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Abstract

Analyzing time to event data arises in a number of fields such as Biology and Engineering. A
common feature of this data is that, the exact failure time for all units may not be observable.
Accordingly, several types of censoring were presented. Progressive censoring allows units to
be randomly removed before the terminal point of the experiment. Marshall-Olkin bivariate
lifetime distribution was first introduced in 1967 using the exponential distribution. Recently,
bivariate Marshall-Olkin Kumaraswamy lifetime distribution was derived. This paper derives the
likelihood function under progressive type-I censoring for the bivariate Marshall-Olkin family in
general and applies it on the bivariate Kumaraswamy lifetime distribution. Maximum likelihood
estimators of model parameters were derived. Simulation study and a real data set are presented
to illustrate the proposed procedure. Absolute bias, mean square error, asymptotic confidence
intervals, confidence width and coverage probability are obtained. Simulation results indicate
that the mean square error is smaller and confidence width is narrower and more precise when
number of removals gets smaller. Also, increasing the terminal point of the experiment results
in reducing the mean square error and confidence width.

Keywords bivariate Marshall-Olkin; maximum likelihood estimation.

1 Introduction

In many real life situations, there is a great need to understand and study the distribution of
two variables interacting together and not each one separately. There are several examples in
Biology such as; the study of twins, study of blindness in the left and right eye, failure time of
the left and right kidney, the age at death of parent and child in a genetic study, studying the
relation between heights and weights for a children, and studying the relation between blood
pressure and body weight for a patient. Also, in reliability engineering to model the lifetime of a
twine-engine plane, warranty polices based on failure time and warranty servicing time, as well
as, different lifetime models, for example, shock model, maintenance model, bivariate longevity
model.

Different bivariate family distributions were constructed. See for example, Marshall and
Olkin (1967), Sankaran and Gleeja (2006), Regoli (2009), Mirhosseini et al. (2015). Great review
for the bivariate distributions can be found in Balakrishnan and Lai (2009). Marshall and Olkin
(1967) presented a bivariate exponential distribution with exponential marginals and loss of
memory property. This bivariate distribution was used to represent the shock model. Several
distributions were constructed by the same way, for example, Muhammed (2016) introduced the
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bivariate inverse Weibull distribution. Different extensions for the Marshall-Olkin family were
presented, see for example, Sarhan and Balakrishnan (2007), Jose et al. (2011), Li and Pellerey
(2011), Ozkut and Bayramoglu (2014), and Davarzani et al. (2015). Barreto-Souza and Lemonte
(2013) introduced the bivariate Kumaraswamy (BK) distribution, which can be applied in several
reliability models like shock model, maintenance model and stress model. Özel (2015) showed
that the BK model fits the earthquakes well.

There are several types of censoring, type-I (see Angali et al. (2014)), censored data with
concomitant of order statistics (see Chen et al. (2000), Hanagal and Sharma (2015)). and hybrid
random censoring (see Hanagal (1997)). The previous mentioned types of censoring do not
allow any unit to be randomly removed at a point different from the terminal point of the
experiment. Progressive censoring deals with this disadvantage by allowing units to be randomly
removed during the experiment. Progressive censoring was first introduced in the univariate
case by Cohen (1963). For more details, see Balakrishnan and Aggarwala (2000) and Lin and
Balakrishnan (2011). To the best of our knowledge, the likelihood function in the bivariate case
under progressive censoring was not derived yet. The advantage of this type of censoring is
reducing cost and time of the experiment by allowing units to be randomly removed during the
experiment. Because of the great importance of bivariate distributions in lifetime studies and
the wide applicability of bivariate Marshall-Olkin family illustrated above. This paper, considers
bivariate Marshall-Olkin family and derives the likelihood under progressive type-I censoring in
general. The derived likelihood function is applied on the bivariate Kumaraswamy distribution.

The paper is organized as follows. The model is described in Section 2. The derivation of
the likelihood function is done in Section 3. The maximum likelihood estimators of the model
parameters and Fisher information matrix are presented in Section 4. In Section 5, numerical
analysis including both simulated data and a real data set is done. Finally, the paper is concluded
in Section 6.

