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Abstract: Ranked set sampling and some of its variants have been applied 

successfully in different areas of applications such as industrial statistics, 

economics, environmental and ecological studies, biostatistics, and statistical 

genetics. Ranked set sampling is a sampling method that more efficient than simple 

random sampling. Also, it is well known that Fisher information of a ranked set 

sample (RSS) is larger than Fisher information of a simple random sample (SRS) 

of the same size about the unknown parameter of the underlying distribution in 

parametric inference. In this paper, we consider the Farlie-Gumbel-Morgenstern 

(FGM) family and study the information measures such as Shannon’s entropy, 

Rényi entropy, mutual information, and Kullback-Leibler (KL) information of RSS 

data. Also, we investigate their properties and compare them with a SRS data. 
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1. Introduction  

McIntyre (1952) first proposed ranked set sampling for estimating the mean pasture yields 

and indicated that ranked set sampling is a more efficient sampling method than simple random 

sampling method for estimating the population mean. The ranked set sampling technique is a 

sample selection procedure and composed of two stages. At the first stage of sample selection, 𝑛 

simple random samples of size 𝑛 are drawn from an infinite population and each sample is called 

a set. Then, each of units are ranked from the smallest to the largest according to variable of 

interest, say X, in each set. Ranking of the units is done with a low-level measurement such as 

using previous experiences, visual measurement or using a concomitant variable. At the second 

stage, the first unit from the first set, the second unit from the second set and going on like this 

𝑛th unit from the 𝑛th set are taken and measured according to the variable X with a high level of 

measurement satisfying the desired sensitivity. The obtained sample is called a ranked set sample 

(RSS). Ranked set sampling and some of its variants have been applied successfully in different 
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areas of applications such as industrial statistics, environmental and ecological studies, 

biostatistics and statistical genetics. We assume that (𝑋𝑆𝑅𝑆, 𝑌𝑆𝑅𝑆) = {(𝑋𝑖, 𝑌𝑖), 𝑖 = 1,2,3, ⋯ , 𝑛} 

denotes a simple random sample (SRS) of size 𝑛 ≥ 1 from Farlie-Gumbel-Morgenstern (FGM) 

family with probability density function (pdf) given by 

𝑓𝑋,𝑌(𝑥, 𝑦) = 𝑓𝑋(𝑥)𝑓𝑌(𝑦)[1 + 𝛼(2𝐹𝑋(𝑥) − 1)(2𝐹𝑌(𝑦) − 1)],                      (1.1) 

where −1 ≤ 𝛼 ≤ 1, and 𝑓𝑋(𝑥), 𝑓𝑌(𝑦), and 𝐹𝑋(𝑥), 𝐹𝑌(𝑦) are marginal pdf and cumulative 

distribution function (cdf) of 𝑋 and 𝑌, respectively. Also, the copula model of FGM family is 

defined by Nelson (1999) as follows: 

𝑐(𝑢, 𝑣) = [1 + 𝛼(1 − 2𝑢)(1 − 2𝑣)],   0 ≤ 𝑢, 𝑣 ≤ 1  .             (1.2) 

Stokes (1977) applied ranked set sampling for bivariate random variable (X,Y), where X is 

the variable of interest and Y is a concomitant variable that is not of direct interest but is relatively 

easy to measure. The procedure of ranked set sampling described by Stokes (1977) for a bivariate 

random variable is as follows: 

Step 1. Randomly select 𝑛 independent bivariate samples, each of size 𝑛. 

Step 2. Rank the units within each sample with respect to a variable of interest 𝑋 together with 

the 𝑌 variate associated. 

Step 3. In the 𝑟th sample of size 𝑛, select the unit  (𝑋(𝑟)𝑟, 𝑌[𝑟]𝑟),  𝑟 = 1,2, . . . , 𝑛.  

