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Abstract: We have developed an enhanced spike and slab model for vari-
able selection in linear regression models via restricted final prediction error
(FPE) criteria; classic examples of which are AIC and BIC. Based on our
proposed Bayesian hierarchical model, a Gibbs sampler is developed to sam-
ple models. The special structure of the prior enforces a unique mapping
between sampling a model and calculating constrained ordinary least squares
estimates for that model, which helps to formulate the restricted FPE crite-
ria. Empirical comparisons are done to the lasso, adaptive lasso and relaxed
lasso; followed by a real life data example.
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1. Introduction

We consider the problem of selecting variables in a linear regression model.
To outline the problem mathematically, we consider the linear regression model

Yi = β1xi,1 + · · ·+ βKxi,K + εi = xtiβ + εi, i = 1, · · · , n, (1)

where the responses Y1, · · ·, Yn are independent with correspondingK-dimensional
predictors x1, · · · ,xn. The {εi}’s are independent variables such that E(εi) = 0
and E(ε2i ) = σ2 > 0. The dilemma is to find the subset of nonzero covariates from
β = (β1, β2, · · · , βK)t. In this article it is also assumed that xi are standardized
so that

∑
i=1 xi,k = 0 and

∑
i=1 x

2
i,k = n for each k.

The purpose of this article is to use final prediction error (FPE) (Akaike, 1969)
criteria for variable selection via a restricted model search mechanism based on
Bayesian hierarchical model.

FPE is a criteria which takes the residual sum of squares (RSS) and tacks
on a penalty related to the number of variables. To properly define FPE for a
subset α ⊆ {1, · · · ,K}, let βα be the components of β = (β1, · · · , βK)t which are
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indexed by the elements of α. The formal definition of FPE criteria based on the
linear regression model (1) is:

FPE(α) = n−1RSS(α) + λnn
−1σ̂2Kα. (2)

In (2), RSS(α) is the RSS for model α when the first Kα variables are entered
in the model, Kα is the size of the model α, σ̂2 is the unbiased estimator for σ2

and λn is the non-zero penalty associated with the model. Model selection based
on FPE chooses the model of size Kα̂ which minimizes (2) with respect to α.
Classic examples of the FPE criteria are AIC (Akaike, 1973) and BIC (Schwarz,
1978). Note that, expression (2), setting λn = 2 generates the AIC criterion and
the BIC criterion if λn = log(n).

In general to implement FPE variable selection approach; we need to visit
all 2K models and then apply the criteria to select the best subset of variables.
Unfortunately this is not viable in high dimensional setting as it becomes com-
putationally infeasible even for relatively small K. Instead we use a Bayesian
approach based on rescaled spike and slab models (Ishwaran and Rao, 2003, 2005
a, b); a variable selection method for linear regression models, which is rooted in
the spike and slab models (George and McCulloch, 1993). Using this model we
design a Gibbs sampler which allow us to draw values from the Bayesian poste-
rior. This Gibbs sampler is highly efficient and is capable of effective search across
the relevant model space which results in a restricted all subset search. Using
these models we can implement a restricted FPE variable selection technique.

Another goal is to explore model space based on Bayesian hierarchical mod-
els. Model space exploration is extremely important from a machine learning
perspective, especially in high dimensional setting. Therefore without executing
any type of variable selection technique, we are able to locate variables that are
vital in explaining the data.

The restricted FPE variable selection approach is solely driven by the pro-
posed Bayesian hierarchical models; therefore, it is vital to study the impact of
this model for searching the entire model space. By model space exploration we
mean the following: the Gibbs sampler samples posterior values in each draw
to produce desired model for performing restricted FPE analysis. These values
also drive the posterior model probability, a higher probability value results in a
larger model and vice versa. If Gibbs sampler samples only smaller models or only
larger models, then resulting estimator will be underestimated or overestimated
respectively. To analyze this issue, we theoretically study the performance of the
proposed model in exploring the model space on the basis of Bayesian model av-
eraged (BMA) estimator. Theoretical results show that Gibbs sampler based on
our proposed model; samples all possible model sizes required for exploring the
model space. Graphical tools are useful especially in high dimensional setting, to
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pinpoint the significance of variables in a given data set. We present a graphical
tool to do so.

The article is organized as follows: Section 2 reviews the spike and slab hierar-
chical models and proposes a new bimodal prior in the spike and slab hierarchy.
Also discussed is how this special type of hypervariance structure of the prior
helps to compute FPE estimates for several models. Section 3 discusses the in-
terplay between the posterior mean which is the BMA estimator and model space
exploration. Section 4 introduces rescaled spike and slab models (termed the “bi-
modal spike and slab model”). The remainder of this Section talks about how this
model overcomes certain limitations of earlier proposed model in Section 2. In
Section 5; a simulation study compares our proposed method with other popular
model selection methods from the perspective of model space exploration; an-
other simulation study is done to study the performance of the proposed model
in the context of high-dimensional sparse linear model. Section 6 has real life
data analysis using the R package modelSampler, developed based on our pro-
posed model. The article concludes in Section 7. The proof of all lemmas and
theorems of this article are placed in the Appendix.