2 The Model under Type-I Censoring

Marshall and Olkin (1967) was the first to introduce a bivariate exponential distribution with
exponential marginals, loss of memory property and with applicability in real life. Using the same
procedure introduced by Marshall and Olkin (1967) several distributions were derived. Recently,
Barreto-Souza and Lemonte (2013) derived the BK distribution as follows.

Let Z1, Z2 and Z3 be independent random variables such that Zi follows Kumraswamy
(αi, β), with probability density function given by:

fk(z;α, β) = αβzβ−1(1− zβ)α,

where αi > 0, i = 1, 2, 3, and β > 0 are shape parameters. Assume that X1 = min(Z1, Z3)
and X2 = min(Z2, Z3), then the bivariate vector (X1, X2) follows BK with the joint probability
density function as follows:

fX1,X2(x1, x2) =


f1(x1, x2) 0 < x1 < x2 < 1,

f2(x1, x2) 0 < x2 < x1 < 1,

f3(x), 0 < x1 = x2 = x < 1,
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where
f1(x1, x2) = α1(α2 + α3)β

2xβ−11 (1− xβ1 )
α1−1xβ−12 (1− xβ2 )

(α2+α3−1),

f2(x1, x2) = α2(α1 + α3)β
2xβ−11 (1− xβ1 )

α1+α3−1xβ−12 (1− xβ2 )
(α2−1),

f3(x) = α3βx
β−1(1− xβ)α1+α2+α3−1.

Hanagal (1992) presented type-I censoring in the bivariate case. Let {(x11, x21), ..., (x1N , x2N )}
be a random sample of size N , and t be a pre-specified time at which the experiment is termi-
nated. The lifetimes associated with the ith pair are given by:

(x1i, x2i) =


(x1i, x2i) max(x1i, x2i) < t,

(x1i, t) x1i < t < x2i,

(t, x2i) x2i < t < x1i,

(t, t) min(x1i, x2i) > t.

The likelihood function has the following form:

L =

n1∏
i=1

f1(x1i, x2i)

n2∏
i=1

f2(x1i, x2i)

n3∏
i=1

f3(xi)

n4∏
i=1

f4(x1i, t)

n5∏
i=1

f5(t, x2i){[S(t, t)]}n6 , (1)

where f1(x1i, x2i) corresponds to the case where 0 < x1i < x2i ≤ t; f2(x1i, x2i) corresponds to
the case where 0 < x1i < x2i ≤ t; f3(xi) corresponds to the case where 0 < x1i = x2i = xi ≤ t;
f4(x1i, t) = limδx1i→0

P (x1i<X1i<x1i+δx1i|X2i>t)P (X2i>t)
δx1i

= α1βx
β−1
1i (1 − xβ1i)

α1−1(1 − tβ)α2+α3 ,

f5(t, x2i) = limδx2i→0
P (x2i<X2i<x2i+δx2i|X1i>t)P (X1i>t)

δx2i
= α2βx

β−1
2i (1 − xβ2i)

α2−1(1 − tβ)α1+α3 ;
S(t, t) = P (X1i > t,X2i > t); ni are the number of observations falling in the range corre-
sponding to fi, i = 1, 2, ..., 5, respectively and n6 is the number corresponding to S.

3 Derivation of the Likelihood Function under Progressive Cen-
soring

In this section we derive the likelihood function for the Marshall-Olkin family under progressive
type-I censoring in general.

Suppose {(x11, x21), ..., (x1N , x2N )} is a random sample of size N , and tj be a pre-specified
times, such that (x1, x2) is independent from tj , j = 1, ...,m. The censoring here occurs pro-
gressively in m stages at pre-specified times tj , such that tj > tj−1.

