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Abstract

The study of semiparametric families is useful because it provides methods of extending families
for adding flexibility in fitting data. The main aim of this paper is to introduce a class of
bivariate semiparametric families of distributions. One especial bivariate family of the introduced
semiparametric families is discussed in details with its sub-models and different properties. In
most of the cases the joint probability distribution, joint distribution and joint hazard functions
can be expressed in compact forms. The maximum likelihood and Bayesian estimation are
considered for the vector of the unknown parameters. For illustrative purposes a data set has
been re-analyzed and the performances are quite satisfactory. A simulation study is performed
to see the performances of the estimators.

Keywords conditional probability; Gompertz distribution; hazard function; joint probability den-
sity; maximum likelihood estimation. Pareto distribution; Weibull distribution

1 Introduction

To mathematically describe any family of distributions, various alternative functions are in com-
mon use. These functions include distribution functions, survival functions, densities; hazard
functions, reversed hazard functions, cumulative hazard and cumulative reversed hazard func-
tions. When they exist, any of these functions can be obtained from any other.

The distribution function F (·) and the survival function S(·) defined on (−∞,∞) as

F (x) = P (X ≤ x) =

∫ x

−∞
f(x)dx, (1)

S (x) = P (X > x) =

∫ ∞
x

f(x)dx, (2)

where f(x) is the probability density function for a continuous random variable. The hazard
function h(·) and cumulative hazard function H(·) are defined on (−∞,∞) respectively, as

h (x) =
f(x)

S(x)
, (3)

H (x) = − logS (x) . (4)

The reversed hazard function r(·) and cumulative reversed hazard R(·) function are defined on
(−∞,∞) respectively, as

r (x) =
f(x)

F (x)
, (5)

R (x) = logF (x) . (6)
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Now, it can be seen that by using (4) and (6) the distribution and survival functions (1) and (2)
can be rewritten as, respectively,

F (x) = eR(x) and S (x) = e−H(x). (7)

Olkin (2007) divided the families of distributions into parametric, non-parametric and semi-
parametric. Families of distribution indexed by a real number or by several real numbers are
called parametric ones, such as the exponential, Weibull, gamma and lognormal distributions.
The non-parametric families are defined by properties that have physically meaningful inter-
pretations; these families of distributions have mostly been studied in the context of reliability
theory. The theory that has been developed for these families has thus involved the notation of
components and systems, which might be mechanical, electrical, hydraulic or biological systems.

Semiparametric families of distributions which are distinguished by having a parameter that
itself a distribution function. These families have a real valued parameter; a possible procedure
making use of a semiparametric model is to first select the parameter that is a distribution func-
tion. This distribution function is called the underlying distribution. In effect, the choice of an
underlying distribution leads to the selection of a parametric model, but with the selection lim-
ited to families having the structure of the semiparametric model. The semiparametric families
will be discussed in details in the next section.

Analyzing dependent variables is of great importance. For example, In Economic studies;
Study the relation between (years of education and personal income, personal income and ex-
penditure and inflation and unemployment), in Biological studies; Study of ( blindness in the
left and right eye, the age at death of parent and child in a genetic study, the relation between
blood pressure and body weight for a patient and the failure time of the left and right kidney) in
engineering studies ; analyzing the lifetime of a twine-engine plane, also warranty polices based
on failure time and warranty servicing time, as well as, different applications like Shock model,
competing risks model, stress model, maintenance model and longevity model.

Bivariate Marshal-Olkin family of great importance for understanding and analyzing the
failure time of two variables interacting together, because it takes into consideration all different
scenarios of the random variables (i.e. the first random variable is smaller, greater or equal to
the second random variable).The main aim of this paper is to introduce a bivariate extension
of the semiparametric families of distributions implies in such a way that their marginals follow
univariate semiparametric distributions. The proposed bivariate models are shown to have a
structure that has a singular part (see Marshall and Olkin, 1967).

The paper is organized as follows: in Section 2, univariate semiparametric families are
introduced. Bivariate hazard power parameter (BHPP) family of distributions is defined in
Section 3. A new bivariate distributions belongs to BHPP models is discussed in Section 4.
Application of BHPP models to a real data set is introduced in Section 5. A simulation study is
discussed in Section 6. Other bivariate semiparametric families of distributions are introduced
in Section 7. Finally, the conclusion and future work are listed in Section 8.

2 Univariate Semiparametric Families

The study of semiparametric families is useful for two purposes. It provides a new understanding
of standard parametric families of distributions that because, the standard families of gamma
distributions and Weibull distributions can be thought of as coming from the exponential distri-
bution by way of semiparametric families that added a second parameter, By the same method,
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it is possible to find a three parameter family that includes both the gamma and Weibull families
as special cases . So, it provides methods of extending families for added flexibility in fitting data.
In this section some semiparametric families that introduced by Olkin (2007) will be discussed
in one dimension and its bivariate extension will be obtained in the next section.

It is important to see that the main criteria for the semiparametric families is that the
underlying distribution is a member of the parametric family. And the second criteria, is that
once the semiparametric family is used to add a parameter, its reuse may reparameterize the
family, but it should fail to again add a new parameter. this is a kind of stability property (Olkin,
2007, p.609).

2.1 Univariate Power Parameter Family (UPP)

Let FB be a baseline cdf. Suppose that that FUPP(·;α) is defined in terms of FB by the formula

FUPP (x;α) = FB (xα) , α > 0. (8)

Then α is called a power parameter and {FUPP (·;α)α > 0} is an univariate power parameter
family with underling distribution FB.

The corresponding probability density function (pdf) and hazard function are, respectively,

fUPP (x;α) = αxα−1fB (xα) , (9)

hUPP (x;α) = αxα−1hB (xα) , (10)

where fB and hB are a baseline pdf and hazard functions respectively.
The family of Weibull distributions is the prime example of a Power parameter family. For

this example the underlying distribution is an exponential distribution. Also Ghitany et al. (2013)
introduced a power Lindley distribution, the underlying distribution is a Lindley distribution.

2.2 Univariate Frailty Parameter Family (UFP)

Let SB be a baseline survival function with cumulative hazard function HB = − logSB. Suppose
that SUFP(·;α) is defined in terms of SB by

SUFP (x;α) = [SB(x)]α = exp {−αHB (x)} , α > 0. (11)

In this case α is called a frailty parameter and SUFP (·;α), α > 0, is a frailty parameter family,
or alternatively, a proportional hazard family with underlying distribution SB.

