo-Seva, 2000), both of which use the weighted
varimax pre-rotation; and (6) geomin (Yates, 1987; Browne, 2001).

Though not an HFR (a target matrix is not formed), geomin nevertheless is
also useful in detecting near zero elements. It is an extension of Thurstone’s
idea that, for a given row, the product of the loadings would be zero if at
least one element is zero, which satisfies his most important condition for sim-
ple structure. The function to be minimized is (Bernaards and Jennrich, 2005):
f(Λ) = u

′
exp{m−1[loge(Λ

2 + ε)]}v, where ε is a small constant (e.g., .01) that
can vary with the number of factors, Λ the transformed loadings, and u

′
and v

are conformable summing vectors.

4. Examples

4.1 Thurstone’s Box Problems as Exemplars of Complexity

Because the test of the adequacy of hyperplane fitting rotations is how well
they can uncover the simplest structure when variables are highly complex, Thur-
stone (1947) devised his 26-variable box problem as a challenge. This problem,
consisting of a series of non-linear functions of the dimensions of 30 boxes, has a
clear simple structure in three dimensions: length, width, and height. The ability
to uncover this structure can only be met by a few analytic rotations. The upper
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portion of Table 1 compares these. The best results are shaded. All results except
for hypermax and geomin were taken from their original published articles. Meth-
ods of factor extraction, which differed among published studies, and programs
used for rotation, are also given. These include CEFA, Factor (Lorenzo-Seva and
Ferrando, 2006), and Explorer (Fleming, 2011). (Different programs were needed
for the examples because each had some rotations not found in others.)

Table 1: Summary measures for comparing box problem rotations

Rotation
No. in RMS of

Extraction Program for
hyper- hyperplane

method rotation
plane loadings

26-Variable Box Problema

Hypermax 27 .023 ULS Explorer
Simplimax 27 .024 PAFA unknown
Geomin 27 .025 ULS CEFA
Weighted promax 27 .036 PAFA unknown
Weighted Oblimin 21 .070 PAFA unknown

Promin 22 .082b Centroidc unknown

20-Variable Box Problem
Hypermax 27 .026 PCA Explorer
Horst-Hilsch 27 .026 PCA Explorer
Simplimax 27 .026 PCA Factor
Geomin 27 .026 PCA CEFA
Weighted oblimin 27 .029 PCA Factor
Orthoblique (power = .5) 27 .035 PCA Explorer
Oblimin (parameter = −3) 27 .044 PCA Explorer
Promax (power = 2) 27 .045 PCA Explorer
Kaiser-Cerny 25 .050 PCA Explorer
Weighted Promax 25 .051 PCA Explorer
Promaj 26 .053 PCA Explorer
Oblimin (power = 0) 27 .062 PCA Explorer
Promin 23 .075 PCA Factor
Varimax 13 .114 PCA Explorer
Promax (power = 4) 6 .130 PCA Explorer
Orthoblique (power = 0) 6 .133 PCA Explorer

Note: RMS = root-mean-square. PCA = principal component analysis, PAFA =
principal axis factor analysis, ULS = unweighted (ordinary) least-squares. Best results
are shaded in these tables.
aAll results except for hypermax and geomin are from previously published studies.
bIncludes two misspecified loadings that should have been in the hyperplane.
cCentroid is an older method of factor extraction, used before PAFA became practical
with the advent of computers. The factor analysis here was based on such an earlier
study.
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Hypermax, simplimax, and geomin gave the very best results, each correctly
identifying the 27 hyperplane elements from the known solution within a very
narrow 0.± .10 band. Weighted promax was not far behind. If this critical band
is extended to 0.± .20, then weighted oblimin also identified all 27 correctly; but
promin misspecified two elements as being in the hyperplane that were not (see
Lorenzo-Seva, 1999). (The hypermax factor solutions for these examples may be
found on the author’s website.)

SAL plots in Figure 1 illustrate the method by which hyperplane elements are
identified. Selected comparisons of three rotations are shown. Note the similarity
between hypermax and geomin, but also how these differ from promin.

