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Abstract: In this study, we propose a pattern matching procedure to seize
similar price movements of two stocks. First, the algorithm of searching the
longest common subsequence is introduced to sieve out the time periods in
which the two stocks have the same integrated volatility levels and price
rise/drop trends. Next we transform the price data in the found matching
time periods to the Bollinger Percent b data. The low frequency power
spectra of the transformed data are used to extract trends. Pearson’s chi-
square test is used to assess similarity of the price movement patterns in
the matching periods. Simulation results show the proposed procedure can
effectively detect the co-movement periods of two price sequences. Finally,
we apply the proposed procedure to empirical high frequency transaction
data of NYSE.

Key words: Bollinger Percent, high frequency transaction data, longest com-
mon subsequence, pattern matching, power spectrum.

1. Introduction

In security markets, the stock price movements are closely linked to the mar-
ket information. For example, the news on subprime mortgage crisis triggered a
global financial crisis through 2007 and 2008. Drops occurred in virtually every
stock market in the world. After the Federal Reserve took several steps to address
the crisis, the stock markets have been gradually stable. For intraday trading,
the finance literature highlights that the arrival of information over intradaily
frequencies has also a strong impact on both prices and volatility and affects the
security market activities. Traders in securities markets are often characterized
in two groups, that is, informed and liquidity traders. Informed traders carry
private information. Securities prices become more informative when there are
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more informed traders in the market and liquidity traders prefer to trade in an
informative market than otherwise. Reaction of the traders to the same infor-
mation on stocks from the same sector results in similar price movements, yet
their reaction time might be different. The study of arrival of informed traders
or asymmetric information is an important subject for microstructure analysis of
financial market. Thanks for modern computer technology, ultra high frequency
financial data such as transaction-by-transaction data now has become available
and provide a rich source in studying intraday market microstructure dynam-
ics. In this paper, we use the high frequency transaction data to investigate the
similar price movement patterns of two stocks around information arrivals.

Pattern matching is an important subject in future movement prediction,
rule discovery and computer aided diagnosis. In the literature, the longest com-
mon subsequence (LCS) method is widely used in bioinformatics for biological
sequence alignment. The LCS problem (Hirschberg, 1975, Agrawal, Faloutsos
and Swami, 1993, Bergroth, Hakonen and Raita, 2000, and Dacorogna, Gençay,
Müller, Olsen and Pectet, 2001) is to find the longest subsequence common to
all sequences in a set of sequences (often just two). It is a classical problem in
computer science and has applications in many fields. For example, biologists
can decide similarity of two DNA sequences by the length of their LCS, the Unix
program “diff” compare two different versions of the same file by finding a LCS
of the lines in the two files.

In this study, we propose a four stage procedure to search similar patterns
for intraday high frequency transaction data. First, we apply the LCS method
to sieve out the time intervals in which the two stocks have the same integrated
volatility levels as well as the price rise/drop trends. Next, we transform the price
data sieved out from the first step to the Bollinger Percent b data, then use the
power spectrum to filter out the low frequency components. The fourth step is to
assess similarity of the price movement patterns in the matching periods by Pear-
son’s chi-square test. There are several advantages of the proposed approach. For
example, the LCS algorithm heightens efficiency of searching periods of similar
price patterns, the power spectrum are easily obtained by software package and
the Pearson’s chi-square test provides a powerful and objective test.

The remainder of the paper is organized as follows. In Section 2, we intro-
duce the stock price models. In Section 3, the LCS method is introduced. In
Section 4, the proposed method is introduced and simulation and empirical stud-
ies are performed. Conclusion is given in Section 5. Tables and figures are in the
Appendix.