In the first stage, N units are observed until the first censoring time t1 when the failed
n1 units are counted. From the survived units (i.e. x1 > t1 and x2 > t1) R1 pairs of units
are randomly removed from the experiment. The remaining N − n1 − R1 units entered the
second stage. Similarly, in the second stage N − n1 − R1 are observed till the second censoring
time t2 when the failed n2 units are counted. From the survived units (i.e. x1 > t2 and
x2 > t2) R2 pairs of units are randomly removed from the experiment and so on. At time
tm, the failed nm units are counted. All the remaining survived pairs of units are removed (i.e
Rm = N −

∑m
j=1 nj −

∑m−1
j=1 Rj) and the experiment terminates.

The failed units in each stage are divided according to 5 different cases illustrated as follows:
Case 1: x1ij < x2ij ≤ tj , case 2: x2ij < x1ij ≤ tj , case 3: x1ij = x2ij = xij ≤ tj , case 4:
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x1ij ≤ tj < x2ij and case 5: x2ij ≤ tj < x1ij . To reflect this division we define 5 indicator
functions as follows:

δkij =

{
1, if ij observation belongs to case k,
0, otherwise.

The likelihood function is derived to be as follows:

L1 =

m∏
j=1

nj∏
i=1

{
[f1(x1ij , x2ij)]

δ1ij [f2(x1ij , x2ij)]
δ2ij [f3(xij)]

δ3ij

[f4(x1ij , tj)]
δ4ij [f5(tj , x2ij)]

δ5ij
}
[S(tj , tj)]

Rj .

(2)

Applying on the bivariate Kumaraswamy lifetime distribution, the likelihood function takes
the following form:

L1 =
m∏
j=1

nj∏
i=1

{
α
δ1ij+δ4ij
1 α

δ2ij+δ5ij
2 α

δ3ij
3 β2δ1ij+2δ2ij+δ3ij+δ4ij+δ5ij (α2 + α3)

δ1ij (α1 + α3)
δ2ij

x
(β−1)(δ1ij+δ2ij+δ4ij)
1ij x

(β−1)(δ1ij+δ2ij+δ5ij)
2ij x

(β−1)δ3ij
ij

(1− xβ1ij)
δ1ij(α1−1)+δ2ij(α1+α3−1)+(α1−1)δ4ij

(1− xβ2ij)
δ2ij(α2−1)+δ1ij(α2+α3−1)+(α2−1)δ5ij (1− xβij)

δ3ij(α1+α2+α3−1)

(1− tβj )
(α2+α3)δ4ij+(α1+α3)δ5ij

}
(1− tβj )

(α1+α2+α3)Rj .

4 Maximum Likelihood Estimation

In this section, the maximum likelihood estimators (MLEs) of the unknown parameters are
obtained by maximizing the logarithm of the likelihood function derived in Section 3. Moreover,
the observed Fisher information matrix is obtained. The confidence intervals are constructed
using the asymptotic properties of the MLEs.

The derivatives of the log-likelihood with respect to the unknown parameters are as follows:

∂ logL1

∂α1
=

1

α1

m∑
j=1

nj∑
i=1

(δ1ij + δ4ij) +
1

α1 + α3

m∑
j=1

nj∑
i=1

δ2ij +

m∑
j=1

nj∑
i=1

(δ1ij + δ2ij + δ4ij) log(1− xβ1ij)

+
m∑
j=1

nj∑
i=1

δ3ij log(1− xβij) +
m∑
j=1

nj∑
i=1

δ5ij log(1− tβj ) +
m∑
j=1

Rj log(1− tβj ),

∂ logL1

∂α2
=

1

α2

m∑
j=1

nj∑
i=1

(δ2ij + δ5ij) +
1

α2 + α3

m∑
j=1

nj∑
i=1

δ1ij +

m∑
j=1

nj∑
i=1

(δ1ij + δ2ij + δ5ij) log(1− xβ2ij)