2. A New Spike and Slab Model

Spike and slab models (Ishwaran and Rao, 2005b; George and McCulloch,
1993, 1997; Mitchell and Beauchamp, 1988) are a popular methodology for se-
lecting variables in the regression set up in (1). A spike and slab model defined
in Ishwaran and Rao (2005b) is a Bayesian model specified by the following prior
hierarchy:

(Yi|xi, β, σ̂2)
ind∼ N(xtiβ, σ̂

2), i = 1, · · · , n,
(β|γ) ∼ N(0,Γ),

γ ∼ π(dγ).

(3)

Here 0 is the K-dimensional zero vector, Γ is the K × K diagonal matrix
diag(γ1, · · · , γK) and π is the prior measure for γ = (γ1, · · · , γK)t.

All through this article the prior π for γ is specified as:

(γk|v0, V, w)
iid∼ (1− w) δv0(·) + w δV (·), k = 1, · · · ,K,

w ∼ Uniform[0, 1],
(4)

where δv(·) is a discrete measure concentrated at the value v. This prior for
γ is in essence a two-component mixture model with one component taking on
a very small value v0 > 0, and the other component taking on a very large
value V > 0. It induces a prior for β, which is a mix of near-degenerate multi-
normal distributions concentrated on a submodel α. An important feature of
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this two-component prior is that it has a selective shrinkage property. Selective
shrinkage is a property where the posterior mean shrinks towards zero only for
coefficients that are truly zero. For theoretical justification of this feature for a
two-component prior see Ishwaran and Rao (2011). Another important feature of
(4) is the presence of w, which we label as “complexity parameter”, that controls
the size of the models. Note that using an indifference prior is equivalent to
choosing a degenerate prior for w at the value of 1/2. Using a continuous prior
for w, therefore allows for a greater amount of adaptiveness in estimating model
size.

As stated earlier; the purpose of this article is to explore model and at the
same time; perform a restricted FPE analysis for variable selection. The imple-
mentation of the FPE analysis is done using the following procedure.

Running the Gibbs sampler, we track the different α models as they are
being sampled. The model α is identified by introducing the following notation:
Defining

Ik =

{
1, if γk = V ,
0, otherwise.

(5)

Thus, each draw for γ has an associated binary K-tuple (I1, · · · , IK). Therefore
the model α is the model where α = {k : Ik = 1}. This creates a unique mapping
between γ and α. Once we have the model α, we calculate the constrained OLS
estimates of that model based on the indices of α, and then calculate the RSS
for the model. Computation of AIC and BIC values are carried out using (2),
which allows us to study the empirical performance of methods like AIC and BIC
without being restricted to the number of predictors. This is greatly beneficial
since classical implementations of an all subsets search (such as leaps-and-bounds
(Furnival and Wilson, 1974)) is typically restricted to a handful of predictors, such
as K = 30. The steps for calculating the FPE criteria are as follows. If the Gibbs
sampler visits a model α, we calculate the constrained OLS of model α as

β̂+α = (Xt
+αX+α + I+α)−1Xt

+αY, (6)

where +α indicates the set of non-zero elements in α and I+α is an identity matrix
of order (+α × +α). The corresponding RSS of that model will be RSS(α) =
||Y − X+αβ̂+α||2. Once we have the RSS(α), we calculate the FPE defined in
(2).

3. The Effect of Model Exploration on the Posterior Mean

This section shows in what ways model exploration can affect the BMA esti-
mator, which is the posterior mean. Our discussion is based on the models (3)
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and (4). To define BMA formally, let β̂ be the BMA estimator of β, then

β̂ = E(β|Y) =
∑
α

µα Pr(α|Y), (7)

where µα = E(β|α,Y), is the conditional posterior mean under model α and
Pr(α|Y) is the posterior model probability of model α.

The BMA estimators are often used in Bayesian paradigm for model selec-
tion as BMA is a stable estimator since averaging over all the models takes care
of model uncertainty, therefore it has better predictive performance. From (7),
we notice that the BMA is driven by the posterior model probability; a higher
value of probability results in a better estimator, whereas a smaller value presents
an estimator of inferior quality. We show that the conditional posterior mean is
approximately equivalent to constrained OLS estimator under our proposed mod-
els. Therefore; BMA is driven by the posterior model probability and constrained
OLS estimator. In (5) and (6), we show how to calculate constrained OLS es-
timators. Hence if the Gibbs sampler moves around a smaller model space, it
results in exploring smaller models. In addition, both the posterior model proba-
bility and constrained OLS will produce poorer BMA estimate, whereas in bigger
model space the Gibbs sampler executes better. Therefore the corresponding
BMA estimator calculated based on the models visited by Gibbs sampler, can
be used as a tool to determine the nature of variables over the model space. In
fact, in Section 6 we will use BMA estimator to compare the performance of FPE
variable selection techniques.