2. Model Assumptions

In real market high frequency transactions arrive randomly. Equi-spaced
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sample can be obtained via certain synchronization scheme such as the previous-
tick interpolation scheme (Dacorogna, Gençay, Müller, Olsen and Pectet, 2001).
In this study we assume the stock prices are available at equi-distance times
ti = i∆, i = 1, · · · , n, where ∆ denotes the length of the sampling interval. Let
SAi and SBi denote the stock prices of Companies A and B at time ti, respectively.
Assume the log return of stock A has the following conditional normal distribution

log(SAi /S
A
i−1) ∼ N((µA −

σ2A
2

)∆, σ2A∆), (2.1)

where µA is the annualized average return and σ2A is the annualized volatility. The
New York Stock Exchange trades for 6.5 hours per day from 09:30 AM to 16:00
PM. To simulate the real market, we generate 5201 equispaced stock prices in 6.5
hours, with sampling length ∆ = 1

250 ×
1

5200 = 7.69× 10−7 (year). Divide the 6.5
hours into 26 non-overlapping 15-minute time interval denoted by b1, b2, · · · , b26,
with 200 returns in each interval. In the first 10 intervals b1, b2, · · · , b10, the in-
formation receiving time of A lead B by 15 minutes. In the next 6 intervals,
b11, b12, · · · , b16, the information receiving time of the two companies are syn-
chronous. In the last 10 intervals, b17, b18, · · · , b26, the information receiving time
of A lags B by 15 minutes. That is, we consider the following postulated models
for Companies A and B:

SBi =


αSAi−200 + β + εi, i = 1, · · · , 2001,

αSAi + β + εi, i = 2002, · · · , 3201,

αSAi+200 + β + εi, i = 3202, · · · , 5201,

(2.2)

where α and β are constants. Since time-varying heteroscedastic features are
frequently observed in a financial time series, herein we assume the noise term εi
comes from the following GARCH(1,1) model,{

εi = σiηi, ηi ∼ N(0, 1),
σ2i = α0 + α1ε

2
i−1 + β1σ

2
i−1,

(2.3)

where α0, α1 and β1 are positive constants and α1 + β1 < 1. Figure 1 is the time
plots of the generated stock prices of the companies A and B. We are interested
in detecting the dynamic co-movements of the stocks A and B.

Since the stock price process is generally non-stationary, unless for cointe-
grated processes, regression models might result in spurious regression. Thus it
is not suitable to be applied regression analysis in this study. Moreover due the
nonlinear relationship between A and B, the linear correlation coefficient is not
useful in this case either. Define the integrated volatility of interval bi as

vi =

200∑
j=1

r̃2i,j , i = 1, 2, · · · , 26,
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where {r̃i,j}200j=1 are the log returns in the time interval bi. The correlations
between the returns and integrated volatilities of stocks A and B are 0.240 and
0.062, respectively, which do not suggest significant linear relationship between
the companies A and B. In the following section, we introduce the LCS method to
search the time intervals in which the two stocks have similar integrated volatility
and price rise/drop trends.

3. Longest Common Subsequence

A string u = u1u2 · · ·uk is called a subsequence of a string v = v1v2 · · · vn if
there is a mapping F : {1, 2, · · · , k} → {1, 2, · · · , n}, k ≤ n, such that F (i) = l
only if ui = vl and F is a monotone strictly increasing function, that is, if
F (i) = p, F (j) = q and i < j, then p < q. For example, “coin” is a subsequence
of “correlation”. In addition, a string u is called a common subsequence of two
strings v and w if u is a subsequence of both v and w. Formally, we define
the common subsequence of strings v = v1v2 · · · vn, and w = w1w2 · · ·wm as a
sequence of positions in v,

1 ≤ i1 < i2 < · · · < ik ≤ n

and a sequence of positions in w,

1 ≤ j1 < j2 < · · · < jk ≤ m

such that the symbols at the corresponding positions in v and w coincide:

vit = wjt , t = 1, 2, · · · , k.

For example, “eat” is a common to both “correlation” and “relationship”. Finally,
we define string u to be a longest common subsequence of string v and w if u is
a common subsequence of v and w of maximal length. For example, “relation”
is the longest common subsequence of “correlation” and “relationship”.