The corresponding pdf and hazard function is given respectively, as

fUFP (x;α) = α[SB(x)]α−1fB (x) , hUFP (x;α) = αhB (x) , (12)

where fB and hB are a baseline pdf and hazard functions respectively.
For exponential and Weibull distributions, introducing powers of the survival function does

not introduce a new parameter because these families are already proportional hazards fami-
lies. For a number of other families, however, a new parameter is introduced such as Pareto
type I (Olkin, 2007), exponentiated Fréchet (Nadarajah and Kotz, 2003), exponentiated Gumble
(Nadarajah, 2006), and extended Lindley Distributions (Bakouch et al., 2012).
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2.3 Univariate Resilience Parameter Family (URP)

Let FB be a baseline distribution function with cumulative reversed hazard function RB = logFB
Suppose that SURP(·;α) is defined in terms of FB by

FURP (x;α) = [FB(x)]α = exp {αRB (x)} , α > 0.

In this case α is called a resilience parameter and FURP (·;α) , α > 0 is a resilience parameter
family, or alternatively, a proportional reversed hazard family with underlying distribution FB.

The corresponding pdf and hazard function is given respectively, as

fURP (x;α) = α[FB(x)]α−1fB (x) ,

hURP (x;α) = αrB (x) ,

where fB and rB are a baseline pdf and reversed hazard functions respectively.
There exist number of distributions that produced by adding a resilience power parameter

to some failure functions such as generalized exponential distribution (Gupta and Kundu, 1999),
Generalized linear failure rate distribution (Sarhan and Kundu, 2009), exponetiated gamma
(Nadarajah and Kotz, 2006), exponetiated Kumaraswamy (Lemonte et al., 2013), exponetiated
Weibull (Mudholkar and Srivastava, 1993), exponetiated inverted Weibull (Flaih et al., 2012),
and so on.

Resilience and frailty parameter families have the stability property, i.e., once a resilience
or frailty parameter has been introduced; the reintroducing of the same kind of parameter does
not extend the family.

2.4 Univariate Hazard Power Parameter Family (UHPP)

According to Equation (7) the survival function and its corresponding cumulative hazard function
are related via the formula

S (x) = e−H(x), ∀x.

It follows that ifH is a cumulative hazard function, thenHα is accumulative hazard function.
Thus,

SUHPP (x;α) = exp {− [HB (x)]α}, ∀α > 0. (13)

Defines a survival function for all α > 0, and SUHPPF (x;α), α > 0 is a semiparametric
family. The parameter α is called hazard powerparameter family.The corresponding pdf is given
by differentiating (13) as

fUHPP (x;α) = αhB (x) [HB (x)]α−1 exp {− [HB (x)]α}, ∀α > 0,

where hB(·) and HB(·) are the baseline hazard and cumulative hazard functions respectively.
Accordingly the hazard function for UHPP family is given as

hUHPP (x;α) = αhB (x) [HB (x)]α−1 . (14)

It is follows if hB increasing and α ≥ 1, then hUHPPF is increasing; if hB decreasing and
0 < α < 1, then hUHPPF is decreasing.
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Examples:
1. Univariate Exponential Distribution

Suppose that the underlying distribution is univariate exponential (UE) with scale parameter
λ with survival function SB (x) = e−λx and HB (x) = λx. Then according to (13)-(14)
and after adding a hazard power parameter α the survival, density and hazard functions
respectively, are

SUW (x;α) = e−(λx)
α

, (15)

fUW (x;α) = αλαxα−1e−(λx)
α

, (16)

hUW (x;α) = αλ(λx)α−1. (17)

For x > 0 and α > 0. (15) is the survival function of an univariate Weibull (UW) distribution
with hazard power parameter α and scale parameter λ. it is noted that α can be regarded
not only as a hazard power parameter but also as a power parameter as mention above in
Section 2.1.

2. Univariate Gompertz Distribution
Suppose that the underlying distribution is univariate Gompertz (UG) distribution with sur-
vival function SB (x) = e−ξ(e

λx−1), ξ, λ > 0, x > 0, according to (13) the survival function
of the UG distribution with hazard power parameter α is given as

SUPHG (x) = e−[ξ(eλx−1)]
α

, α, ξ, λ > 0, x > 0, (18)

and the corresponding pdf and hazard function are given respectively, as

fUPHG (x) = αλξeλx
[
ξ
(

eλx − 1
)]α−1

e−[ξ(eλx−1)]
α

, α > 0, ξ > 0, λ > 0, x > 0,

and

hUPHG (x) = αλξeλx
[
ξ
(

eλx − 1
)]α−1

, α > 0, ξ > 0, λ > 0, x > 0. (19)

Its observed by (Olkin, 2007) that the hazard function (19) is convex. It is increasing when
α ≥ 1 and when α < 1 the hazard function has minimum at x = [− logα]/λ.

3. Univariate Pareto Type I Distribution
Suppose the underlying distribution is univariate Pareto (UP) distribution with survival func-
tion SB (x) = [1 + λx]−1, λ > 0, x > 0. After adding the hazard power parameter α, the
survival function for the new distribution is given as

SUPHP (x;α, λ) = e−[log(1+λx)]
α

, α > 0, λ > 0, x > 0. (20)

Accordingly,

fUPHP (x;α, λ) =
λα

(1 + λx)
[log (1 + λx)]α−1 e−[log(1+λx)]

α

, (21)

hUPHP (x;α, λ) =
λα

(1 + λx)
[log (1 + λx)]α−1 . (22)

It is noted from (22) that hazard function is decreasing for α ≤ 1. For α > 1 the hazard rate
is unimodal with mode at eα−1/λ.
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4. Univariate Uniform Distribution
Suppose the underlying distribution is univariate uniform (UU) distribution with SB (x) =
1 − x and HB (x) = − log(1 − x). After adding the hazard power parameter α then, the
survival function for the new distribution is given as

SUPHU (x;α) = e−[− log(1−x)]α , α > 0, 0 < x < 1, (23)

Consequently,

fUPHU (x;α) =
α

(1− x)
[− log (1− x)]α−1 e−[− log(1−x)]α , (24)

hUPHU (x;α) =
α

(1− x)
[− log (1− x)]α−1 . (25)

2.5 Univariate Reversed Hazard Power Parameter Family (URPP)

It’s possible to define a reversed hazard power parameter models via the formula F (x) = eR(x),
as following

FURPP (x;α) = e[R(x)]α , ∀x,
where α > 0 and R (x) = logF is a cumulative reversed hazard function.

fURPP (x;α) = αrB (x) [RB (x)]α−1 exp {[RB (x)]α} , ∀α > 0,

where rB(·) and RB(·) are the baseline reversed hazard and cumulative reversed hazard functions
respectively. Accordingly the reversed hazard function for URPP family is given as

rURPP (x;α) = α rB (x) [RB (x)]α−1 .