3.1 Posterior Model Probability under Model (3)

Here we study in great detail the posterior model probability under model (3)
as it is vital for model exploration. The posterior probability for α is

Pr(α|Y) =
Pr(Y|α) Pr(α)∑
α′ Pr(Y|α′) Pr(α′)

,

where Pr(Y|α) =
∫
f(Y|β, α)f(β|α)dβ is the marginal integrated likelihood of α

and Pr(α) is the marginal prior probability of model α. If we interpret Pr(α|Y)
as an assessment of the importance of model α, then from a model selection
perspective; the goal is to choose α for which Pr(α|Y) is largest. In the data
analysis section (Section 6), we will present this probability for each variables in
the model.

Theorem 1. Under the models (3) and (4), the posterior model probability of
α is

Pr(α|Y) =
Pr(α)C(α)∑
α′ Pr(α′)C(α′)

,
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where C(α) = |σ̂−2ΓαΣ−1α |−1/2 exp{µtαΣ−1α µα/(2σ̂
2)}, Σ−1α = (XtX + σ̂2Γ−1α ),

µα = ΣαXtY is the conditional posterior mean of model α, Γα is the α × α
diagonal matrix diag(γ1, · · · , γα).

In describing the proposed bimodal model, V is set to a very large value, but
the question is how large is this value? In Section 4, we come up with the exact
value of V . In describing the Bayesian hierarchical model, we have mentioned
that v0 should be very small and V should be very large; so it is interesting to
note the limiting form of the posterior model probability under the limits v0 → 0
and V → ∞. Under our proposed model, the conditional posterior mean is
approximately equivalent to constrained OLS estimator. The first Lemma will
formally present this argument. The second Lemma will depict the limiting form
of C(α). Combining both results, we present the limiting form of Pr(α|Y) in the
Theorem 2.

Lemma 1. As v0 → 0 and V →∞,

µα → µ̂α,

where µ̂α denotes the estimator with values µ̂+α along the α coordinates, and
zero elsewhere, and µ̂+α = (Xt

+αX+α)−1Xt
+αY is the constrained OLS estimator

for α.

Lemma 2. As v0 → 0 and V →∞,

C(α)
p→ Ĉ(α),

where

Ĉ(α) =

(
σ̂2

V

)Kα/2
| Xt

+αX+α |−1/2 exp

{
1

2σ̂2
µ̂t+α[Xt

+αX+α]µ̂+α

}
.

Theorem 2. As v0 → 0 and V → ∞, along with the results of Lemma 1 and
Lemma 2, the posterior model probability of Theorem 1 is of the following form

Pr(α|Y) ≈ Pr(α)Ĉ(α)∑
α′ Pr(α′)Ĉ(α′)

,

where µ̂α and Ĉ(α) are as defined earlier. (Here “ ≈ ” stands for “approximately
equivalent to”).

The final form of the posterior model probability in Theorem 2; leads to
a number of interesting issues with respect to model space exploration. The
presence of a constrained OLS estimator; in the expression of the posterior model
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probability is noticeable. We calculate the constrained OLS based on the indices
of the model. With a smaller model, the constrained OLS will be calculated based
on the indices of that model, which results in introducing a smaller posterior
model probability. However, we do not want to restrict ourselves to only smaller
models; but would like to visit a variety of models. This is not possible because
of the presence of V −Kα/2; appearing in Pr(α|Y) (posterior model probability)
through C(α). In a diffuse prior; the probability will heavily penalize larger
models, which results in a penalization of the posterior values. As a result, the
Gibbs sampler based on (3) only visits smaller models.

4. Rescaled Spike and Slab Model: A Bimodal Spike and Slab Model

To resolve this setback; instead of using (3), we use a rescaled spike and slab
model (Ishwaran and Rao, 2005b). This approach uses the same prior (4) for
π, however, in place of Yi in (3), we use the rescaled values Y ∗i = σ̂−1n1/2Yi.
An appropriate adjustment to the variance is introduced to accommodate the
rescaling. A rescaled spike and slab model defined in Ishwaran and Rao (2005b)
is:

(Y ∗i |xi, β)
ind∼ N(xtiβ, n), i = 1, · · · , n,

(β|γ) ∼ N(0,Γ),

γ ∼ π(dγ).