The longest common subsequence problem can be solved by dynamic pro-
gramming, which gives a way of making the solution more efficient. To do this,
we introduce the following recursive solution. Define si,j to be the length of an
LCS between v1 · · · vi, the i-prefix of v and w1 · · ·wj , the j-prefix of w. Clearly,
si,0 = s0,j = 0 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. One can see that si,j satisfies the
following recurrence:

si,j = max


si−1,j + 0,
si,j−1 + 0,
si−1,j−1 + 1, if vi = wj .
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The first term corresponds to the case when vi is not present in the LCS of the
i-prefix of v and j-prefix of w; the second term corresponds to the case when wj
is not present in this LCS; and the third term corresponds to the case when both
vi and wj are present in the LCS. Note that the matching positions of the LCS
{(i1, j1), (i2, j2), · · · , (ik, jk)} may not be unique. For example, suppose that the
string v is abcdbb and the string w is cbacbaaba, then both bcbb and acbb
are the LCSs with corresponding matching positions {(2,2),(3,4),(5,5),(6,8)} and
{(1,3),(3,4),(5,5),(6,8)}, respectively. Figure 2 is an illustration of the matching
positions of the LCSs of strings v and w.

In this study, the LCS method is used to find the similar market reaction
periods of two stocks to the intradaily information. As mentioned in the previous
section, the normal trading hours (9:30am-4:00pm) are divided into 26 nonover-
lapping periods each of length 15 minutes. Let vi denote the integrated volatility
in the ith time period bi, that is vi =

∑
j∈Ii r̃

2
i,j , where r̃i,j is the observed jth

log return in the time period bi. The price movements within a time period are
classified into the following 8 categories by their integrated volatility levels and
the price trends in the period :

si =
4∑

k=1

k · I{Qk−1<vi≤Qk} · sgn
( 200∑
j=1

r̃i,j

)
, (3.1)

where sgn(x) is the sign function of x, IA is the indicator function of the set
A, Q0 = 0, Qk, k = 1, 2, 3, are the quartiles of {vi}26i=1 and Q4 = ∞. Thus si
takes values in {±1,±2,±3,±4}. The classification criterion (3.1) considers two
factors together, the level of the integrated volatility and the price trend in the
time period bi. In particular, if

∑200
j=1 r̃i,j = 0, then

si =


∑4

k=1 k · I{Qk−1<v1≤Qk}, i = 1,∑4
k=1 k · I{Qk−1<vi≤Qk}sgn(si−1), i ≥ 2.

Let {sAi }26i=1 and {sBj }26j=1 denote the categorized sequences of the stock prices of
companies A and B, respectively. We apply the LCS method to find the matching
time intervals of {sAi }26i=1 and {sBj }26j=1, with the same integrated volatility levels
and price trends.

Under Model (2.2) the true LCS of {sAi }26i=1 and {sBj }26j=1 is

CAB = C
(1)
AB ∪ C

(2)
AB ∪ C

(3)
AB, (3.2)
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where

C
(1)
AB = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7), (7, 8), (8, 9), (9, 10)},

C
(2)
AB = {(11, 11), (12, 12), (13, 13), (14, 14), (15, 15), (16, 16)},

C
(3)
AB = {(18, 17), (19, 18), (20, 19), (21, 20), (22, 21), (23, 22), (24, 23), (25, 24),

(26, 25)}.

The lengths of C
(1)
AB, C

(2)
AB, C

(3)
AB, and CAB are 9, 6, 9 and 24, respectively.

In the following, we perform simulation study to investigate the LCS method
for pattern matching of Model (2.2). Let ĈAB = {(ih, jh) : h = 1, 2, · · · , k, 1 ≤
i1 < i2 < · · · < ik ≤ 26 and 1 ≤ j1 < j2 < · · · < jk ≤ 26} denote the LCS of
the simulated sequences. Then ĈAB = CMP ∪ ICMP where CMP ≡ ĈAB ∩ CAB
and ICMP ≡ ĈAB\CAB, which represent the correct matching positions and
incorrect matching positions, respectively. For example, if ĈAB = {(1,2), (5,5),
(6,7), (12,12), (13,14), (20,19), (22,22), (25,24)}, compared with CAB defined in
(3.2), then we have CMP = {(1,2), (6,7), (12,12), (20,19), (25,24)} and ICMP =