3 Bivariate Hazard Power Parameter (BHPP) Family

Assume the univariate hazard power parameter model is denoted by UHPP(α,Θ) where α is the
hazard power parameter and Θ may be a vector of parameters for an underlying distribution.
Now suppose that Ui ∼ UHPP (αi,Θ), i = 1, 2, 3 such that U ′is are mutually independent random
variables and define Xj = min (Uj , U3), j = 1, 2. Such that X ′js are dependent random variables.
Hence the joint survival function of the vector (X1, X2) denoted by SBHPP(x1, x2) is given as

SBHPP (x1, x2) = SUHPP (x1;α1)SUHPP (x2;α2)SUHPP (x3;α3)

= exp {− [HB (x1)]
α1} exp {− [HB (x2)]

α2} exp {− [HB (x3)]
α3} ,

(26)

where x3 = max(x1, x2).
The joint survival function of BHPP model can be stretching in the following form

SBHPP (x1, x2) =


S1 (x1, x2) x1 < x2,

S2 (x1, x2) x1 > x2,

S3 (x) x1 = x2 = x,

(27)

where

S1 (x1, x2) = exp{− [HB (x1)]
α1 − [HB (x2)]

α2 − [HB (x2)]
α3},

S2 (x1, x2) = exp{− [HB (x1)]
α1 − [HB (x1)]

α3 − [HB (x2)]
α2},

S3 (x) = exp{− [HB (x)]α1 − [HB (x)]α2 − [HB (x)]α3}.



A Class of Bivariate Semiparametric Families of Distributions 767

Accordingly, the joint pdf of BHPP model can be obtained as

fBHPP (x1, x2) =


f1 (x1, x2) x1 < x2,

f2 (x1, x2) x1 < x2,

f3 (x) x1 = x2 = x,

(28)

where

f1 (x1, x2) ={α2hB (x2) [HB (x2)]
α2−1 + α3hB (x2) [HB (x2)]

α3−1}
· α1hB (x1) [HB (x1)]

α1−1 S1(x1, x2),

f2 (x1, x2) ={α1hB (x1) [HB (x1)]
α1−1 + α3hB (x1) [HB (x1)]

α3−1}
· α2hB (x2) [HB (x2)]

α2−1 S2(x1, x2),

f3 (x) =α3hB (x) [HB (x)]α3−1 S3(x).

The joint distribution function of (X1, X2) is given by

FBHPP (x1, x2) =


F1 (x1, x2) x1 < x2,

F2 (x1, x2) x1 > x2,

F3 (x) x1 = x2 = x,

where

F1 (x1, x2) = FUHPP (x1;α13)− FUHPP (x1;α1) [1− FUHPP (x2;α23)] ,

F2 (x1, x2) = FUHPP (x2;α23)− FUHPP (x2;α2) [1− FUHPP (x1;α13)] ,

F3 (x) = 1− FUHPP (x;α123) ,

where αij = αi + αj , i 6= j.
The joint hazard function of the dependent variables (X1, X2) is obtained as follows

hBHPP (x1, x2) =


h1 (x1, x2) x1 < x2,

h2 (x1, x2) x1 > x2,

h3 (x) x1 = x2 = x.

where

h1 (x1, x2) = hUHPP (x1;α1) {hUHPP (x2;α2) + hUHPP (x2;α3)}

= α1hB (x1) [HB (x1)]
α1−1

{
α2hB (x2) [HB (x2)]

α2−1 + α3hB (x2) [HB (x2)]
α3−1

}
,

h2 (x1, x2) = hUHPP (x2;α2) {hUHPP (x1;α1) + hUHPP (x1;α3)}

= α2hB (x2) [HB (x2)]
α2−1

{
α1hB (x1) [HB (x1)]

α1−1 + α3hB (x1) [HB (x1)]
α3−1

}
,

h3 (x) = hUHPP (x;α3) = α3hB (x) [HB (x)]α3−1 .

The marginal survival and densities of X1 and X2 is given respectively, as follows

SXi (xi) = exp {− [HB (xi)]
αi − [HB (xi)]

α3} , i = 1, 2,

fXi (xi) ={αihB (xi) [HB (xi)]
αi−1 + α3hB (xi) [HB (xi)]

α3−1}
· exp {− [HB (xi)]

αi − [HB (xi)]
α3} , i = 1, 2
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Further, for the BHPP family the conditional density of X1i given X2j = x2j is given by

fXi/Xj (x1, x2) =


f
(1)
i/j (xi/xj) if xi < xj ,

f
(2)
i/j (xi/xj) if xj > xi,

f
(3)
i/j (xi/xj) if xi = xj ,

where

f
(1)
i/j (xi/xj) =α1hB(xi)[HB(xi)]

α1−1 exp{−[HB(xi)]
α1},

f
(2)
i/j (xi/xj) =α2hB(xj)[HB(xj)]

α2−1 exp{−[HB(xj)]
α2},

f
(3)
i/j (xi/xj) =

{
α3hB(xi)[HB(xi)]

α3−1

[α2hB(xj)[HB(xj)]α2−1 + α3hB(xj)[HB(xj)]α3−1]

}
· exp{−[HB(xi)]

α1 − [HB(xi)]
α2 − [HB(xi)]

α3 + [HB(xj)]
α2 + [HB(xj)]

α3}.

3.1 Maximum Likelihood Estimation for BHPP Models

Assume that {(x11, x21) , . . . , (x1n, x2n)} be a complete random sample from BHPP (α1, α2, α3)
family of distributions whose pdf and survival function are given in (28) and (27). Consider the
following notation

I1 = {i;x1i < x2i}, I2 = {i;x1i > x2i}, I3 = {x1i = x2i = xi}, I = I1 ∪ I2 ∪ I3,

|I1| = n1, |I2| = n2, |I3| = n3, and n1 + n2 + n3 = n.