(8)

Note that this hierarchy includes a factor n; in the variance of the response to
compensate for the rescaling. Also, any effect of σ2 is removed from this model
because the Yi’s are rescaled by σ̂2. For this reason, unlike in (3), the presence
of σ̂2 is not needed.

By replacing Y by Y∗ and setting V = n, the limiting posterior model prob-
ability under the limit v0 → 0 and V →∞ is

P̂r(α|Y∗) ≈ Pr(α)Ĉ∗(α)∑
α′ Pr(α′)Ĉ∗(α′)

, (9)

where

Ĉ∗(α) = |Xt
+αX+α|−1/2 exp

{
1

22
µ̂t+α[Xt

+αX+α]µ̂+α

}
. (10)

(Here “ ≈ ” stands for “approximately equivalent to”). Perfect cancellation of
V and σ̂2 occurring in Ĉ(α), ensures that Ĉ∗(α) is independent of V . Hence the
issue of the unavoidable penalty term involved in the posterior model probability
is resolved in (3).

We present some interesting results related to the posterior model probability
under the bimodal model (8). The following theorem shows an interesting rela-
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tionship between the posterior model probability (9) and a BIC-like penalization
value.

Theorem 3. Under (8), maximizing P̂r(α|Y∗) is approximately equivalent to
minimizing the BIC-penalty

RSS(α) + σ̂2Kα log(n). (11)

The above theorem shows that there is an intimate association between the
posterior for α and BIC-penalization, but to assume that model selection based
on our method, is nothing more than a restricted all-subsets search guided by
a BIC-like penalty, is incorrect and flawed. With the induction of the effects of
the “true” complexity parameter (for details, see the proof of the Theorem 4 in
the Appendix), we present further interesting results using the posterior mean in
model (8). The following theorem demonstrates our viewpoint.

Theorem 4. Under (8), maximizing P̂r(α|Y∗) is approximately equivalent to
minimizing

RSS(α) + σ̂Kα log(n) + 2σ̂2Kα log

(
1− w0

w0

)
. (12)

This can be rewritten as

RSS(α) + BIC.pen(α) + log

(
1− w0

w0

)
×AIC.pen(α), (13)

where w0 is the “true” complexity value, BIC.pen(α) = σ̂2Kα log(n) and
AIC.pen(α) = 2σ̂2Kα are the usual BIC and AIC penalty values.

The presence of w0 in Theorem 4 leads to an interesting discussion on model
exploration. The expression in (12) is not a traditional BIC penalty, instead a
modified term involving the adaptively estimated complexity! For instance, a
small value 0 < w0 < 1/2 will heavily penalize larger models, whereas a large
1/2 < w0 < 1 value will penalize smaller models. The value w0 = 1/2 leads to a
BIC-like penalty, since, setting w0 = 1/2 in (12) yields (11).

In fact, one can view (12) or (13) as a compromise between BIC and an
adaptively estimate of the AIC penalty. This is another way to interpret the
effect of w0. Setting w0 = 1/2 in (12) or (13) eliminates the AIC penalty. On
the other hand, as w0 approaches 1, the AIC penalization term becomes negative
and the overall penalization drops, which encourages larger models. The opposite
occurs as w0 becomes small, as w0 approaches 0; it results in a positive and very
large penalization; yielding small models.

5. Simulation Study
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5.1 Example 1

A simulation study is performed to compare the performance of this model
exploration tool compared to other popular model selection methods. we are
using “Breiman simulations” as described in Breiman (1992). In the simulations,
data is generated with the following setting: the covariates xi are simulated
independently from a multivariate normal distribution with E(xi,k) = 0 and
E(xi,jxi,k) = ρ|j−k|, where 0 < ρ < 1 represent the correlation coefficient and the
error εi’s are i.i.d N(0, 1) variables. Three different conditions of ρ are considered:
(i) uncorrelated design (ρ = 0), (ii) moderate correlated design (ρ = 0.5), and
(iii) highly correlated design (ρ = 0.9).

Under this global condition, two different conditions are considered: (I) a
model with moderate number of non-zero coefficients (n = 200, K = 100, there
are 55 zero coefficients); and (II) a model with many zero coefficients (n = 800,
K = 400, there are 295 zero coefficients). For model (I), non-zero coefficients
are clustered into 9 different groups, each cluster consists of 5 coefficients. Value
of these 5 coefficients remain unchanged and replicates across the entire clusters.
For model (II), non-zero coefficients are clustered into 15 different groups, each
cluster consists of 7 coefficients. Value of these 7 coefficients remain unchanged
and replicates across the entire clusters. In all simulated models, coefficient values
are adjusted by multiplying a constant by which the theoretical R2 is 0.75.