{(5, 5), (13, 14), (22, 22)}. Furthermore, let Ĉ
(1)
AB = {(i, j) : (i, j) ∈ ĈAB and i <

j}, Ĉ(2)
AB = {(i, j) : (i, j) ∈ ĈAB and i = j}, and Ĉ

(3)
AB = {(i, j) : (i, j) ∈

ĈAB and i > j}. Let l(x) denote the length of a sequence x, then

l(CAB ∩ ĈAB)

l(ĈAB)
=
l(CMP)

l(ĈAB)

denotes the correct rate of the LCS method for seizing the matching positions.
Similarly, the correct rate of the LCM method when A leads B is

l(C
(1)
AB ∩ Ĉ

(1)
AB)

l(Ĉ
(1)
AB)

,

the correct rate when A and B are contemporaneous is

l(C
(2)
AB ∩ Ĉ

(2)
AB)

l(Ĉ
(2)
AB)

,

and the correct rate when A lags B is

l(C
(3)
AB ∩ Ĉ

(3)
AB)

l(Ĉ
(3)
AB)

.

Table 1 summarizes the simulation results of the correct rates for different α0

based on 2000 replications, where the parameters (α, β, α1, β1) = (0.6, 5, 0.6, 0.3)
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are kept fixed. Note that the unconditional variance of εt (defined by (2.3))

σ20 = E(ε2t ) =
α0

1− α1 − β1
(3.3)

increases as either of the parameters α0, α1 or β1 increases. In Table 1, the second
column gives the ratios of σ0 to σA

√
∆ (the conditional standard deviation of the

log price of the stock A, cf. (2.1)), which represents the noise size. The correct
rate increases as σ0/σA

√
∆ decreases. Moreover, for fixed α0 ≤ 1.2 × 10−8, the

correct rates of the LCS method are about the same in the fourth to the sixth
columns in Table 1. This suggests that the performance of the LCS method is
not affected by the receiving order of the information. Nevertheless, the correct
rates of the LCS method (cf. column seven in Table 1) can still be improved. In
next section, a new pattern matching scheme is proposed to improve the correct
rates of the matching positions found by the LCS method.

4. Spectral Analysis of the Bollinger Percents

The real market stock price processes are well recognized as non-stationary
processes. One can apply the Bollinger Band to convert a price sequence into
a stationary %b sequence, see for example Wu, Salzberg and Zhang (2004).
Bollinger Bands are created by John Bollinger in the early 1980s and are widely
used as financial relative high or low indicators of the price. The Bollinger Per-
cent (%b) is obtained from the Bollinger Bands and can be used to measure the
highness or lowness of the price relative to previous trades. The bands are curves
drawn above and below a simple moving average of period p (the typical value
for the period p is 20) by a measure of standard deviation. The three curves are
defined as follows:

Middle BollingerBand = the p-period simple moving average,

Upper BollingerBand = Middle Bollinger Band+2×p-period standard deviation,

Lower BollingerBand = Middle Bollinger Band−2×p-period standard deviation.

The formula for %b is defined by

%b =
Last Price − Lower Bollinger Band

Upper Bollinger Band − Lower Bollinger Band
.

Figure 3 is an illustration of Bollinger Bands and %b of a stock price sequence.
Next, we compute the power spectrum of the %b sequence. The power spec-

trum of a stationary sequence decomposes the sequence into a sum of fluctuating
components from low to high frequencies. The low-frequency power spectra repre-
sent the longer-term trend of the original sequence and the high-frequency power
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spectra characterize the shorter-time oscillation and the noise. Therefore, we use
the low-frequency power spectra of the %b sequence to acquire its trend. In the
following, we excerpt the definition of the power spectrum described in Jones and
Pevzner (2004).

Suppose that the complex exponential functions are defined on a finite number
of n points, that is, for t = 1, 2, · · · , n. For b−n/2c + 1 ≤ k ≤ bn/2c, where bxc
is the floor function of x, the system{

ei2πkt/n :
⌊
− n

2

⌋
+ 1 ≤ k ≤

⌊n
2

⌋}
, (4.1)

contains exactly n functions. The system (4.1) is actually a collection of orthogo-
nal functions. Let Z1, Z2, · · · , Zn be a sequence of n numbers. This sequence can
be regarded as a set of coordinates of a point in an n-dimensional space. And it
can be written as a linear combination of the elements of the basis. For a given
n-dimensional space, it is known that any set of n orthogonal vectors forms a
basis, hence the given sequence, {Zt}nt=1, can be written as a linear combination
of the orthogonal complex exponential functions given in (4.1). That is,

Zt =

bn/2c∑
k=b−n/2c+1

cke
i2πkt/n, (4.2)

where

ck =
1

n

n∑
t=1

Zte
−i2πkt/n. (4.3)

(4.2) is called the Fourier series of the sequence Zt and ck is called the Fourier
coefficients. The coefficient c0 =

∑n
t=1 Zt/n is the average value of the sequence.