The log-likelihood function of the sample of size n from BHPP (α1, α2, α3) is given by

l (α) = n1 logα1 + n2 logα2 + n3 logα3

+ (α1 − 1)
∑
I1

log [HB (x1i)] + (α2 − 1)
∑
I2

log [HB (x2i)] + (α3 − 1)
∑
I3

log [HB (xi)]

−
∑
I

[HB (x1i)]
α1 + [HB (x1i)]

α1 + [HB (xi)]
α1

−
∑
I

[HB (x2i)]
α2 + [HB (x2i)]

α2 + [HB (x2i)]
α2

−
∑
I

[HB (x2i)]
α3 + [HB (x1i)]

α3 + [HB (xi)]
α3

+
∑
I

log [hB (x1i)] + log [hB (x2i)] + log [hB (xi)]

+
∑
I1

Φ(x2i;α2, α3) +
∑
I2

Φ(x1i;α1, α3),

where α = (α1, α2, α3),

Φ (xki;αk, α3) = log
[
αkhB (xki) [HB (xki)]

αk−1 + α3hB (xki) [HB (xki)]
α3−1

]
, k = 1, 2.
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Accordingly, the likelihood equations can be written as

n1
α̂1

+
∑
I1

log [HB (x1i)] +
∑
I2

Ψ(x1i;α1, α3)

=
∑
I

log [HB (x1i)] {HB (x1i)
α̂1 +HB (x1i)

α̂1 + log [HB (xi)] [HB (xi)]
α̂1 ,

n2
α̂2

+
∑
I2

log [HB (x2i)] +
∑
I1

Ψ(x2i;α2, α3)

=
∑
I

log [HB (x2i)] {HB (x2i)
α̂2 +HB (x2i)

α̂2 + log [HB (xi)] [HB (xi)]
α̂2 ,

n3
α̂3

+
∑
I3

log [HB (xi)] +
∑
I1∪I2

ξ (x2i;α2, α3) + ξ (x1i;α1, α3)

=
∑
I

log [HB (x2i)] [HB (x2i)]
α̂3 + log [HB (x1i)] [HB (x1i)]

α̂3 + log [HB (xi)] [HB (xi)]
α̂3 ,

where

ξ (xki;αk, α3) =
[HB (xki)]

α3−1 [1 + α3 log [HB (xki)]]

αk [HB (xki)]
αk−1 + α3 [HB (xki)]

α3−1 , k = 1, 2,

and

Ψ (xki;αk, α3) =
[HB (xki)]

αk−1 [1 + αk log [HB (xki)]]

αk [HB (xki)]
αk−1 + α3 [HB (xki)]

α3−1 , k = 1, 2.

The second derivatives are given as follows

∂2l (α)

∂α2
1

=− n1
α2
1

+
∑
I2

η (x1i;α1, α3)−
∑
I

(log [HB (x1i)])
2
{
HB (x1i)

α̂1 +HB (x1i)
α̂1

}
+ (log [HB (xi)])

2[HB (xi)]
α̂1 ,

∂2l (α)

∂α2
2

=− n2
α2
2

+
∑
I1

η(x2i;α2, α3)−
∑
I

(log[HB(x2i)])
2{HB(x2i)

α̂2 +HB(x2i)
α̂2}

+ (log[HB(xi)])
2[HB(xi)]

α̂1 ,

∂2l(α)

∂α2
3

=− n3
α2
3

+
∑
I1∪I2

δ(x2i;α2, α3) + δ(x1i;α1, α3)
∑
I

(log[HB(x2i)])
2[HB(x2i)]

α̂3

+ (log[HB(x1i)])
2[HB(x1i)]

α̂3 + (log[HB(xi)])
2[HB(xi)]

α̂1 ,

∂2l(α)

∂α1∂α3
=
∑
I2

ε(x1i;α1, α3) and
∂2l(α)

∂α2∂α3
=
∑
I1

ε(x2i;α2, α3),
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where

A (xki;αk, α3) = αk [HB (xki)]
αk−1 + α3 [HB (xki)]

α3−1 , k = 1, 2,

B (xki;αk) = [HB (xki)]
αk−1 [1 + αk log [HB (xki)]], k = 1, 2,

C (xki;α3) = [HB (xki)]
α3−1 [1 + α3 log [HB (xki)]], k = 1, 2,

E (xki;αk) = [HB (xki)]
αk−1 log [HB (xki)] [2 + log [HB (xki)]], k = 1, 2,

G (xki;αk) = [HB (xki)]
α3−1 log [HB (xki)] [2 + log [HB (xki)]], k = 1, 2,

η (xki;αk, α3) =
A (xki;αk, α3) .E (xki;αk)− [B (xki;αk)]

2

[A (xki;αk, α3)]
2 , k = 1, 2,

δ (xki;αk, α3) =
[A (xki;αk, α3)]

2G (xki;αk)− [C (xki;αk)]
2

[A (xki;αk, α3)]
2 , k = 1, 2,

ε (xki;αk, α3) = −B (xki;αk) C (xki;αk)

[A (xki;αk, α3)]
2 , k = 1, 2.

The asymptotic variance-covariance matrix of α̂1, α̂2 and α̂3 is obtained by inverting the
Fisher information matrix with elements that are negatives of expected values of the second order
derivatives of logarithms of the likelihood function. In the present situation, it seems appropriate
to approximate the expected values by their maximum likelihood estimates. Accordingly; the
asymptotic variance-covariance matrix can be written as follows

F−1 =

 I11 I12 I13

I21 I22 I23

I31 I32 I33


−1∣∣∣∣∣∣∣

α=α̂,

where Iij = − ∂2l(α)
∂αi∂αj

∣∣∣
α=α̂.

Now, the asymptotic normality results will be stated to obtain the asymptotic confidence
intervals ofα1, α2and α3. Under particular regularity conditions it can be stated as follow

√
n [(α̂1 − α1), (α̂2 − α2), (α̂3 − α3)]→ N3(0, F

−1) as n→∞,

where F−1 is the variance-covariance matrix, α̂ = (α̂1, α̂2, α̂3) and α = (α1, α2, α3). Since α is
unknown, then F−1(α) is estimated by F−1(α̂); the asymptotic variance-covariance matrix that
defined above and this can be used to obtain the asymptotic confidence intervals of α1, α2 and
α3.

3.2 Bayesian Estimation

In this section, the Bayesian estimation for the BHPP models parameters is considered under the
assumption that the random variables α1, α2 and α3 are independently distributed with gamma
prior distributions as follows

πi (αi) =
baii

Γ(ai)
αai−1i e−biαi , i = 1, 2, 3, αi > 0.

The joint prior density of α1, α2 and α3 can be written as

π0 (Θ) =

3∏
i=1

baii
Γ(ai)

αai−1i e−biαi .
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Hyper-Parameters Determination The hyper-parameters involved in priors can be easily
evaluated, if the prior mean and variance are considered to be known. The prior mean and prior
variance will be obtained from the maximum likelihood estimates of (α1, α2, α3) by equating the
mean and variance of (α̂j1, α̂

j
2, α̂

j
3) with the mean and variance of the considered priors (gamma

prior), where j = 1, 2, . . . , k and k is the number of random samples generated from the model.
Thus, on equating the mean and variance of (α̂j1, α̂

j
2, α̂

j
3) with the mean and variance of gamma

priors, gets

1

k

k∑
j=1

α̂j1 =
a1
b1

and
1

k − 1

k∑
j=1

α̂j1 − 1

k

k∑
j=1

α̂j1

2

=
a1
b21
.