+
m∑
j=1

nj∑
i=1

δ3ij log(1− xβij) +
m∑
j=1

nj∑
i=1

δ4ij log(1− tβj ) +
m∑
j=1

Rj log(1− tβj ),

,
∂ logL1

∂α3
=

1

α2 + α3

m∑
j=1

nj∑
i=1

δ1ij +
1

α1 + α3

m∑
j=1

nj∑
i=1

δ2ij +
1

α3

m∑
j=1

nj∑
i=1

δ3ij +

m∑
j=1

nj∑
i=1

δ2ij log(1− xβ1ij)
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+
m∑
j=1

nj∑
i=1

δ1ij log(1− xβ2ij) +
m∑
j=1

nj∑
i=1

δ3ij log(1− xβij)
m∑
j=1

nj∑
i=1

(δ4ij + δ5ij) log(1− tβj )

+

m∑
j=1

Rj log(1− tβj ),

∂ logL1

∂β
=A1 +B1 +A2 +B2 +A3 +B3 +A4 + C1 + C2,

where

A1 =
1

β

m∑
j=1

nj∑
i=1

(2δ1ij + 2δ2ij + δ3ij + δ4ij + δ5ij),

A2 = −
m∑
j=1

nj∑
i=1

{(α1 − 1)δ1ij + (α1 + α3 − 1)δ2ij + (α1 − 1)δ4ij}xβ1ij log x1ij
1− xβ1ij

,

A3 = −
m∑
j=1

nj∑
i=1

{(α2 + α3 − 1)δ1ij + (α2 − 1)δ2ij + (α2 − 1)δ5ij}xβ2ij log x2ij
1− xβ2ij

,

A4 = −(α1 + α2 + α3 − 1)
m∑
j=1

nj∑
i=1

δ3ijx
β
ij log xij

1− xβij
,

B1 =

m∑
j=1

nj∑
i=1

{δ1ij + δ2ij + δ4ij} log x1ij ,

B2 =
m∑
j=1

nj∑
i=1

(δ1ij + δ2ij + δ5ij) log x2ij ,

B3 =

m∑
j=1

nj∑
i=1

δ3ij log xij ,

C1 = −
m∑
j=1

nj∑
i=1

{(α2 + α3)δ4ij + (α1 + α3)δ5ij}tβj log tj
1− tβj

, and

C2 = −(α1 + α2 + α3)
m∑
j=1

Rjt
β
j log tj

1− tβj
.

If
∑m

j=1

∑nj
i=1 δkij > 0, k = 1, 2, 3, the equations can be solved numerically.

∑m
j=1

∑nj
i=1 δkij ,

k = 4, 5 and n6 can be equal to 0, as this will lead to the complete case. Bemis et al. (1972)
explained the conditions for the bivariate exponential distribution in the complete case, and they
reached the same conditions to have separate estimates for all the parameters.