In the following, we denote 2πk/n by ωk, k = 0, 1, · · · , bn/2c. These frequencies
are called the Fourier frequencies.

For a given periodic sequence Zt of period n, the energy associated with the
sequence in one period is defined as

∑n
t=1 Z

2
t . Multiplying Zt on the both sides

of (4.2), summing from t = 1 to t = n, and using the relation (4.3), we have

n∑
t=1

Z2
t = n

bn/2c∑
k=b−n/2c+1

|ck|2, (4.4)

where |ck|2 = ck c̄k. (4.4) is known as Parseval’s relation for Fourier series. By
(4.4), the total energy of a periodic sequence over the whole time horizon t =
0,±1,±2, · · · is infinite. Hence, we only consider its energy per unit time, which
is called the power of the sequence. This is given by

Power =

bn/2c∑
k=b−n/2c+1

|ck|2.
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As noted above, the jth harmonic components include the terms for both k = j
and k = −j as they correspond to the same frequency j(2π/n). Therefore, we
can interpret the quantity{

f0 = c20,
fk = |c−k|2 + |ck|2 = 2|ck|2, k 6= 0,

(4.5)

from the term in the Fourier series of Zt at the kth frequency ωk = 2πk/n as
the contribution to the total power. The quantity fk is called the power spec-
trum and describes how the total power is distributed over the various frequency
components of the sequence {Zt}nt=1.

By using the first m low-frequency power spectra of a stationary sequence,
one can obtain a smooth line for describing the dynamic trend of the sequence.
For example, Figure 4(a) is the time plot of a %b sequence and Figure 4(b) is the
corresponding trend estimate based on the first 10 low-frequency power spectra.
The smooth line in Figure 4(b) mimics the trend of the %b sequence.

Next we employ the Pearson’s chi-square test to access similarity of the trends
of the two sources. The procedure is explained below. Reweight the m lowest-
frequency power spectra fk (see (4.5)) by the following:

f ′k =
fk∑m
i=1 fi

, k = 1, 2, · · · ,m. (4.6)

Since
∑m

i=1 f
′
i = 1, the reweighted power spectrum, {f ′k}mk=1 can be viewed as a

probability mass function.
We apply the Pearson’s chi-square test to test whether the spectrum distribu-

tions of two sequences are the same. We regard nf ′k as the number of observations
in class k (corresponding to the k-th lowest frequency), for k = 1, 2, · · · ,m. In
practice, when applying the Pearson’s chi-square test, we need :

1. None of the expected number of observations are less than 1;

2. No more than 20% classes are smaller than 5.

If some of {nf ′k}mk=1 do not satisfy the above rules, then we merge the m classes
into m′(m′ ≤ m) classes to satisfy the rules and denote the number in these new
classes by {nf∗k}m

′
k=1, where f∗k is the adjusted spectra after merging.

Let f∗A,i and f∗B,i denote the adjusted spectra after merging of Stock A and
Stock B respectively. Consider the following hypothesis testing problem:

H0 : f∗A,i = f∗B,i, i = 1, · · · ,m′,

versus the alternative

H1 : f∗A,i 6= f∗B,i, for some i.
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The Pearson’s chi-square test statistic is defined as

m′∑
i=1

(nf∗B,i − nf∗A,i)2

nf∗A,i
, (4.7)

which has approximately a chi-square distribution with m′−1 degrees of freedom.