The goal of this simulation study is to see how well our model exploration
tool performs in comparison to lasso (Tibshirani, 1996), adaptive lasso (Zou,
2006) and relaxed lasso (Meinshausen, 2007). Relaxed lasso is an alternative to
lasso; where a double optimization technique is implemented using two tuning pa-
rameters to improve variable selection performance, for details see Meinshausen
(2007). The adaptive lasso is another modification to lasso, works different than
relaxed lasso, adds a unique penalization to each coefficient on top of lasso penal-
ization, see Zou (2006) for details. Most of the time these methods are used for
model selection; here we use these methods from the perspective of model space
exploration. For this reason, we focus on a couple of items: estimated model size
(k̂) and total number of incorrectly classified variables (Miss). Lasso computation
is implemented by using R package lars; relaxed lasso is implemented by using R
package relaxo. Tables 1 and 2 summarizes the simulation results.

Below is the summary of our findings from the simulation study (with refer-
ence to Tables 1 and 2).

Bimodal model always opts for smaller model. The lasso selects larger models
and has a tendency to overfit the model. In certain situations; misclassification
rate for bimodal model is lesser than in lasso and other methods. In most sit-
uations; relaxed lasso performs quite identical to lasso. In correlated setting,
performance of adaptive lasso is inferior than lasso as far as misclassification rate
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Table 1: Simulation result based on model (I) of Example 1. The values used in
the simulation are: sample size (n) = 200, total number of variables (K) in the

model = 100, out of them 55 (55%) are zero coefficients. Reported criteria are k̂
(averaged estimated model size), Correct (average number of correctly classified
variables), and Miss (average number of misclassified variables). Monte Carlo
standard deviations are in parentheses below each criterion. All results are
based on 200 iterations

ρ = 0 ρ = 0.5 ρ = 0.9

k̂ Correct Miss k̂ Correct Miss k̂ Correct Miss

bimodal 29.93 25.67 22.23 19.67 17.88 25.54 11.42 9.41 37.63

(3.79) (2.89) (2.61) (3.18) (1.92) (1.92) (1.10) (0.98) (1.48)

lasso 67.1 41.08 30.68 50.36 36.26 22.94 32.43 21.34 34.31

(7.15) (1.91) (5.98) (7.89) (2.92) (4.81) (5.91) (3.12) (4.67)

adaptive lasso 37.11 32.64 18.41 28.04 24.04 26.44 17.18 11.20 39.74

(6.05) (3.88) (3.55) (6.19) (3.59) (3.86) (2.88) (3.15) (3.28)

relaxed lasso 71.3 39.15 34.04 49.71 32.54 23.99 34.11 19.68 35.33

(14.33) (3.56) (9.70) (13.25) (4.56) (7.70) (9.92) (3.58) (5.85)

Table 2: Simulation result based on model (II) of Example 1. The values
used in the simulation are: sample size (n) = 800, total number of variables
(K) in the model = 400, out of them 295 (74%) are zero coefficients. Reported

criteria are k̂ (averaged estimated model size) , Correct (average number of cor-
rectly classified variables), and Miss (average number of misclassified variables).
Monte Carlo standard deviations are in parentheses below each criterion. All
results are based on 200 iterations

ρ = 0 ρ = 0.5 ρ = 0.9

k̂ Correct Miss k̂ Correct Miss k̂ Correct Miss

bimodal 63.79 57.67 49.98 42.28 39.14 66.57 22.10 19.45 81.44

(3.78) (3.27) (3.08) (3.10) (2.39) (2.15) (1.43) (1.03) (1.15)

lasso 196.61 92.92 114.77 133.83 84.86 69.71 83.78 58.77 70.14

(16.89) (4.27) (14.54) (16.65) (3.59) (13.18) (8.67) (3.97) (7.67)

adaptive lasso 86.31 73.98 42.91 68.03 55.38 60.57 47.88 29.14 92.76

(8.65) (4.86) (4.72) (8.23) (5.69) (4.41) (6.97) (3.32) (5.27)

relaxed lasso 162.9 84.10 91.84 101.26 72.46 51.76 83.59 52.75 71.25

(55.69) (7.21) (41.92) (30.25) (7.96) (18.90) (16.89) (6.59) (12.44)

is concerned. An interesting feature of the bimodal model all through the simula-
tion study is that the Monte Carlo standard deviations are minimal in comparison
to other methods, this explains the stability of the bimodal model in exploring
the model space.
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In all different conditions, for bimodal model, based on the estimated model
size, the number of correctly specified non-zero variables on an average; perform
reasonably well with respect to other comparable methods.

Finally, it is seen that in certain circumstances; misclassification rate is higher
for bimodal model than other methods as the model size is smaller compared to
other methods. Here lies the trade-off between misclassification rate and model
size: if the model size is bigger, misclassification rate is low and vice versa.