Let the Fisher information matrix be denoted by

I(α1, α2, α3, β) =


I11 0 I13 I14
0 I22 I23 I24
I13 I23 I33 I34
I14 I24 I34 I44

 .
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We have

I11 =−
∂2 logL1

∂α2
1

=
1

α2
1

m∑
j=1

nj∑
i=1

(δ1ij + δ4ij) +
1

(α1 + α3)2

m∑
j=1

nj∑
i=1

δ2ij ,

I13 =−
∂2 logL1

∂α1∂α3
=

1

(α1 + α3)2

m∑
j=1

nj∑
i=1

δ2ij ,

I14 =−
∂2 logL1

∂α1∂β
=

m∑
j=1

nj∑
i=1

(δ1ij + δ2ij + δ4ij)x
β
1ij log x1ij

1− xβ1ij
+

m∑
j=1

nj∑
i=1

δ3ijx
β
ij log xij

1− xβij

+
m∑
j=1

nj∑
i=1

δ5ijt
β
j log tj

1− tβj
+

m∑
j=1

Rjt
β
j log tj

1− tβj
,

I22 =−
∂2 logL1

∂α2
2

=
1

(α2 + α3)2

m∑
j=1

nj∑
i=1

δ1ij +
1

α2
2

m∑
j=1

nj∑
i=1

(δ2ij + δ5ij),

I23 =−
∂2 logL1

∂α2∂α3
=

1

(α2 + α3)2

m∑
j=1

nj∑
i=1

δ1ij ,

I24 =−
∂2 logL1

∂α2∂β
=

m∑
j=1

nj∑
i=1

xβij log xijδ3ij

1− xβij
+

m∑
j=1

nj∑
i=1

(δ1ij + δ2ij + δ5ij)x
β
2ij log x2ij

1− xβ2ij

+
m∑
j=1

nj∑
i=1

δ4ijt
β
j log tj

1− tβj
+

m∑
j=1

Rjt
β
j log tj

1− tβj
,

I33 =−
∂2 logL1

∂α2
3

=
1

(α2 + α3)2

m∑
j=1

nj∑
i=1

δ1ij +
1

(α1 + α3)2

m∑
j=1

nj∑
i=1

δ2ij +
1

α2
3

m∑
j=1

nj∑
i=1

δ3ij ,

I34 =−
∂2 logL1

∂α3∂β
=

m∑
j=1

nj∑
i=1

δ2ijx
β
1ij log x1ij

1− xβ1ij
+

m∑
j=1

nj∑
i=1

δ1ijx
β
2ij log x2ij

1− xβ2ij
+

m∑
j=1

nj∑
i=1

δ3ijx
β
ij log xij

1− xβij

+

m∑
j=1

nj∑
i=1

(δ4ij + δ5i)t
β
j log tj

1− tβj
+

m∑
j=1

Rjt
β
j log tj

1− tβj
, and

I44 =−
∂2 logL1

∂β2
= D1 +D2 +D3 +D4 + E1 + E2,

where

D1 =
1

β2

m∑
j=1

nj∑
i=1

(2δ1ij + 2δ2ij + δ3ij + δ4ij + δ5ij),

D2 =

m∑
j=1

nj∑
i=1

{(α1 − 1)δ1ij + (α1 + α3 − 1)δ2ij + (α1 − 1)δ4ij}xβ1ij(log x1ij)2

(1− xβ1ij)2
,

D3 =
m∑
j=1

nj∑
i=1

{(α2 + α3 − 1)δ1ij + (α2 − 1)δ2ij + (α2 − 1)δ5ij}xβ2ij(log x2ij)2

(1− xβ2ij)2
,
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D4 =(α1 + α2 + α3 − 1)

m∑
j=1

nj∑
i=1

δ3ij(log xij)
2xβij

(1− xβij)2
,

E1 =

m∑
j=1

nj∑
i=1

{(α2 + α3)δ4ij + (α1 + α3)δ5ij}(log tj)2tβj
(1− tβj )2

, and

E2 =(α1 + α2 + α3)

m∑
j=1

Rj(log tj)
2tβj

(1− tβj )2
.

Using the asymptotic distribution of the MLEs, the confidence intervals can be obtained as
follows:

λ̂± z γ
2

√
ˆvar(λ̂),

where λ̂ = (α̂1, α̂2, α̂3, β̂), ˆvar(λ̂) is the estimated variance, and z γ
2
is the upper γ

2
th percentile

of the standard normal table.

5 Numerical Results

In this section, a simulation study is carried out to investigate the performance of the derived
likelihood function under different schemes using different arbitrary chosen values of t, R and
using different N , and also, using different populations. Moreover, a real data set is analyzed.

5.1 Simulation Results

Here, the following schemes are considered:
• Scheme 1: N = 40, m = 2, R1=3;
• Scheme 2: N = 40, m = 2 , R1=5;
• Scheme 3: N = 70, m = 3, R1=R2=5;
• Scheme 4: N = 70, m = 3, R1=R2=7.