Let 𝑋(𝑟)𝑟  be the measured observation on the variable 𝑋 in the 𝑟th unit of the RSS and let 

𝑌[𝑟]𝑟  be the corresponding measurement made on the study variable 𝑌 of the same unit, 𝑟 =

1,2,3, ⋯ , 𝑛. Then clearly 𝑌[𝑟]𝑟 is the concomitant of 𝑟th order statistic arising from the 𝑟th sample. 

Also assume that (𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) = {(𝑋(𝑟)𝑟, 𝑌[𝑟]𝑟), 𝑟 = 1,2,3, ⋯ , 𝑛} denotes a RSS of size 𝑛 from 

bivariate distribution where the joint pdf of (𝑋(𝑟)𝑟, 𝑌[𝑟]𝑟) is given by 

𝑓𝑋(𝑟)𝑟,𝑌[𝑟]𝑟
(𝑥, 𝑦) =

𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
𝑓𝑋,𝑌(𝑥, 𝑦)[𝐹𝑋(𝑥)]𝑟−1[1 − 𝐹𝑋(𝑥)]𝑛−𝑟,    1 ≤ 𝑟 ≤ 𝑛.     (1.3) 

 

From Scaria and Nair (1999), the pdf of 𝑌[𝑟]𝑟 in FGM family is given by  

  

𝑓𝑌[𝑟]𝑟
(𝑦) = ∫

+∞

−∞

𝑓𝑌|𝑋(𝑦|𝑥)𝑓𝑋(𝑟)𝑟
(𝑥)𝑑𝑥 = 𝑓𝑌(𝑦)[1 +

𝑛 − 2𝑟 + 1

𝑛 + 1
𝛼(1 − 2𝐹𝑌(𝑦))]. 

  

Note that 𝑓𝑌(𝑦) =
1

𝑛
∑𝑛

𝑟=1 𝑓𝑌[𝑟]𝑟
(𝑦) and the pdf of 𝑋(𝑟)𝑟 is  

  

𝑓𝑋(𝑟)𝑟
(𝑥) =

𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
𝑓𝑋(𝑥)[𝐹𝑋(𝑥)]𝑟−1[1 − 𝐹𝑋(𝑥)]𝑛−𝑟. 

  

For perfect ranking situation, 𝑋𝑅𝑆𝑆  consists of independent order statistics from 𝐹. When 

ranking is imperfect, the rth judgment order statistic, will no longer be the rth order statistic. 
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When ranking is imperfect, we use 𝑋𝑅𝑆𝑆
∗ = {(𝑋(𝑟)𝑟

∗ , 𝑟 = 1,2,3, ⋯ , 𝑛} to denote an imperfect RSS 

of size 𝑛 from 𝑓𝑋(𝑥). Therefore, the pdf of 𝑋(𝑟)𝑟
∗  is shown by   

𝑓𝑋(𝑟)𝑟
∗ (𝑥∗) = ∑

𝑛

𝑟′=1

𝑝𝑟,𝑟′𝑓𝑋(𝑟′)𝑟′
(𝑥),                                              (1.4) 

where  𝑝𝑟,𝑟′ = ℙ(𝑋(𝑟) = 𝑋(𝑟′)𝑟′), denotes the probability with which the 𝑟th order statistic is 

judged as having rank 𝑟′ with ∑𝑛
𝑟′=1 𝑝𝑟,𝑟′ = ∑𝑛

𝑟=1 𝑝𝑟,𝑟′ = 1.  

Also, the copula model for the joint pdf of (𝑋(𝑟)𝑟, 𝑌[𝑟]𝑟) in FGM family is given by   

𝑐𝑟(𝑢, 𝑣) =
𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
[1 + 𝛼(1 − 2𝑢)(1 − 2𝑣)]𝑢𝑟−1(1 − 𝑢)𝑛−𝑟. 