Now on solving the above two equations, the estimated hyper-parameters can be written as

a1 =

(
1
k

k∑
j=1

α̂j1

)2

1
k−1

k∑
j=1

(
α̂j1 − 1

k

k∑
j=1

α̂j1

)2 and b1 =

1
k

k∑
j=1

α̂j1

1
k−1

k∑
j=1

(
α̂j1 − 1

k

k∑
j=1

α̂j1

)2 .

Similar procedure for determining the hyper parameters (a2, b2, a3, b3) can be used for α2 and
α3. Since

f (D, θ) = π0 (θ)L(D | θ) and f (D) =

∫
f (D | θ)dθ =

∫
π0 (θ)L(D | θ)dθ,

hence, the joint posterior density function of θ = (α1, α2, α3) given the data D, denoted by
π1(θ | D) can be written as

π1(θ | D) =
π0 (θ)L(D | θ)∫
π0 (θ)L(D | θ)dθ

,

where D = {(x11, x21) , (x12, x22) , . . . , (x1n, x2n) } and L(D | θ) is the likelihood function.
Therefore, the Bayes estimates of the unknown parameters θ = (α1, α2, α3) under square

error loss function (SEL) can be calculated through the following equations as follows

θ̃i = E (θi | D) =

∫ ∫ ∫
θiπ1 (θi | D)dθ1dθ2dθ3. (29)

Obviously, the 3 integrals given by (29) cannot be obtained in a closed form. In this case,
the MCMC technique to generate samples from the posterior distributions is used and then
compute the Bayes estimators for the individual parameters. A wide variety of MCMC schemes
are available, and it can be difficult to choose among them. An important sub-class of MCMC
methods is Gibbs sampling and more general Metropolis within Gibbs samplers. The advantage
of using the MCMC method over the MLE method is that we can always obtain a reasonable
interval estimate of the parameters by constructing the probability intervals based on empirical
posterior distribution. To generate samples from the proposed family, the Metropolis-Hastings
(M-H) method (Metropolis et al. (1953) with normal proposal distribution) is used.

Thus, the following steps of M-H algorithm are performed to draw samples from the posterior
density and in turn compute the Bayes estimates (BEs) of θ = (α1, α2, α3).

Set initial values θ(0) M = burn-in. For i = 1, . . . , N repeat the following steps:
1. Set θ = θ(i−1).
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2. Generate a new candidate parameter values ω from N3 (log (θ) , Sθ).
3. Set θ′ = exp(ω).

4. Calculate A = min

(
1,

π
(
θ
′ |x

)
π(θ |x)

)
.

5. Update θ(i) = θ
′ with probability A; otherwise set θ(i) = θ.

The approximate BEs of θ(i) =
(
α
(i)
1 , α

(i)
2 , α

(i)
3

)′
, i = 1, . . . , N with respect to squared error loss

(SEL) function is given by

θ̃ =
1

N −M

N∑
i=M+1

θ(i),

where θ̃ is BEs under SEL and M is the burn-in-period (that is, a number of iterations before
the stationary distribution is achieved).

4 A New Bivariate Distributions Belongs to BHPP Models: Case
Studies

4.1 Bivariate Weibull Distribution

Using Equations (15)-(17) in Equations (26)-(28), a new bivariate Weibull distribution denoted
by BW(α1, α2, α3, λ) can be defined by the joint survival function

SBW (x1, x2) = exp {−(λx1)
α1} exp {−(λx2)

α2} exp {−(λx3)
α3},

where x3 = max(x1, x2).
The joint survival function of BW model can be stretching in the following form

SBW (x1, x2) =


S1 (x1, x2) x1 < x2,

S2 (x1, x2) x1 > x2,

S3 (x) x1 = x2 = x.

where

S1 (x1, x2) = exp {− (λx1)
α1 − (λx2)

α2 − (λx2)
α3} ,

S2 (x1, x2) = exp {− (λx1)
α1 − (λx1)

α3 − (λx2)
α2} ,

S3 (x) = exp {− (λx)α1 − (λx)α2 − (λx)α3} .

Accordingly, the joint pdf of BW model can be obtained as

fBW (x1, x2) =


f1 (x1, x2) x1 < x2,

f2 (x1, x2) x1 < x2,

f3 (x) x1 = x2 = x.

(30)

where

f1 (x1, x2) =α1λ
α1xα1−1

1 α2λ
α2xα2−1

2 + α3λ
α3xα3−1

2 S1(x1, x2),

f2 (x1, x2) =α2λ
α2xα2−1

2 α1λ
α1xα1−1

1 + α3λ
α3xα3−1

1 S2(x1, x2),

f3 (x) =α3λ
α3xα3−1S3(x).
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4.2 Bivariate Power Hazard Gompertz (BPHG) Distribution

Using Equations (18)-(19) in Equations (26)-(28), a new bivariate Gompertz distribution denoted
by BPHG(α1, α2, α3, λ, ξ) can be defined by the joint survival function

SBPHG (x1, x2) = exp
{
−[ξ(eλx1 − 1)]

α1 − [ξ(eλx2 − 1)]
α2 − [ξ(eλx3 − 1)]

α3
}
,

where x3 = max(x1, x2).
Or, the joint survival function of BPHG model can be written as

SBPHG (x1, x2) =


S1 (x1, x2) x1 < x2,

S2 (x1, x2) x1 > x2,

S3 (x) x1 = x2 = x,

where

S1 (x1, x2) = exp
{
−
[
ξ
(
eλx1 − 1

)]α1

−
[
ξ
(
eλx2 − 1

)]α2

− [ξ(eλx2 − 1)]
α3
}
,

S2 (x1, x2) = exp
{
−
[
ξ
(
eλx1 − 1

)]α1

−
[
ξ
(
eλx2 − 1

)]α2

− [ξ(eλx1 − 1)]
α3
}
,

S3 (x) = exp
{
−
[
ξ
(
eλx − 1

)]α1

−
[
ξ
(
eλx − 1

)]α2

− [ξ(eλx − 1)]
α3
}
.

The joint pdf of BPHG model can be written as

fBPHG (x1, x2) =


f1 (x1, x2) x1 < x2,

f2 (x1, x2) x1 < x2,

f3 (x) x1 = x2 = x,

where

f1 (x1, x2) =(λξ)2α1α2e
λx1eλx2

[
ξ(eλx1 − 1)

]α1−1 [
ξ
(

eλx2 − 1
)]α2−1

+ α3

[
ξ(eλx2 − 1)

]α3−1
S1(x1, x2),

f2 (x1, x2) =(λξ)2α2e
λx1eλx2 [ξ(eλx2 − 1)]

α2−1{α1

[
ξ
(

eλx1 − 1
)]α1−1

+ α3[ξ(e
λx1 − 1)]

α3−1
S2(x1, x2),

f3 (x) =λξα3e
λx[ξ(eλx − 1)]

α3−1
S3(x1, x2).