R was used with 5000 replications, the results are presented in Table 1 and Table 2 for
scheme 1 to scheme 4. Absolute Bias (ABias), Mean Square Error (MSE), Confidence Width
(CW) and Coverage Probability (CP) are obtained for each scheme. The results are analyzed
by two different ways. First, consider the following division to study the effect of increasing the
number of removals
• Set 1: schemes 1 and 3;
• Set 2: schemes 2 and 4.
It can be seen that for the majority of the cases MSEs are smaller in set 1 than that in set 2. For
example, comparing scheme 1 and scheme 2, t1 = 0.05 and t2 = 0.4 and all parameters equal to
1. MSE for α1 decreased from 0.265 in scheme 2 to 0.242 in scheme 1. Also, CWs are narrower
in set 1 than that in set 2. For the same example above CW decreased from 1.968 to 1.884.
Moreover, ABias decreases for more than half of the cases in set 1 than that in set 2. For the
same example MSE decreased from 0.116 to 0.106.

Second, studying the effect of increasing the value of the terminal point of the experiment
as follows:
• Set 1: t1=0.05 and t2=0.4 (i.e. Table 1);
• Set 2: t1=0.1 and t2=0.6 (i.e. Table 1);
• Set 3: t1=0.09, t2=0.15 and t3=0.4 (i.e. Table 2);
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Table 1: The results for schemes 1 and 2.
(t1, t2)=(0.05, 0.4) (t1, t2)=(0.1, 0.6)

α1 α2 α3 β α1 α2 α3 β

α1 = 0.5, α2 = 0.5,
α3 = 0.5, β = 0.5.

R1 = 3

ABias 0.036 0.044 0.040 0.023 0.034 0.040 0.033 0.024
MSE 0.046 0.048 0.044 0.012 0.036 0.038 0.033 0.011
CW 0.832 0.840 0.804 0.412 0.734 0.744 0.702 0.392
CP 0.934 0.938 0.940 0.949 0.943 0.942 0.948 0.949

R1 = 5

ABias 0.047 0.042 0.036 0.023 0.038 0.038 0.037 0.023
MSE 0.051 0.051 0.046 0.013 0.040 0.039 0.036 0.011
CW 0.868 0.868 0.832 0.430 0.774 0.764 0.734 0.392
CP 0.942 0.937 0.933 0.956 0.932 0.938 0.943 0.951

α1 = 0.5, α2 = 0.4,
α3 = 0.4, β = 0.5.

R1 = 3

ABias 0.039 0.034 0.032 0.027 0.035 0.027 0.023 0.023
MSE 0.046 0.034 0.032 0.014 0.034 0.025 0.023 0.012
CW 0.822 0.712 0.690 0.446 0.712 0.608 0.582 0.412
CP 0.940 0.935 0.937 0.953 0.946 0.942 0.934 0.951

R1 = 5

ABias 0.044 0.036 0.027 0.026 0.038 0.030 0.029 0.024
MSE 0.050 0.036 0.033 0.014 0.037 0.027 0.025 0.012
CW 0.858 0.734 0.702 0.446 0.744 0.632 0.608 0.412
CP 0.938 0.931 0.927 0.948 0.945 0.939 0.942 0.951

α1 = 1, α2 = 1,
α3 = 1, β = 1.

R1 = 3

ABias 0.106 0.104 0.092 0.037 0.088 0.083 0.081 0.036
MSE 0.242 0.241 0.213 0.036 0.161 0.158 0.138 0.028
CW 1.884 1.880 1.774 0.734 1.534 1.524 1.418 0.644
CP 0.936 0.938 0.934 0.950 0.944 0.943 0.947 0.946

R1 = 5

ABias 0.116 0.111 0.113 0.046 0.085 0.094 0.082 0.034
MSE 0.265 0.261 0.238 0.038 0.170 0.173 0.148 0.028
CW 1.968 1.956 1.860 0.744 1.582 1.588 1.472 0.644
CP 0.933 0.933 0.941 0.951 0.942 0.945 0.948 0.949

α1 = 1.2, α2 = 1.2,
α3 = 1.2, β = 1.