Chen (2000) and Barabesi and El-Sharaawi (2001) studied the Fisher information contained 

in the usual RSS data for multi parameter family of distributions and showed that it is always 

larger than the Fisher information of the SRS data. Park and Lim (2012) studied the effect of 

imperfect ranking on the amount of Fisher information in ranked set samples. Frey (2013) showed 

that the Fisher information in an imperfect RSS may be higher than the Fisher information in a 

perfect RSS. In FGM family, we study the information measures such as Shannon's entropy, 

Rényi entropy, mutual information, and Kullback-Leibler (KL) information of RSS data. Also, 

we compare information measures of RSS data with SRS data. These measures are used in 

various contexts of ordered data such as order statistics by Wong and Chen (1990) and Park 

(1995), Ebrahimi et al. (2004), Bratpour et al.(2007a, b), record values by Raqab and Awad (2000, 

2001), Zahedi and Shakil (2006), Ahmadi and Fashandi (2008), Madadi and Tata (2011), and in 

testing hypothesis by Park (2005), Balakrishnan et al. (2007) and Habibi Rad et al. (2011), and 

censored data by Abo-Eleneen(2011). Abo-Eleneen (2001) and Abo-Eleneen and Nagaraja 

(2002a) studied Fisher information in pairs and collections of order statistics and their 

concomitants from bivariate samples. Tahmasebi and Behboodian (2012) obtained some results 

of information measures for concomitants of order statistics in FGM family. Recently, Fashandi 

and Ahmadi (2012) studied characterizations of symmetric distributions based on Rényi entropy 

of concomitants. 

The organization of this article is as follows: In Section 2, we obtain the Shannon entropy for 

RSS in FGM family and illustrate for three special cases. In Section 3, the Rényi entropy for RSS 

in FGM family is presented. Mutual information for RSS is given in Section 4. Kullback-Leibler 

information for RSS is presented in Section 5.   

 

2. Shannon entropy of RSS in  FGM  family 

Shannon entropy is a mathematical measure of information which measures the average 

reduction of uncertainty for a continuous random variable X, and defined by Shannon (1948) as 

𝐻(𝑋) = − ∫
+∞

−∞

𝑓𝑋(𝑥)log𝑓𝑋(𝑥)𝑑𝑥 = − ∫
1

0

log𝑓𝑋 (𝐹𝑋
−1(𝑢)) 𝑑𝑢.                        (2.1) 

where 𝑓𝑋(𝑥) is the pdf of 𝑋.  

Entropy has also been used in various branches of statistics and related fields, and has become 

an integral part of probability and statistics (Soofi, 2000). Harris (1982) regarded Shannon 
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entropy as a descriptive quantity of the corresponding probability distribution, and Nayak (1985) 

justified its utility as a descriptive measure. We refer the reader to Cover and Thomas (1991) as 

reference therein for more details.  

The Shannon entropy of (𝑋𝑆𝑅𝑆, 𝑌𝑆𝑅𝑆) is given by   

𝐻(𝑋𝑆𝑅𝑆, 𝑌𝑆𝑅𝑆) = − ∑

𝑛

𝑖=1

∫ ∫ 𝑓𝑋𝑖,𝑌𝑖
(𝑥𝑖, 𝑦𝑖)log𝑓𝑋𝑖,𝑌𝑖

(𝑥𝑖, 𝑦𝑖)𝑑𝑥𝑖𝑑𝑦𝑖 = 𝑛𝐻(𝑋1, 𝑌1). 

Also, under the perfect ranking assumption in bivariate distribution, we have   

𝐻(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) = − ∑

𝑛

𝑟=1

∫ ∫ 𝑓(𝑟)𝑟,[𝑟]𝑟(𝑥, 𝑦)log𝑓(𝑟)𝑟,[𝑟]𝑟(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = ∑

𝑛

𝑟=1

𝐻(𝑋(𝑟)𝑟, 𝑌[𝑟]𝑟). 