5.2 Example 2

Here we conduct another simulation study to investigate the performance of
the proposed bimodal model using high-dimensional sparse linear model as used
in Ing and Lai (2011) and Shao and Chow (2007). Two different sets of sample
size and number parameters are considered in the model: (n = 50,K = 200) and
(n = 100,K = 400). For each of the above condition, error standard deviations
are taken as σ = 1 and σ = 0.1. It is assumed that only the first five covariates
are non-zero and rest of them are zero.

The simulated data is generated as follows. The response Yi’s are generated
as Yi = xtiβ + εi, i = 1, 2, · · · , n. The set of x1,x2, · · · ,xn are independently
generated from a multivariate normal distribution with mean vector 1K (the K-
dimensional vector of ones) and covariance matrix IK (an identity matrix of order
K). Two different constraints on xi’s are considered: xi’s are fixed throughout
the iterations and xi’s are random throughout the iterations. The β’s values are
taken as β = (3,−3.5, 4,−2.8, 3.2, 0, 0, · · · , 0)t. The error εi’s are independently
generated from N(0, σ2).

Table 3 reports the performance of the bimodal spike and slab model in high-
dimensional sparse linear model. In all different situations, bimodal model shows
quite similar trend in variable selection, correctly specifying non-zero variables
and also in incorrectly specifying variables. There is not much difference noticed
in variations of model properties. In all the different situations, bimodal model
produces smaller model size. There are only five non-zero covariates in the model;
from this study it is noticeable that the correctly identified non-zero covariates are
approximately two on an average, which is fairly fitting, and the misclassification
rate is also reasonably effective. It should be noted that in current model/variable
selection techniques for high-dimensional sparse models, most of the time a two-
stage procedure has been used; first a variable screening technique is used to
reduce the number of variables from the model; then a second method has been
used to the reduced model for final model/variable selection. Here we don’t use
any screening method; we directly use the bimodal model for variable selection.
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Table 3: Simulation result based on Example 2. Reported criteria are k̂ (av-
eraged estimated model size), Correct (average number of correctly classified
variables), and Miss (average number of misclassified variables). All results are
based on 200 iterations

σ n K k̂ Correct Miss

Fixed x

1 50 200 12.73 2.30 13.13
100 400 26.09 1.84 28.39

0.1 50 200 19.96 1.86 21.63
100 400 23.76 1.73 25.31

Random x

1 50 200 12.87 1.85 14.17
100 400 19.12 1.79 22.73

0.1 50 200 13.96 1.65 15.66
100 400 21.36 1.69 20.78

6. Applications of Bimodal Spike and Slab Model

6.1 Ozone Data

This section applies our R software package modelSampler for variable selec-
tion by FPE method using the well known ozone data (Breiman and Friedman,
1985). The data set consists of 203 observations with 12 variables, each observa-
tion is a day. The outcome variable in this example is ozone emission, ozone.

Table 4 contains the variable selection result based on ozone data. The first
column (variable names) is ordered by the BMA estimators. The second column
represents the posterior inclusion probability values of those variables. If the goal
is to perform variable selection based on the median model (Barbieri and Berger,
2004) (0.50 of “prob” value is the cut-off point for selecting a variable to be in
the model), then according to the median model, only four variables are in the
selected model. The last two columns indicate the AIC and BIC models. The
table shows that six variables are selected by AIC whereas only three variables are
selected by BIC. It is interesting to note that the BIC model is more conservative
than the median model.

Table 5 helps to assess the importance of a variable. Variables in the first
column of the table are ordered by the BMA estimators, as a result the ordering
is quite stable. This indicates the best model of size k for each k in terms of R2

value. This table allows one to weigh in the global importance of a given variable.
For example, the variable “humid” is highly significant as it appears in the best
model for any given size. Also the posterior inclusion probability for “humid” is
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Table 4: Variable selection results based on Ozone data. Results are based on
a 2,500 burn-in iteration and 10,000 sampled values

Variable prob median model AIC model BIC model

tempE 0.819 X X X
humid 0.981 X X X
tempS 0.610 X X
month 0.903 X X X
ibtemp 0.276
press 0.287 X
ibht 0.263 X
vis 0.140

pressg 0.114
daymonth 0.062

wind 0.063
dayweek 0.056

Table 5: Top model stratified by size of the model based on Ozone data. Results
are based on a 2,500 burn-in iteration and 10,000 sampled values

Variable 1 2 3 4 5 6 7 8 9 10 11 12

tempE X X X X X X X X X X X
humid X X X X X X X X X X X X
tempS X X X X X X X X
month X X X X X X X X X X
ibtemp X X X X X
press X X X X X X X X X
ibht X X X X X X X
vis X X X X X X
pressg X X
daymonth X X
wind X X X X
dayweek X X

0.98, the largest value of all the variables. This result demonstrates the behavior
of the variables over the model space.