R1 = 3

ABias 0.109 0.119 0.108 0.032 0.101 0.105 0.099 0.033
MSE 0.311 0.316 0.278 0.031 0.228 0.230 0.196 0.025
CW 2.144 2.154 2.022 0.678 1.830 1.834 1.690 0.608
CP 0.938 0.936 0.943 0.955 0.941 0.944 0.945 0.948

R1 = 5

ABias 0.128 0.132 0.121 0.036 0.112 0.108 0.102 0.037
MSE 0.342 0.346 0.304 0.032 0.250 0.247 0.211 0.026
CW 2.238 2.248 2.108 0.690 1.908 1.900 1.758 0.620
CP 0.939 0.936 0.941 0.948 0.945 0.943 0.942 0.948

• Set 4: t1=0.05, t2=0.25 and t3=0.55 (i.e. Table 2).
Increasing the terminal point of the experiment results in decreasing MSEs. For example, com-
paring set 1 and set 2, and setting all the parameters equal 1, MSE for α1 decreased from 0.242
to 0.161. Also, it leads to narrower and more precise CWs. For the same above example, CW
decreases from 1.884 to 1.534.

Finally, by summarizing all tables, it is clear that CIs includes the true values of the proposed
parameters. Also, for the majority of the cases the coverage probability is above 93%, and β
considers more satisfactory as its coverage probability is more close to 95%.
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Table 2: The results for schemes 3 and 4.
(t1, t2, t3)=(0.09, 0.15, 0.4) (t1, t2, t3)=(0.05, 0.25, 0.55)

α1 α2 α3 β α1 α2 α3 β

α1 = 0.5, α2 = 0.5,
α3 = 0.5, β = 0.5.

R1 = 5,
R2 = 5

ABias 0.006 0.005 0.003 0.021 0.003 0.006 0.005 0.017
MSE 0.023 0.023 0.022 0.007 0.020 0.020 0.019 0.006
CW 0.594 0.594 0.582 0.328 0.554 0.554 0.540 0.304
CP 0.933 0.928 0.927 0.949 0.932 0.932 0.938 0.950

R1 = 7,
R2 = 7

ABias 0.002 0.004 0.003 0.022 0.006 0.009 0.005 0.014
MSE 0.024 0.023 0.022 0.007 0.020 0.020 0.019 0.006
CW 0.608 0.594 0.582 0.328 0.554 0.554 0.540 0.304
CP 0.923 0.919 0.928 0.941 0.925 0.919 0.925 0.950

α1 = 0.5, α2 = 0.4,
α3 = 0.4, β = 0.5.

R1 = 5,
R2 = 5

ABias 0.010 0.007 0.006 0.024 0.001 0.003 0.003 0.017
MSE 0.023 0.017 0.016 0.009 0.018 0.014 0.013 0.007
CW 0.594 0.512 0.496 0.350 0.526 0.464 0.446 0.328
CP 0.934 0.926 0.933 0.950 0.937 0.930 0.936 0.948

R1 = 7,
R2 = 7

ABias 0.005 0.001 0.002 0.027 0.004 0.005 0.002 0.018
MSE 0.023 0.017 0.017 0.009 0.019 0.014 0.013 0.007
CW 0.594 0.512 0.512 0.350 0.540 0.464 0.446 0.328
CP 0.929 0.927 0.929 0.942 0.925 0.925 0.926 0.947

α1 = 1, α2 = 1,
α3 = 1, β = 1.

R1 = 5,
R2 = 5

ABias 0.059 0.064 0.054 0.044 0.035 0.039 0.039 0.031
MSE 0.127 0.129 0.119 0.023 0.093 0.094 0.087 0.018
CW 1.380 1.386 1.336 0.568 1.188 1.188 1.142 0.512
CP 0.939 0.939 0.941 0.944 0.939 0.940 0.948 0.948

R1 = 7,
R2 = 7

ABias 0.059 0.061 0.063 0.052 0.034 0.034 0.032 0.040
MSE 0.134 0.135 0.127 0.024 0.098 0.098 0.091 0.020
CW 1.418 1.418 1.374 0.568 1.220 1.220 1.176 0.526
CP 0.934 0.938 0.943 0.943 0.929 0.939 0.931 0.938

α1 = 1.2, α2 = 1.2,
α3 = 1.2, β = 1.