5. Simulation and Empirical Studies

We perform simulation study to investigate the performance of the proposed
method in detecting the co-movement period of the two price sequences of Stocks
A and B. Simulation results based on 2000 replications are presented in Ta-
bles 2-6 for different parameter settings. In the tables, “TA” signifies the ratio
of “True and Accept”, which means that the matching positions found by the
LCS method are correct and the chi-square test also accepts the null hypothesis.
“FR” stands for the ratio of “False and Reject”, which means that the matching
positions found by the LCS method are incorrect and the chi-square test rejects
H0. Similarly, “TR” and “FA” are short for the situations of “True and Reject”
and “False and Accept”, respectively. Hence, “TA+FR” is the correct rate of
the proposed method in choosing the co-movement period of two price sequences
and “TR+FA” is the error rate. If the “TA+FR” ratio is close to one, then the
proposed method significantly improves the accuracy of the LCS method for the
co-movement detection problem.

Similar to the results in Table 1, the correct rates of the matching positions
found by the LCS method are still not persuasive, especially when the noise effect
increases. Recall from (3.3), the standard deviation σ0 of the noise increases as
either of the parameters α0, α1 or β1 increases. The correct rates of the LCS
method also decrease (see Tables 2-4) when either of the parameters α0, α1 or
β1 increases. Similarly when the parameter α or β decreases, the impact of the
noise term also increases, and the performance of the LCS method becomes worse
(see Tables 5-6). However, when we apply the Pearson’s chi-square test to the
adjusted spectra of the Bollinger Percent, significant improvements are achieved.
The ratios of “TA+FR” are all greater than 0.980 in the tables. The results
indicate the integration of the LCS method and the proposed scheme introduced
in the previous section can effectively detect the co-movement periods of the two
price sequences.

For the real data application, we consider the intra-daily high frequency stock
price data of Bank of America Corporation (BAC) and Bank of New York Mellon
Corporation (BK) in June 12, 2002. We divide the normal trading hours into 35
nonoverlapping time periods, I1, · · · , I35, each with length 11 minutes, and obtain
the integrated volatilities in each Ii for the two stocks, denoted by {vBACi }35i=1 and
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{vBKi }35i=1, respectively. The two categorical sequences, {sBACi }35i=1 and {sBKj }35j=1,
are obtained by the criterion (3.1). The LCS method is used to find the matching
time periods of these two companies and 20 matching pairs are found and listed
below:

(I2, I2), (I4, I4), (I6, I5), (I7, I7), (I10, I8), (I13, I9), (I14, I12), (I15, I16),

(I18, I17), (I19, I19), (I20, I21), (I22, I22), (I23, I23), (I24, I25), (I26, I24),

(I27, I27), (I28, I28), (I33, I29), (I34, I33), (I35, I30).

Next, we use the proposed method in the previous section to examine the co-
movement in the intervals of these 20 matching pairs. There are only two match-
ing pairs (I19, I19) and (I23, I23) are concluded to have similar co-movement pat-
tern. Figure 5 plots the price movements within these two matching pairs which
also show great similarity visually.

6. Conclusion

This study proposes a scheme to detect the co-movement periods of two stock
price processes. The proposed scheme includes 4 steps: (1) Apply the LCS
method to find the matching position of the original sequences; (2) For each
matching pair, convert the nonstationary price processes to the Bollinger Percent
b sequences; (3) Compute the low-frequency power spectra of the %b sequences to
characterize the dynamic trends; (4) Employ Pearson’s chi-square test to assess
the similarity of the two spectrum distributions. Simulation and empirical studies
show that the proposed scheme can effectively detect the co-movement periods
of the price sequences. In the future, we will extend the results of this study to
develop financial trading strategies or arbitrage strategies when the similar price
movements occur.
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circles point out the matching positions and the corresponding LCS length
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Figure 3: (a) Raw price sequence with Bollinger Bands; (b) The corresponding
%b sequence
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Figure 4: (a) Time plots for a %b sequence; (b) The corresponding trend of the
%b sequence computed by the first 10 low-frequency power spectra
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Figure 5: Time-series plots for (a) price data in I19 of BAC; (b) price data in
I19 of BK; (c) price data in I23 of BAC; (d) price data in I23 of BK

Table 1: The LCS results of simulation data in different α0 and fixed α = 0.6,
β = 5, α1 = 0.6, and β1 = 0.3