6.2 Graphical Diagnostics

Here we graphically summarize the results obtained from the analysis using
a graphical wrapper which is produced from the R package (see Figure 1). The
wrapper consists of five distinct plots. The top leftmost plot represents a his-
togram of several estimated complexity parameters from 10,000 sampled models.
A closer look at the plot indicates that the mode of the complexity value lies in
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Figure 1: Complete graphical analysis of Ozone data. Results are based on a
2,500 burn-in iteration and 10,000 sampled values

between 0.33 to 0.56. The middle plot on the top represents FPE values as a
function of the dimension of the models. The black line corresponds to mini-
mum residual sum of squares, the red line is minimum AIC and the green line is
minimum BIC. The rightmost plot on the top is a histogram of several dimen-
sionality of the models visited by the Gibbs sampler. A model of size 3 to 5 is
the most frequently visited model. This characterizes the fact that three to five
variables are the most significant variables in the data set. The bottom leftmost
plot is an interesting plot. Here we have plotted the variables of the sampled
model with respect to the number of Monte Carlo iterations. This plot helps to
re-evaluate the importance of variables implicitly. For example, humid is present
in almost all sampled models, while dayweek hardly ever appears. Clearly humid
is an important variable. The last plot on the bottom represents the probability
of visiting a new model at each iteration. We see that it stabilizes very quickly
as the line is almost flat as the number of iterations approaches 10,000; which
graphically identifies the convergence of the Gibbs sampler.

These plots are highly effective in explaining the data. Model space explo-
ration helps to understand the nature of variables in explaining the data. A
closer look at the plots show strong evidence of our argument that without even
implementing any model selection technique; we have a clear-cut idea of the rel-
evant variables and the data dimensionality. The leftmost plot on the bottom is
a perfect example in this situation. As we sample several models, it is clear from
this plot, which all variables are all-encompassing of any model.
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7. Discussion

In this article we propose a simple bimodal model under spike and slab hier-
archy. From the model space exploration point of view; this model is appropriate
as it has selective shrinkage property. We have discussed the interplay between
conditional posterior mean and model space exploration. Theoretical justifica-
tions illustrate the asymptotic equivalence between conditional posterior mean
and constrained OLS estimator, that results in implementing frequentist model
selection approach. Another interesting feature of bimodal prior is that it as-
sociates with the popular g-prior introduced by Zellner (1986), see Dey (2008)
for details. By conducting an extensive simulation study; we show that the bi-
modal model favorably prevails against lasso, adaptive lasso and relaxed lasso.
In all simulations it generated smaller models with competing misclassification
rate. The performance of the proposed method has also been tested in high-
dimensional sparse linear model via simulation study. The bimodal model shows
quite reasonable performance by producing smaller models and with acceptable
misclassification rate and correctly classifying non-zero covariates in the model.
The proposed method is effective in both model space exploration and variable
selection process by using both frequentist and Bayesian techniques. The R pack-
age modelSampler is available upon request.

Appendix

Proof of the Theorem 1. First note that

f(Y|β, α)f(β|α) = (2πσ̂2)−n/2|2πΓα|−1/2 exp

{
− 1

2σ̂2
||Y||2 +

1

2σ̂2
µtαΣ−1α µα

}

× exp

{
− 1

2σ̂2
(β − µα)tΣ−1α (β − µα)

}
.

Therefore,

Pr(Y|α) =

∫
f(Y|β, α)f(β|α)dβ

= (2πσ̂2)−n/2|2πΓα|−1/2 exp

{
− 1

2σ̂2
||Y||2 +

1

2σ̂2
µtαΣ−1α µα

}

×
∫

exp

{
− 1

2σ̂2
(β − µα)tΣ−1α (β − µα)

}
dβ

= (2π)−n/2 exp

{
− 1

2σ̂2
||Y||2

}
C(α),
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where

C(α) = |σ̂−2ΓαΣ−1α |−1/2 exp

{
1

2σ̂2
µtαΣ−1α µα

}
.