A second example tests the relative effectiveness of several rotations using
Thurstone’s 20-variable box problem, an exemplar frequently used to compare
rotations. This example also has many complexities, but unlike the 26-variable
problem, most conventional rotations can do a fair job at uncovering the struc-
ture.

Results are shown in the lower part of Table 1. Here again the same three, hy-
permax, simplimax, and geomin, gave the best, and essentially identical, results,
but so did HH; and weighted oblimin was close behind. Other results varied. It
is not surprising that varimax and the orthoblique independent clusters method
did poorly by comparison; the former is orthogonal rather than oblique, and the
latter is most suitable when perfect structure is expected.

4.2 WAIS-R Subtest Factors

Eleven subtests of the WAIS-R intelligence test (Wechsler, 1981) were factor
analyzed using unweighted least-squares (ULS). These factors are general-verbal,
numerical, and spatial, respectively. The WAIS-R presents a problem of moderate
complexity. Three subtests have loadings > .25 on two factors.

For this problem, oblimin with obliquity parameter of −3 was not included in
the results because it produced a first, general factor and did not closely resemble
any of the other solutions given here. The better rotations found 16-18 loadings
≤ .15 in absolute value and 17-19 ≤ .20. The rotations are ranked in ascending
order in Table 2, based on the RMS for the latter nineteen. While most of
these exhibited simple structure, two that did not do well were KC and varimax.
Hypermax fared best with RMS = .091. This is not to quibble, as others are on
a par as well, but nonetheless it demonstrates that hypermax is again among the
best. But notice also that promax with power = 4 also did very well, and better,
in fact, than its competitors, promin and promaj.

4.3 Two Classic Examples
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Table 2: Summary measures for comparing rotations for WAIS-R subtests

Rotation
Absolute Absolute RMS
loadings loadings of 19
≤ .15 ≤ .20 lowest

Hypermaxe 18 19 .091
Promaxe (power = 4) 17 18 .096
Oblimine (parameter = 0) 17 17 .097

Simplimaxf 17 18 .097
Promaje 17 19 .098
Weighted oblimine 16 18 .099
Orthobliquee (power = 0) 18 18 .102
Geominc 16 18 .102

Prominf 16 19 .104
Weighted promaxe 16 19 .120
Horst-Hilsche 16 19 .136
Orthobliquee (power = .5) 15 17 .144
Promaxe (power = 2) 15 17 .147
Kaiser-Cernye 8 16 .171
Varimaxe 0 3 .289

cCEFA program. fFactor program. eExplorer program.

Two classic examples from the literature are: Thurstone’s (1938) Ten Primary
Mental Abilities, and Eight Physical Variables (Harman, 1976, p. 22). Three
factors were extracted from the first, and two for the second via ULS. Ten PMA
has factors of verbal, arithmetic, and spatial abilities. There were cross-loadings
≥ .40 for two variables in this example. The better rotations maximized the
number of loadings ≤ .20. As seen in Table 3 (top), many rotations produced
pattern matrices with 16-17 loadings ≤ .20, but the top five had comparable low
RMSs.

The variables loading on the physical factors exhibited low complexity for
most solutions, with hypermax again among the best (Table 3, bottom). But
three did less well on RMS: orthoblique (power = .05), oblimin (−3), and vari-
max.

4.4 A Confirmatory Illustration: Twenty-Four Psychological Tests

This example illustrates hypercon as a confirmatory method, given a prede-
fined target matrix from Mulaik (1972, p. 307). He presented a promax target
matrix that was used with Jöreskog’s (1966) procedure. This target was used
to rotate a principal factors solution from Harman (1976, p. 124). Comparisons
between Mulaik’s solution and the one here are imperfect as his was derived from
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Table 3: Summary measures for comparing rotations for ten primary mental
abilities and eight physical variables