Lemma 2.1. 1A general expression for 𝐻(𝑋(𝑟)𝑟, 𝑌[𝑟]𝑟) is given 

 

𝐻(𝑋(𝑟)𝑟, 𝑌[𝑟]𝑟) = −log𝑎𝑟 + 𝑎𝑟[(𝑟 − 1)𝑍𝑛(𝑟) + (𝑛 − 𝑟)𝑍𝑛(𝑛 − 𝑟 + 1)] + 𝑄𝑛(𝑟),  (2.2) 

where 𝑎𝑟 =
𝑛!

(𝑟−1)!(𝑛−𝑟)!
= 𝑛(𝑛−1

𝑟−1
) and   

𝑍𝑛(𝑟) = ∑

𝑛−𝑟

𝑚=0

(
𝑛 − 𝑟

𝑚
)

(−1)𝑚

(𝑚 + 𝑟)2
    ,      𝑄𝑛(𝑟) = 𝐸𝑓(𝑟)𝑟,[𝑟]𝑟

[−log𝑓(𝑋, 𝑌)]. 

Proof. From (1.3) and (2.1),  we have  

𝐻(𝑋(𝑟)𝑟, 𝑌[𝑟]𝑟) = −𝐸𝑓(𝑟)𝑟,[𝑟]𝑟
[log𝑓𝑋(𝑟)𝑟,𝑌[𝑟]𝑟

(𝑋, 𝑌)]

                            = −𝐸𝑓(𝑟)𝑟,[𝑟]𝑟
[log𝑎𝑟 + (𝑟 − 1)log𝐹(𝑋) + (𝑛 − 𝑟)log(1 − 𝐹(𝑋)) + log𝑓(𝑋, 𝑌)]

                            = −log𝑎𝑟 + 𝑎𝑟[(𝑟 − 1)𝐴1 + (𝑛 − 𝑟)𝐴2] + 𝑄𝑛(𝑟),                                               (2.3)

 

where    

𝑄𝑛(𝑟) = ∫
+∞

−∞

∫
+∞

−∞

(−log𝑓𝑋,𝑌(𝑥, 𝑦))𝑎𝑟𝑓𝑋,𝑌(𝑥, 𝑦)[𝐹𝑋(𝑥)]𝑟−1[1 − 𝐹𝑋(𝑥)]𝑛−𝑟𝑑𝑥𝑑𝑦, 

and   

𝐴1 = ∫
+∞

−∞

∫
+∞

−∞

(−log𝐹𝑋(𝑥))[𝐹𝑋(𝑥)]𝑟−1[1 − 𝐹𝑋(𝑥)]𝑛−𝑟𝑓𝑋,𝑌(𝑥, 𝑦)𝑑𝑦𝑑𝑥

      = ∫
+∞

−∞

(−log𝐹𝑋(𝑥))[𝐹𝑋(𝑥)]𝑟−1[1 − 𝐹𝑋(𝑥)]𝑛−𝑟𝑓𝑋(𝑥)𝑑𝑥

      = ∫
1

0

(−log𝑢)𝑢𝑟−1(1 − 𝑢)𝑛−𝑟𝑑𝑢 = ∫
1

0

(−log𝑢)𝑢𝑟−1 ∑

𝑛−𝑟

𝑚=0

(
𝑛 − 𝑟

𝑚
) (−𝑢)𝑚𝑑𝑢

      = ∑

𝑛−𝑟

𝑚=0

(
𝑛 − 𝑟

𝑚
)

(−1)𝑚

(𝑚 + 𝑟)2
= 𝑍𝑛(𝑟),                                                                                              (2.4)
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and similarly,   