Consequently,

Pr(α|Y) =
Pr(Y|α) Pr(α)∑
α′ Pr(Y|α′) Pr(α′)

=
C(α) Pr(α)∑
α′ C(α′) Pr(α′)

is the posterior model probability for α. 2

Proof of Lemma 1.

lim
V→∞

µα = lim
V→∞

{
(XtX + σ̂2Γ−1α )−1XtY

}
=

(
XtX +

σ̂2

v0
(I− I0α)

)−1
XtY,

where I0α is the diagonal matrix with a zero entry if k /∈ α and an entry of 1 if
k ∈ α. Hereafter, we use a subscript of +α to indicate the inclusion of only those
values in α and a subscript of −α to indicate the exclusion of all values in α. For
the moment, without loss of generality, assuming that X is ordered so that the
first Kα coordinates correspond to α. Using the following partition of A:

A =

(
XtX +

σ̂2

v0
(I− I0α)

)
=

(
A1,1 A1,2

At
1,2 v−10 A2,2

)
,

where

A1,1 = Xt
+αX+α, A1,2 = Xt

+αX−α, and A2,2 = v0X
t
−αX−α + σ̂2I−α,

validating that

A−1 = B =

(
B1,1 B1,2

Bt
1,2 B2,2

)
,

where

B1,1 =
(
A1,1 − v0A1,2A

−1
2,2A2,1

)−1
,

B1,2 = −v0B1,1A1,2

(
A2,2 − v0A2,1A

−1
1,1A1,2

)
,

B2,2 = v0

(
A2,2 − v0A2,1A

−1
1,1A1,2

)−1
.

If v0 → 0, then A2,2 → σ̂2I−α, an invertible matrix. Deducing

A−1 →
(

A−11,1 0+α,−α,

0t+α,−α 0−α,−α,

)
, as v0 → 0.
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Therefore,
µα → µ̂α, as v0 → 0 and V →∞.

2

Proof of Lemma 2. Let Γ0
α =

[
I0α + (v0/V )(I− I0α)

]1/2
. Observing that

V K/2|σ̂−2ΓαΣ−1α |−1/2 = σ̂K |Γ0
αXtXΓ0

α + σ̂2V −1I|−1/2

→ σ̂K |Xt
+αX+α + σ̂2V −1I+α|−1/2 × |I−α|−1/2 ×

(
σ̂2

V

)−(K−Kα)/2
,

as v0 → 0.

Assuming that if V →∞,

C(α)
p→ Ĉ(α), as v0 → 0.

2

Proof of Theorem 3. By multiplying the numerator and denominator of
P̂r(α|Y∗) by exp(−||Y||2/(2σ̂2)), we replace (10) with

Ĉ∗(α) = |Xt
+αX+α|−1/2 exp

{
− 1

2σ̂2
RSS(α)

}
, (14)

where RSS(α) = ||Y − X+αµ̂+α||2 is the residual sum-of-squares for α. This
follows from the identity

−RSS(α) = −||Y||2 + YtX+αµ̂+α = −||Y||2 + µ̂t+α[Xt
+αX+α]µ̂+α.

The first term on the right of (14) is a dimensionality effect. On the log-scale this
is roughly of order −Kα log(n)/2. For example, if X is orthogonal, then assuming
rescaling of covariates, Xt

+αX+α = nI+α. This rescaling is crucial, since it implies
that

|Xt
+αX+α|−1/2 = n−Kα/2. (15)

The log of the second term on the right of (14) is a measure of goodness of
fit, −RSS(α)/(2σ̂2). Thus, maximizing Ĉ∗(α) is equivalent to minimizing the
BIC-penalty

RSS(α) + σ̂2Kα log(n).

2

Proof of Theorem 4. First observe that (9) can be rewritten as

P̂r(α|Y∗) =

∫ 1

0

Pr(α|w)Ĉ∗(α)∑
α′ Pr(α′|w)Ĉ∗(α′)

ν(dw|Y∗),
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where

ν(dw|Y∗) =
ν(dw)

∑
α′ Pr(α′|w)Ĉ∗(α′)∑

α′ Pr(α′)Ĉ∗(α′)
.

(This follows either by direct application of Bayes theorem, or upon substituting
the expression for ν(dw|Y∗) and integrating). In particular ν is a prior measure
for w ∈ [0, 1]. Now

Pr(α|w) = wKα(1− w)K−Kα

is the prior probability for α given w. Because we expect ν(dw|Y∗) → w0, the
“true” complexity value, this implies

P̂r(α|Y∗) ≈ Pr(α|w0)Ĉ
∗(α)∑

α′ Pr(α′|w0)Ĉ∗(α′)
,

and consequently:

log
(

P̂r(α|Y∗)
)
≈ Kα log(w0) + (K −Kα) log(1− w0)

−1

2
log
(
|Xt

+αX+α|
)
− 1

2σ̂2
RSS(α) + Constant.

(Here “ ≈ ” stands for “approximately equivalent to”). Using a similar argument
as in the proof of Theorem 3, maximizing this value is equivalent (approximately)
to minimizing

RSS(α) + σ̂2Kα log(n) + 2σ̂2Kα log

(
1− w0

w0

)
.

The above expression can be rewritten as

RSS(α) + BIC.pen(α) + log

(
1− w0

w0

)
×AIC.pen(α).
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