Example No. in RMS of

Rotation hyper- hyperplane
plane loadings

Ten PMA
Promaxe (power = 2) 17 .073
Hypermaxe 17 .075
Horst-Hilsche 17 .075
Simplimaxf 16 .076
Prominf 16 .076
Promaje 17 .101
Oblimine (power = 0) 17 .105
Geominc 17 .106
Weighted obliminf 16 .108
Weighted promaxe 16 .110
Orthobliquee (power = 0) 15 .114
Oblimine (parameter = −3) 16 .117
Orthobliquee (power = .5) 15 .118
Promaxe (power = 4) 15 .117
Kaiser-Cernye 9 .136
Varimaxe 12 .169

Eight physical
Simplimaxf 8 .053
Prominf 8 .053
Hypermaxe 8 .054
Horst-Hilsche 8 .054
Promaxe (power = 4) 8 .054
Promaxe (power = 2) 8 .054
Oblimine (power = 0) 8 .054
Orthobliquee (power = 0) 8 .054
Promaje 8 .054
Kaiser-Cernye 8 .054
Weighted promaxe 8 .055
Geominc 8 .059
Weighted obliminf 7 .059
Orthobliquee (power = .5) 4 .072
Oblimine (parameter = −3) 8 .105
Varimaxe 0 .210

Note: Hyperplane width for Ten PMA was 0.+ .20; for Eight physical it was 0.+ .10.
cCEFA program. fFactor program. eExplorer program.

a centroid factoring. (It is not appropriate to apply weighted varimax to centroid
solutions.) But present results could more meaningfully be compared to Browne’s
TARROT. For hypercon and TARROT, all targeted coefficients were ≤ .25 in
absolute value. Likewise, for Mulaik’s factor pattern based on Jöreskog’s method,
as well as TARROT, all targeted elements were ≤ .25.

Evaluating the similarities between TARROT and hypercon was further fa-
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cilitated by computing congruence coefficients (Tucker, 1951) for corresponding
factors as well as their RMS differences. Coefficients for corresponding factors
were .997, .989, .998, and .999; the RMS differences between were .028, .046, .026,
and .025. Interestingly, when one solution was rotated to approximate the other
by procrustes matching (Korth and Tucker, 1976; Fleming, 1991), the resulting
congruence coefficients all were exactly 1.000 to 3 decimals and all RMS differ-
ences were < .02. TARROT and hypercon, then, gave virtually identical results.
The factor loading matrix for hypermax is shown in Table 4.

Table 4: Factor pattern for hypercon target rotation of 24 psychological tests

Factor

No. I II III IV

1 -0.04 0.09 0.70 0.02
2 -0.01 0.01 0.50 -0.04
3 0.00 -0.13 0.64 0.01
4 0.11 -0.01 0.60 -0.07
5 0.77 0.11 0.05 -0.05
6 0.79 -0.06 0.04 0.06
7 0.86 0.05 0.06 -0.13
8 0.54 0.12 0.28 -0.05
9 0.83 -0.10 0.04 0.05
10 0.11 0.79 -0.23 0.08
11 0.06 0.50 -0.05 0.35
12 -0.11 0.72 0.13 -0.02
13 0.02 0.51 0.40 -0.08
14 0.12 -0.07 -0.10 0.62
15 0.02 -0.05 -0.02 0.57
16 -0.12 -0.11 0.36 0.52
17 0.02 0.09 -0.10 0.64
18 -0.16 0.24 0.20 0.45
19 0.00 0.05 0.17 0.37
20 0.28 -0.05 0.36 0.19
21 0.01 0.34 0.37 0.09
22 0.24 -0.03 0.34 0.20
23 0.23 0.09 0.48 0.07
24 0.26 0.40 0.04 0.19

Factor
Intercorrelations:

1.00
0.32 1.00
0.48 0.33 1.00
0.48 0.49 0.49 1.00

Note: The 62 elements corresponding to Mulaik’s (1972) targeted zeros are bolded.
Iterated principal factors was the method used for factor extraction.
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5. How Hypermax Can Fail−and What to Do about It

HFRs that depend on weighted varimax can sometimes fail, as in Browne’s
(2001, pp. 138-141) example. Here 2 of 12 variables had low communalities in
a three factor solution, but they are nonetheless of complexity 2 after weighting.
Some factoring methods−notably alpha and image analysis−tacitly assume that
variables are sampled from a well defined domain; hence they should have rea-
sonably high communalities. So a realistic requirement for hypermax might be
that variables with low communalities be eliminated. But this is also why it is a
good idea to try more than one rotation.