R1 = 5,
R2 = 5

ABias 0.081 0.078 0.070 0.046 0.040 0.042 0.042 0.029
MSE 0.177 0.175 0.162 0.020 0.133 0.133 0.122 0.017
CW 1.616 1.612 1.554 0.526 1.418 1.418 1.358 0.496
CP 0.945 0.946 0.946 0.945 0.937 0.938 0.938 0.947

R1 = 7,
R2 = 7

ABias 0.061 0.071 0.064 0.048 0.040 0.042 0.037 0.033
MSE 0.178 0.181 0.168 0.020 0.142 0.142 0.129 0.017
CW 1.636 1.644 1.588 0.526 1.466 1.466 1.402 0.496
CP 0.936 0.936 0.938 0.937 0.940 0.936 0.941 0.947

5.2 A Real Life Data Set

A real data set is obtained from Barreto-Souza and Lemonte (2013), it corresponds to football
(soccer) data such that at least one goal scored by the home team and at least one goal scored
directly from a penalty kick, a foul kick or any other direct kick by any team have been considered.
Let Z1 corresponds to the time in minutes of the first kick goal scored by any team, and Z2

corresponds to the first goal of any type scored by the home team. All the data points have
been divided by 90. Accordingly, we analyze the proportion of time that the home team and any
other team scored the first kick goal. Barreto-Souza and Lemonte (2013) computed the modified
Cramer-von Mises and Anderson-Darling statistics. The values of the two statistics and their
corresponding p-values showed that the BK model fits the data well. We will try to apply the
data they used to illustrate our procedure and we consider the following two schemes:



748 Aly, H. M. et al.

Table 3: Estimated parameters and CWs for the BK distribution.

α̂1 α̂2 α̂3 β̂

T1 = 0.25,
T2 = 0.55

estimate 0.396 1.394 1.067 1.284
CI (−0.038, 0.830) (0.395, 2.393) (0.273, 1.861) (0.816, 1.752)
CW 0.868 1.998 1.588 0.936

T1 = 0.1,
T2 = 0.4

estimate 0.585 1.394 1.088 1.293
CI (−0.088, 1.258) (0.151, 2.637) (0.096, 2.080) (0.771, 1.815)
CW 1.346 2.486 1.984 1.044

• Scheme 1: N = 37, m = 2, t1= 0.25 and t2=0.55, R1=3 and R2=5;
• Scheme 2: N = 37, m = 2, t1= 0.1 and t2=0.4, R1=3 and R2=11.
CIs, CWs and MLEs are presented in Table 3 and it is observed that scheme 1 is more precise
than scheme 2. which is a logical result due to increasing the number of the analyzed failed units.
Also, it supports the conclusion obtained from studying the effect of increasing the terminal point
of the experiment in the simulation study. Also, for scheme 1, it can be seen that Z1 follows
Kumaraswamy (1.463, 1.284) and Z2 follows Kumaraswamy (2.462, 1.284), and for scheme 2, it
can be seen that Z1 follows Kumaraswamy (1.673, 1.293) and Z2 follows Kumaraswamy (2.482,
1.293).

6 Conclusion

In this paper, the likelihood function was derived for the Marshall-Olkin family under progressive
type-I censoring. The derived likelihood function was applied on the Marshall-Olkin bivariate
Kumaraswamy lifetime distribution. Maximum likelihood estimation are obtained to estimate the
unknown parameters. Moreover, asymptotic confidence intervals are constructed using observed
Fisher information matrix. Simulation results indicated that for most of the cases MSEs are
smaller, CWs are narrower and more precise when numbers of removals are less. Also, increasing
the terminal point of the experiment results in reducing the MSEs and CWs. Moreover, a
real data set is analyzed using different values of the terminal point which supports the last
conclusion. The only limitation of this study is that the Kumaraswamy lifetime distribution is
ranged between 0 and 1, which lead out time to be between 0 and 1. But this is has no effect
on the possibility to apply the results obtained on any lifetime distribution that ranged from 0
to infinity.
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