α0
σ0

σA
√

∆
l(ĈAB)

l(C
(1)
AB ∩ Ĉ

(1)
AB)

l(Ĉ
(1)
AB)

l(C
(2)
AB ∩ Ĉ

(2)
AB)

l(Ĉ
(2)
AB)

l(C
(3)
AB ∩ Ĉ

(3)
AB)

l(Ĉ
(3)
AB)

l(CMP)

l(ĈAB)

1.2× 10−7 31.225 9.212 0.113 0.091 0.000 0.049

6.0× 10−8 22.079 9.841 0.169 0.277 0.010 0.106

3.0× 10−8 15.613 11.537 0.291 0.472 0.138 0.261

1.2× 10−8 9.874 14.182 0.508 0.560 0.434 0.491

6.0× 10−9 6.982 15.659 0.619 0.606 0.580 0.600

3.0× 10−9 4.937 16.431 0.680 0.651 0.665 0.667

1.2× 10−9 3.123 17.044 0.719 0.683 0.711 0.707
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Table 2: Simulation results of detecting the dynamic co-movement of two stock
price sequences by the LCS and the proposed methods with various α0 and fixed
α = 0.6, β = 5, α1 = 0.6, and β1 = 0.3

α0

1.2 × 10−7 6.0 × 10−8 3.0 × 10−8 1.2 × 10−8 6.0 × 10−9 3.0 × 10−9 1.2 × 10−9

l(CMP )

l(ĈAB)
0.050 0.099 0.260 0.505 0.600 0.669 0.710

significant level of chi-square test: 0.05

TA 0.046 0.097 0.255 0.495 0.587 0.655 0.696
FR 0.948 0.899 0.738 0.494 0.400 0.330 0.290
TA+FR 0.994 0.996 0.994 0.988 0.986 0.986 0.986
TR 0.004 0.002 0.005 0.011 0.013 0.014 0.014
FA 0.002 0.002 0.001 0.001 0.000 0.001 0.000
TR+FA 0.006 0.004 0.006 0.012 0.014 0.014 0.014

significant level of chi-square test: 0.01

TA 0.048 0.098 0.257 0.497 0.589 0.658 0.698
FR 0.946 0.897 0.736 0.492 0.398 0.329 0.289
TA+FR 0.994 0.995 0.993 0.990 0.988 0.988 0.987
TR 0.002 0.001 0.004 0.008 0.011 0.011 0.011
FA 0.004 0.004 0.003 0.002 0.002 0.001 0.001
TR+FA 0.006 0.005 0.007 0.010 0.012 0.012 0.013

Table 3: Simulation results of detecting the dynamic co-movement of two stock
price sequences by the LCS and the proposed methods with various α1 and fixed
α = 0.6, β = 5, α0 = 1.2× 10−8, and β1 = 0.3

α1

0.6 0.5 0.4 0.3 0.2 0.1

l(CMP )

l(ĈAB)
0.505 0.608 0.681 0.698 0.710 0.723

significant level of chi-square test: 0.05

TA 0.495 0.596 0.666 0.685 0.696 0.709
FR 0.494 0.392 0.319 0.301 0.289 0.276
TA+FR 0.988 0.987 0.985 0.987 0.985 0.985
TR 0.011 0.012 0.014 0.013 0.015 0.014
FA 0.001 0.001 0.001 0.000 0.000 0.001
TR+FA 0.012 0.013 0.015 0.013 0.015 0.015

significant level of chi-square test: 0.01

TA 0.497 0.598 0.669 0.687 0.698 0.712
FR 0.492 0.391 0.318 0.300 0.289 0.276
TA+FR 0.990 0.989 0.987 0.988 0.987 0.987
TR 0.008 0.010 0.012 0.011 0.012 0.011
FA 0.002 0.002 0.001 0.001 0.001 0.001
TR+FA 0.010 0.011 0.013 0.012 0.013 0.013
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Table 4: Simulation results of detecting the dynamic co-movement of two stock
price sequences by the LCS and the proposed methods with various β1 and fixed
α = 0.6, β = 5, α0 = 1.2× 10−8, and α1 = 0.3