There are also cases in which (4) can fail to find the correct cutoff for salient
loadings. Asparouhov and Muthén (2009) give an example for ten variables with
the largest five loadings for each defining two factors. But the second factor also
has two cross-loadings of .25−not large, yet not insignificant. Using simulation,
they found that geomin consistently produced the correct solution, but quartimin
did not. With this same problem (factored by ULS for the recreated model
covariance matrix), hypermax assigned these loading to the hyperplane. The
solution was “not bad” (Table 5) yet it was not perfectly optimal; but note that
the misspecification still did not force those loadings to zero as in CFA. Note
also that simplimax fared even worse for both 8 specified zeros (simple structure)
and 10 (complex structure). But when the 8 hyperplane values were correctly
specified, hypercon exactly produced the optimal solution. Thus, when targeted
elements appear to be misspecified (perhaps > .15 in a large sample), researchers
can repeat the rotation by re-specifying the hyperplane elements, and then apply
hypercon.

Table 5: Two-factor Example Based on Asparouhov and Muthén (2009)

Model Hypermax
Simplimax Simplimax

Factors Factors
Factors Factors Uniqueness

(8 zeros) (10 zeros)

1 .80 .00 .84 -.08 .85 -.13 .85 -.10 .36
2 .80 .00 .84 -.08 .85 -.13 .85 -.10 .36
3 .80 .00 .84 -.08 .85 -.13 .85 -.10 .36
4 .80 .25 .84 .17 .90 .10 .86 .15 .36
5 .80 .25 .84 .17 .90 .10 .86 .15 .36
6 .00 .80 .00 .80 .15 .72 .01 .79 .36
7 .00 .80 .00 .80 .15 .72 .01 .79 .36
8 .00 .80 .00 .80 .15 .72 .01 .79 .36
9 .00 .80 .00 .80 .15 .72 .01 .79 .36
10 .00 .80 .00 .80 .15 .72 .01 .79 .36

Note: Factor correlations were .50 for the model, .57 for hypermax, .48 for simplimax
with 8 zeros specified, and .58 for simplimax with 10 zeros specified. The factors are
not standardized.
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Finally, it is possible for the column rank of the target matrix to be < m.
Though unlikely in practice, this would call for some modification of the target.

6. Summary of Findings and Limitations

It was not possible to evaluate all methods of rotations in a single study
and the number of examples was of necessity limited. Further research should
compare the best of these rotations with others using more real and constructed
examples, or by simulation. However, certain definite conclusions can be drawn
from the present examples.

1. Except when the factor structure is complex, none of the oblique methods
considered here are really bad rotations. If simple structure is truly the
criterion, then all were better choices than varimax for these examples.

2. With the highly complex 26-variable box problem, few rotations are accept-
able; and hypermax was equal to the best of these.

3. With moderately complex structure (Thurstone’s 20-variable box problem;
WAIS-R; and 10 PMA), most rotations are acceptable, although some are
clearly better than others. Again, hypermax was equal to the best.

4. With Eight Physical Variables, the least complex example, all the rota-
tions worked very well, with the exception of varimax and orthoblique with
power parameter = .5, and oblimin with parameter −3. But orthoblique in-
dependent clusters exhibited very simple structure. On the other hand, the
reverse was true for the 20-variable box problem. These results confirmed
expectation (Harris and Kaiser, 1966); namely, that degree of complexity
should moderate the choice of the power parameter for this class of rota-
tions.

5. Consistently, hypermax and simplimax gave the very best solutions in the
empirical examples. However, simplimax is computationally much more
intensive.

6. Simplimax and geomin both not only require selecting from several solu-
tions, but optimizing their fitting functions does not necessarily minimize
the RMS for loadings in the hyperplane; and finding the best fit for geomin
may require trying different values of the epsilon parameter. Also, geomin
can sometimes fail when variables have three or more nonzero loadings (As-
parouhov and Muthén, 2009).