4.3 Bivariate Power Hazard Pareto (BPHP) Distribution

Using (20)-(22) in (26)-(28), a BPHP distribution denoted by BPHP (α1, α2, α3, λ) can be in-
troduced by the joint survival function

SBPHP (x1, x2) = exp {−[log (1 + λx1)]
α1} exp {−[log (1 + λx2)]

α2} exp {−[log (1 + λx3)]
α3},

where x3 = max(x1, x2).
That is,

SBPHP (x1, x2) =


S1 (x1, x2) x1 < x2,

S2 (x1, x2) x1 > x2,

S3 (x) x1 = x2 = x,
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where

S1 (x1, x2) = exp {− [log (1 + λx1)]
α1 − [log (1 + λx2)]

α2 − [log (1 + λx2)]
α3} ,

S2 (x1, x2) = exp {− [log (1 + λx1)]
α1 − [log (1 + λx1)]

α3 − [log (1 + λx2)]
α2} ,

S3 (x) = exp {− [log (1 + λx)]α1 − [log (1 + λx)]α2 − [log (1 + λx)]α3} .

The joint pdf of BHPP model can be written as

fBHPP (x1, x2) =


f1 (x1, x2) x1 < x2,

f2 (x1, x2) x1 < x2,

f3 (x) x1 = x2 = x,

where

f1 (x1, x2) =
λ2α1α2

(1 + λx1)(1 + λx2)
[log (1 + λx1)]

α1−1 [log (1 + λx2)]
α2−1

+ α3[log (1 + λx2)]
α3−1S1(x1, x2),

f2 (x1, x2) =
λ2α1α2

(1 + λx1) (1 + λx2)
[log (1 + λx2)]

α2−1 [log (1 + λx1)]
α1−1

+ α3 [log (1 + λx1)]
α3−1 S2(x1, x2),

f3 (x) =
λα3

(1 + λx)
[log (1 + λx)]α3−1S3(x).

4.4 Bivariate Power Hazard Uniform (BPHU) Distribution

Using (23)-(25) in (26)-(28), a BPHU distribution denoted by BPHU(α1, α2, α3) can be intro-
duced by the joint survival function

SBPHU (x1, x2) = exp {−[− log (1− x1)]α1 − [− log (1− x2)]α2 − [− log (1− x3)]α3},

where x3 = max(x1, x2),

SBPHU (x1, x2) =


S1 (x1, x2) , x1 < x2,

S2 (x1, x2) , x1 > x2,

S3 (x) , x1 = x2 = x,

where

S1 (x1, x2) = exp {− [− log (1− x1)]α1 − [− log (1− x2)]α2 − [− log (1− x2)]α3} ,
S2 (x1, x2) = exp {− [− log (1− x1)]α1 − [− log (1− x2)]α2 − [− log (1− x1)]α3} ,

S3 (x) = exp {− [− log (1− x)]α1 − [− log (1− x)]α2 − [− log (1− x)]α3} .

The joint pdf of BPHU model can be written as

fBPHU (x1, x2) =


f1 (x1, x2) x1 < x2,

f2 (x1, x2) x1 < x2,

f3 (x) x1 = x2 = x,
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where

f1 (x1, x2) =
α1α2

(1− x1)(1− x2)
[− log (1− x1)]α1−1 [− log (1− x2)]α2−1

+α3[− log (1− x2)]α3−1S1(x1, x2),

f2 (x1, x2) =
α1α2

(1− x1)(1− x2)
[− log (1− x1)]α1−1 [− log (1− x1)]α1−1

+α3[− log (1− x1)]α3−1S2(x1, x2),

f3 (x) =
α3

(1− x)
[− log (1− x)]α3−1 S3(x).

5 Application of BHPP Models to Real Data Set

To see how the BHPP models work in practices, one data set will be reanalyzed in this section.
The data set has been obtained from Meintanis (2007). The data represent the football (soccer)
data where at least one goal scored by the home team and at least one goal scored directly from
a penalty kick, foul kick or any other direct kick (all of them together will be called as kick goal)
by any team have been considered. Here X1 represents the time in minutes of the first kick goal
scored by any team and X2 represents the first goal of any type scored by the home team. In
this case all possibilities are open, for example X1 < X2 or X1 > X2 or X1 = X2 = X.

These data were analyzed by Meintanis (2007), who considered the Marshall-Olkin bivariate
exponential distribution, and by many authors such as Kundu and Dey (2009), Kundu and Gupta
(2009), Muhammed (2016), Muhammed (2017), Muhammed (2019), and Muhammed (2020).
Here, these data will be fitted to three BHPP models namely: (i) bivariate Weibull (BW), (ii)
bivariate hazard power parameter Gompertz (BHPG) and (iii) bivariate hazard power parameter
Pareto (BHPP) distributions. Note that both BW and BHPP are four parameters models but
BHPG is a five parameter model.The main aim is to see, how the different BHPP models and
the MLE works in practice.

Before trying to analyze the data using the BHPP models, first fit the marginals (UHPP)
models to X1, X2 separately. The UHPP models are (i) univariate Weibull(UW), (ii) univariate
hazard power parameter Gompertz (UHPG) and (iii) univariate hazard power parameter Pareto
(UHPP). Table 1 shows the MLEs, the Kolmogorov-Smirnov ((KS) distances between the fitted
distribution and the empirical distribution function for X1 and X2 with correspondence p-value,
the Akaike information criterion (AIC), Bayesian information criterion (BIC), the consistent
Akaike information criterion (CAIC) and Hannan-Quinn information criterion (HQIC). That
gives an indication that the BHPP models may be used to analyze this data set.

Now, the data will fitted to the three BHPP models defined above, the MLEs and the
standard error (SE) will be calculated for each bivariate model. To compare these model with
each other or with any other bivariate models that represent this data the AIC, BIC, HQIC and
CAIC are calculated for the three PHPP models as shown in Table 2. The BW model provides
a better fit than the other tested models, because it has the smallest value among AIC, BIC,
HQIC and CAIC and standard error.