β1

0.6 0.5 0.4 0.3 0.2 0.1

l(CMP )

l(ĈAB)
0.471 0.640 0.684 0.698 0.718 0.719

significant level of chi-square test: 0.05

TA 0.462 0.627 0.670 0.685 0.705 0.706
FR 0.528 0.359 0.316 0.301 0.282 0.280
TA+FR 0.990 0.985 0.986 0.987 0.987 0.986
TR 0.009 0.014 0.014 0.013 0.013 0.013
FA 0.001 0.001 0.001 0.000 0.000 0.000
TR+FA 0.010 0.015 0.014 0.013 0.013 0.014

significant level of chi-square test: 0.01

TA 0.464 0.629 0.672 0.687 0.707 0.708
FR 0.526 0.358 0.315 0.300 0.281 0.280
TA+FR 0.990 0.987 0.987 0.988 0.988 0.988
TR 0.008 0.011 0.011 0.011 0.010 0.011
FA 0.002 0.002 0.001 0.001 0.001 0.001
TR+FA 0.010 0.013 0.013 0.012 0.012 0.012

Table 5: Simulation results of detecting the dynamic co-movement of two stock
price sequences by the LCS and the proposed methods with various α and fixed
β = 5, α0 = 1.2× 10−8, α1 = 0.6, and β1 = 0.3

α

0.8 0.7 0.6 0.5 0.4 0.3 0.2

l(CMP )

l(ĈAB)
0.562 0.536 0.505 0.436 0.379 0.297 0.186

significant level of chi-square test: 0.05

TA 0.553 0.525 0.495 0.426 0.369 0.287 0.175
FR 0.437 0.463 0.494 0.562 0.620 0.702 0.812
TA+FR 0.990 0.989 0.988 0.988 0.989 0.989 0.986
TR 0.009 0.010 0.011 0.011 0.010 0.009 0.012
FA 0.001 0.001 0.001 0.001 0.001 0.002 0.002
TR+FA 0.010 0.011 0.012 0.012 0.011 0.011 0.014

significant level of chi-square test: 0.01

TA 0.555 0.527 0.497 0.428 0.372 0.290 0.180
FR 0.436 0.462 0.492 0.561 0.618 0.700 0.809
TA+FR 0.991 0.989 0.990 0.989 0.990 0.989 0.990
TR 0.007 0.008 0.008 0.009 0.007 0.007 0.006
FA 0.002 0.002 0.002 0.003 0.003 0.004 0.004
TR+FA 0.009 0.011 0.010 0.011 0.010 0.011 0.010
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Table 6: Simulation results of detecting the dynamic co-movement of two stock
price sequences by the LCS and the proposed methods with various β and fixed
α = 0.6, α0 = 1.2× 10−8, α1 = 0.6, and β1 = 0.3

β

1 5 10 15 20 25

l(CMP )

l(ĈAB)
0.254 0.505 0.561 0.581 0.595 0.610

significant level of chi-square test: 0.05

TA 0.250 0.495 0.544 0.563 0.576 0.592

FR 0.745 0.494 0.438 0.418 0.404 0.389

TA+FR 0.995 0.988 0.983 0.982 0.980 0.981

TR 0.003 0.011 0.016 0.018 0.019 0.018

FA 0.002 0.001 0.001 0.001 0.001 0.001

TR+FA 0.005 0.012 0.017 0.018 0.020 0.019

significant level of chi-square test: 0.01

TA 0.251 0.497 0.548 0.566 0.580 0.595

FR 0.743 0.492 0.437 0.417 0.403 0.388

TA+FR 0.994 0.990 0.985 0.984 0.983 0.983

TR 0.003 0.008 0.013 0.015 0.015 0.016

FA 0.003 0.002 0.002 0.002 0.002 0.002

TR+FA 0.006 0.010 0.015 0.016 0.017 0.017

References

Agrawal, R., Faloutsos, C. and Swami, A. (1993). Efficient similarity search
in sequence databases. In Proceedings of 4th International Conference on
Foundations of Data Organization and Algorithms 730, 69-84. Chicago.

Bergroth, L., Hakonen, H., and Raita, T. (2000). A survey of longest common
subsequence algorithms. In Proceedings of the 7th International Sympo-
sium on String Processing Information Retrieval (SPIRE), 39-48. IEEE
Computer Society.
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