7. In some examples KC did noticeably worse than other rotations.
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8. Promax is still not a bad choice. However, it is important to look at more
than one solution−raising loadings to the second power works best for some
solutions, but the fourth power can work with others. Also, weighted pro-
max should be tried for highly complex problems. In all, promax held up
surprisingly well compared with its newer competitors, promin and promaj;
but further study comparing these methods is needed.

9. Although computer speed is no longer the concern that it once was (as
computers are now so fast), it is worth mentioning that, being non-iterative,
hypermax is very fast. A colleague who tested them independently reported
that hypermax was 38 times faster than geomin for Thurstone’s 26-variable
box problem.

10. Browne’s algorithm, used by both simplimax and TARROT, is an effec-
tive tool for hyperplane fitting. However, hypercon performed as well as
Browne’s TARROT with twenty-four psychological tests, and as was seen,
simplimax (also using Browne’s algorithm) and hypermax produced virtu-
ally identical results. But unlike the HDK procedure, Browne’s method
requires multiple pairwise passes though the columns of the loading ma-
trix, subject to the restriction that the transformation vectors be of unit
length at each step. How is it, then, that these methods resulted in virtually
identical factor matrices?

One clue is that once a sufficient number of zero elements is determined then
one has, in essence, a model that is well over-identified; hence any linear
transformation that preserves the zeros should be unique up to a column
rescaling. That is why not only hypermax but also HH and KC sometimes
give, upon column rescaling, identical results to Browne’s method. But
more importantly, because hypermax and hypercon are scale-free methods,
optimizing the reference structure is equivalent to optimizing the pattern.

Browne’s target rotation is, however, a more general procedure for pro-
crustes rotation, whereas hypermax and hypercon are limited to hyperplane
fitting.

11. SAL plots are analogous to the scree test for the number of factors, in that
there is often a clear break between the smallest and larger loadings. The
points below the break are presumably in the hyperplane; and therefore do
not differ substantially from zero. Fortunately, the break points were very
clear in these examples. Unfortunately, the breaks are not always so crisp
(see Jennrich, 2006, p. 182, Figure 3). But even in those cases, one may
still judge one rotation as better than another in a relative sense, based
on the closeness (RMS) of the smallest points to the baseline. Despite this
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weakness, RMS measures based on SAL plots may be the best method for
comparing rotations.

7. Conclusions

One significant finding is that results so far suggest that, as long as the ele-
ments in the hyperplane are properly identified, the HDK rotation is very effec-
tive in producing an optimal solution, as seen with HH, hypermax and hypercon.
Thus it seems surprising that Horst’s 1941 article has received scant attention in
the factor rotation literature.

Hypermax showed great promise in the empirical examples, in which hyper-
max and simplimax consistently performed best in locating hyperplanes. Hy-
permax, however, is computationally much more efficient. Hypermax and HH
often gave identical results, but the addition of weighted varimax improves the
otherwise effective HH for complex structures. Geomin, which did best in the
constructed example (Table 5), is a hyperplane locating rotation, though not a
hyperplane fitting one as defined here. It was slightly less effective in some ex-
amples and it has been known to fail with more than two cross-loadings for a
given variable, but it did as well as any for the complex box problems. Hyper-
max, simplimax, geomin, and confirmatory target rotation should be high on the
researcher’s list of effective tools, especially with complex data. Target rotations
included hypercon and Browne’s method, but again, hypercon using HDK was
more efficient. Other hyperplane and analytic rotations were less effective in some
examples.

It should be obvious that no rotation is perfect for every occasion. Conven-
tional analytic rotations are satisfactory for recovering simple structure in many
cases. But typically these do not work well with highly complex data, for which
Thurstonian simple structure requires identifying those often elusive zeros by lo-
cating hyperplane boundaries, thus either eliminating rotational indeterminacy−
or at least reducing it−as some data will still require careful scrutiny in order to
determine the best solution(s).
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