6 Simulation Study

In this section, the results of a Monte Carlo simulation study testing the performance of MLE
and Bayesian estimation for the BHPP model Parameters will be introduced in general and
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Table 1: MLEs, KS, AIC, BIC, HQIC and CAIC for UHPP Models for the football data.
UHPP Model α λ ξ K-S p-value AIC BIC HQIC CAIC

UW X1 2.124 0.022 - 0.084 0.957 329.7 332.9 330.8 330.1
X2 1.421 0.028 - 0.106 0.804 330.5 333.7 331.6 330.8

UHPG X1 1.130 0.035 0.227 0.101 0.841 329.9 334.7 331.6 330.6
X2 1.065 0.0184 0.975 0.097 0.880 331.1 335.9 332.8 331.8

UHPP X1 3.157 0.038 - 0.097 0.879 333.2 336.4 334.3 333.5
X2 2.100 0.050 - 0.128 0.579 333.8 337.0 334.9 334.1

Table 2: MLEs, SE, AIC, BIC, HQIC and CAIC for the BHPP Models for the Football Data.
BHPP Model Estimates (Standard Error) AIC BIC HQIC CAIC

α1 α2 α3 λ ξ

BW 0.680 0.765 1.603 0.021 - 582.4 588.8 584.7 583.6
(0.235) (0.155) (0.310) (0.001) -

BHPG 0.575 0.658 1.281 0.010 1.637 583.7 591.8 586.6 585.7
(0.221) (0.169) (0.385) (0.010) (2.201)

BHPP 0.971 1.050 2.455 0.037 - 587.7 595.7 590.5 589.6
(0.220) (0.217) (0.455) (0.003) -

especially for BW model which defined by Equation (30) and denoted by BW(α1, α2, α3, λ) and
belongs to the BHPP models

The evaluation of the MLE and the Bayes estimation was performed based on the following
quantities for each sample size: the Average Estimates (AE), the Mean Squared Error (MSE),
Bias and confidence interval length (CL) are estimated from R = 10000 replications for α̂1, α̂2, α̂3

and λ̂ the sample size has been considered at n = 20, 30, 40, 50, 70 and 100, and some values for
the parameters α1, α2, α3 and λ have been considered.

The algorithm to generate from BHPP Models goes as follows.
Step 1. Generate U1, U2 and U3 from U(0, 1).
Step 2. Compute

Z1 = H−1B ([− logU1]
1/α1), Z2 = H−1B ([− logU2]

1/α2) and Z3 = H−1B ([− logU3]
1/α3).

Step 3. Obtain X1 = min(Z1, Z3) and X2 = min(Z2, Z3).
Step 4. Define the indicator functions as

δ1i =

{
1 x1i < x1i,

0 otherwise,
δ2i =

{
1 x1i > x1i,

0 otherwise,
δ3i =

{
1 x1i = x1i,

0 otherwise,

Step 5. The corresponding sample size n must satisfy n = n1 + n2 + n3 such that

n1 =

n∑
i=1

δ1i, n2 =

n∑
i=1

δ2i and n3 =

n∑
i=1

δ3i.

For different choices of sample sizes, 10000 data sets were generated. The results are summa-
rized in Table 3 and 4. The estimates are work well and MSE and RAB decreases as the sample
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Table 3: MLE and Bayes estimates for BW model parameters with α1 = 1.75, α2 = 1.5, α3 = 2.5,
λ = 1.5.

MLE Bayesian Esitimation

n AE Bias MSE CL AE Bias MSE CL

20 α1 1.300 −0.450 0.394 1.712 1.532 −0.219 0.185 1.451
α2 1.544 0.044 0.265 2.012 1.380 −0.120 0.116 1.251
α3 1.981 −0.519 0.635 2.370 2.238 −0.263 0.267 1.746
λ 1.073 −0.427 0.188 0.312 1.139 −0.361 0.185 0.917

30 α1 1.255 −0.496 0.371 1.389 1.409 −0.341 0.233 1.340
α2 1.515 0.015 0.174 1.632 1.387 −0.113 0.107 1.203
α3 1.894 −0.606 0.601 1.891 2.160 −0.341 0.303 1.696
λ 1.077 −0.423 0.182 0.198 1.144 −0.356 0.180 0.905

40 α1 1.240 −0.510 0.346 1.149 1.393 −0.357 0.211 1.132
α2 1.487 −0.013 0.112 1.310 1.371 −0.129 0.083 1.013
α3 1.898 −0.602 0.533 1.621 2.129 −0.371 0.232 1.203
λ 1.086 −0.414 0.175 0.251 1.140 −0.360 0.172 0.810

50 α1 1.209 −0.542 0.363 1.036 1.441 −0.309 0.169 1.061
α2 1.518 0.018 0.098 1.224 1.421 −0.079 0.066 0.960
α3 1.792 −0.708 0.633 1.420 2.238 −0.262 0.175 1.280
λ 1.086 −0.404 0.174 0.413 1.143 −0.357 0.170 0.813

70 α1 1.204 −0.546 0.341 0.805 1.470 −0.280 0.115 0.746
α2 1.484 −0.016 0.068 1.018 1.413 −0.087 0.041 0.719
α3 1.767 −0.733 0.627 1.176 2.214 −0.286 0.135 0.905
λ 1.106 −0.394 0.168 0.435 1.158 −0.343 0.161 0.816

100 α1 1.199 −0.551 0.334 0.687 1.530 −0.220 0.071 0.591
α2 1.495 −0.005 0.047 0.845 1.422 −0.078 0.028 0.576
α3 1.746 −0.754 0.629 0.967 2.275 −0.225 0.071 0.565
λ 1.145 −0.355 0.152 0.635 1.176 −0.324 0.145 0.787

size increases. For increasing sample size the MSEs of the considered parameters decreases. As
expected, for small sample sizes, the results corresponding to Bayesian procedure are better than
those corresponding to non- Bayesian procedure in the sense of MSE, bias and CL.

7 Other Bivariate Semiparametric Families of Distributions

7.1 Bivariate Power Parameter Family (BPP)

Assuming that U1, U2 and U3 are mutually independent random variables such that U1∼UPP(α1),
U2∼UPP(α2) and U3∼UPP(α3). Define X1 = max(U1, U3) and X2 = max(U2, U3) then by
using Equations (8) and (9), the bivariate Power parameter family of distributions denoted by
BPP(α1, α2, α3) is defined by the joint cdf as follows

FBPP (x1, x2) = FB (xα1
1 ) FB (xα2

2 )FB(xα3
3 ),

where x3 = min(x1, x2).
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Table 4: MLE and Bayes estimates for BW model parameters with α1 = 1.75, α2 = 2, α3 = 2.5,
λ = 3.

MLE Bayesian Esitimation

n AE Bias MSE CL AE Bias MSE CL

20 α1 1.640 −0.110 0.347 2.270 1.616 −0.134 0.130 1.315
α2 1.413 -0.587 0.544 1.752 1.697 -0.303 0.251 1.567
α3 2.316 -0.184 0.547 2.809 2.290 -0.210 0.222 1.655
λ 2.209 -0.792 0.652 0.621 2.246 -0.754 0.588 0.545

30 α1 1.602 -0.148 0.195 1.630 1.647 -0.103 0.077 1.010
α2 1.372 -0.628 0.521 1.398 1.761 -0.239 0.158 1.247
α3 2.231 -0.269 0.358 2.096 2.252 -0.248 0.153 1.185
λ 2.226 -0.774 0.648 0.862 2.262 -0.738 0.586 0.796

40 α1 1.598 -0.152 0.151 1.401 1.653 -0.097 0.054 0.827
α2 1.362 -0.638 0.506 1.231 1.732 -0.268 0.136 0.991
α3 2.151 -0.349 0.323 1.756 2.214 -0.286 0.143 0.967
λ 2.151 -0.349 0.323 1.756 2.214 -0.286 0.143 0.967

50 α1 2.151 -0.349 0.323 1.756 2.214 -0.286 0.143 0.967
α2 1.341 -0.659 0.513 1.098 1.716 -0.285 0.119 0.761
α3 2.131 -0.369 0.297 1.571 2.260 -0.241 0.093 0.738
λ 2.276 -0.724 0.629 1.269 2.314 -0.686 0.571 1.247

70 α1 1.575 -0.176 0.102 1.044 1.632 -0.118 0.049 0.731
α2 1.337 -0.663 0.491 0.893 1.718 -0.282 0.111 0.699
α3 2.010 -0.400 0.273 1.319 2.280 -0.220 0.093 0.823
λ 2.342 -0.659 0.609 1.641 2.362 -0.638 0.503 1.214

100 α1 1.553 -0.197 0.091 0.897 1.623 -0.127 0.041 0.620
α2 1.314 -0.686 0.474 0.231 1.717 -0.283 0.083 0.209
α3 2.072 -0.428 0.264 1.116 2.289 -0.211 0.091 0.847
λ 2.394 -0.606 0.533 1.594 2.382 -0.618 0.412 0.686

FBPP (x1, x2) =


F1 (x1, x2) x1 < x2,

F2 (x1, x2) x1 > x2,

F3 (x) x1 = x2 = x,

where

F1 (x1, x2) =FB (xα1
1 )FB (xα3

1 )FB(xα2
2 ),

F2 (x1, x2) =FB (xα1
1 )FB (xα2

2 )FB(xα3
2 ),

F3 (x) =FB (xα1)FB (xα2)FB (xα3) .

7.2 Bivariate Frailty Parameter Family (BFP)

Assuming that U1, U2 and U3 are mutually independent random variables such that U1 ∼
UFP(α1), U2 ∼ UFP(α2) and U3 ∼ UFP(α3). Define X1 = min(U1, U3) and X2 = min(U2, U3)
then by using Equations (11) and (12), the bivariate frailty parameter family of distributions (or
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bivariate proportional hazard models) denoted by BFP(α1, α2, α3) is defined by the joint survival
and density functions respectively, as follows

SBFP (x1, x2) = [SB (x1)]
α1 [SB (x2)]

α2 [SB (x3)]
α3 ,

such that x3 = max(x1, x2), or

SBFP (x1, x2) = exp{−α1HB (x1)− α2HB (x2)− α3HB (x3)},

and

fBFP (x1, x2) =


f1 (x1, x2) x1 < x2,

f2 (x1, x2) x1 > x2,

f3 (x) x1 = x2 = x,

where

f1 (x1, x2) =α1(α2 + α3)fB (x1) fB (x2) [SB (x1)]
α1−1[SB (x1)]

α2+α3−1,

f2 (x1, x2) =(α1 + α3)α2fB (x1) fB (x2) [SB (x1)]
α1+α3−1[SB (x1)]

α2−1,

f3 (x) =α3fB (x) [SB (x1)]
α1+α2+α3−1.

And it will be discussed in details in a separate paper.

7.3 Bivariate Resilience Parameter Family (BRP)

Based on the same bivariate idea in the previous sections and by using maximization process a
bivariate resilience parameter family of distributions is introduced by Kundu and Gupta (2010)
with the joint cdf and pdf respectively, as follows

FBRP (x1, x2) = [FB (x1)]
α1 [FB (x2)]

α2 [FB (x3)]
α3 such that x3 = min(x1, x2),

fBRP (x1, x2) =


f1 (x1, x2) , x1 < x2,

f2 (x1, x2) , x1 > x2,

f3 (x) , x1 = x2 = x,

where

f1 (x1, x2) =(α1 + α3)α2fB (x1) fB (x2) [FB (x1)]
α1+α3−1[FB (x2)]

α2−1,

f2 (x1, x2) =α1(α2 + α3)fB (x1) fB (x2) [FB (x1)]
α1−1[FB (x2)]

α2+α3−1,

f3 (x) =α3fB (x) [FB (x)]α1+α2+α3−1.

And they called this family as bivariate proportional reversed hazard family of distribu-
tion. Muhammed (2013) discussed some properties of this family and estimated the unknown
parameters of some distributions belong to this family under different censoring schemes.
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7.4 Bivariate Reversed Hazard Power Parameter Family (BRPP)

Assume U1 ∼ URPP(α1), U2 ∼ URPP(α2) and U3 ∼ URPP(α3) and U ′s are independent
random variables. Let X1 = max(U1, U3) and X2 = max(U2, U3).

Then, (X1, X2) constitute a BRPP class of distribution with the following cdf and pdf

FBRPP (x1, x2) = exp {[RB (x1)]
α1} exp {[RB (x2)]

α2} exp {[RB (x3)]
α3},

where x3 = min(x1, x2).
The joint cdf of BHPP model can be stretching in the following form

FBRPP (x1, x2) =


F1 (x1, x2) x1 < x2,

F2 (x1, x2) x1 > x2,

F3 (x) x1 = x2 = x,

F1 (x1, x2) = exp {− [RB (x1)]
α13 − [RB (x2)]

α2} ,
F2 (x1, x2) = exp {− [RB (x1)]

α1 − [RB (x2)]
α23} ,

F3 (x) = exp {− [RB (x)]α123} ,

where

[RB (xi)]
αi3 = [RB (xi)]

αi + [RB (xi)]
α3 , i = 1, 2,

[RB (x)]α123 = [RB (x)]α1 + [RB (x)]α2 + [RB (x)]α3 .

And it will be considered in details in a future work.

8 Conclusion

In this paper, a review of some univariate semi parametric families of distributions such as
power parameter, frailty parameter, resilience parameter, hazard power parameter and reversed
hazard power parameter is discussed in details. Moreover, proposed bivariate extensions for these
families are introduced based on Marshal-Olkin idea. The bivariate hazard power parameter
family is discussed with its main properties and the MLE and Bayesian estimation are also
considered for the shape parameters. A simulation study and a real data set are considered. As
a future work, other bivariate extensions for these families will be introduced based on other
copulas soon as possible.
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