𝐴2 = ∫
+∞

−∞

∫
+∞

−∞

[−log(1 − 𝐹𝑋(𝑥))][𝐹𝑋(𝑥)]𝑟−1[1 − 𝐹𝑋(𝑥)]𝑛−𝑟𝑓𝑋,𝑌(𝑥, 𝑦)𝑑𝑦𝑑𝑥

      = ∫
+∞

−∞

[−log(1 − 𝐹𝑋(𝑥))][𝐹𝑋(𝑥)]𝑟−1[1 − 𝐹𝑋(𝑥)]𝑛−𝑟𝑓𝑋(𝑥)𝑑𝑥

      = ∫
1

0

[−log(1 − 𝑢)]𝑢𝑟−1(1 − 𝑢)𝑛−𝑟𝑑𝑢 = ∫
1

0

(−log(1 − 𝑢))𝑢𝑟−1 ∑

𝑛−𝑟

𝑚=0

(
𝑛 − 𝑟

𝑚
) (−𝑢)𝑚𝑑𝑢

      = ∑

𝑟−1

𝑚=0

(
𝑟 − 1

𝑚
)

(−1)𝑚

(𝑚 + 𝑛 − 𝑟 + 1)2
= 𝑍𝑛(𝑛 − 𝑟 + 1).                                                               (2.5)

 

  

 So the proof is completed by substitution.  

 

Remark 2.1. 2 Suppose (𝑋, 𝑌) have bivariate standard normal distribution with pdf  

𝜑2(𝑥, 𝑦; 𝜌) =
1

2𝜋√1 − 𝜌2
exp{

−(𝑥2 − 2𝜌𝑥𝑦 + 𝑦2)

2(1 − 𝜌2)
}. 

Then by using (2.3), we have  

  

𝐻(𝑋(𝑟)𝑟, 𝑌[𝑟]𝑟) = −log𝑎𝑟 + 𝑎𝑟[(𝑟 − 1)𝑍𝑛(𝑟) + (𝑛 − 𝑟)𝑍𝑛(𝑛 − 𝑟 + 1)]

                            + ∫
+∞

−∞

∫
+∞

−∞

𝑎𝑟[−log𝜑2(𝑥, 𝑦; 𝜌)]𝜑2(𝑥, 𝑦; 𝜌)[Φ(𝑥)]𝑟−1[1 − Φ(𝑥)]𝑛−𝑟𝑑𝑥𝑑𝑦

                            = −log𝑎𝑟 + 𝑎𝑟[(𝑟 − 1)𝑍𝑛(𝑟) + (𝑛 − 𝑟)𝑍𝑛(𝑛 − 𝑟 + 1)] + 0.5 + log(2𝜋√1 − 𝜌2)

                            + 
𝑎𝑟

2
∑

𝑛−𝑟

𝑚=0

(
𝑛 − 𝑟

𝑚
) (−1)𝑚 ∫

+∞

−∞

𝑥2[Φ(𝑥)]𝑟+𝑚−1ϕ(𝑥)𝑑𝑥,

 

where 𝜙 and 𝛷 denote, as usual, the pdf and cdf of the standard normal distribution, respectively.   

The copula density of bivariate normal with parameter 𝜌 is obtained by Meyer (2009) as 

follows:   

𝑐(𝑢, 𝑣; 𝜌) =
∂2

∂𝑢 ∂𝑣
Φ2(Φ−1(𝑢), Φ−1(𝑣); 𝜌) =

𝜑2(Φ−1(𝑢), Φ−1(𝑣); 𝜌)

𝜑(Φ−1(𝑢))𝜑(Φ−1(𝑣))

                   =  
1

√1 − 𝜌2
exp{

2𝜌Φ−1(𝑢)Φ−1(𝑣) − 𝜌2[(Φ−1(𝑢))2 + (Φ−1(𝑣))2]

2(1 − 𝜌2)
},

 

where Φ2(ℎ, 𝑘; 𝜌) = ∫
ℎ

−∞ ∫
𝑘

−∞
𝜑2(𝑥, 𝑦; 𝜌)𝑑𝑦𝑑𝑥.  

Also, the copula model for the joint pdf of (𝑋(𝑟)𝑟, 𝑌[𝑟]𝑟)  in bivariate standard normal 

distribution is given by   

𝑐𝑟(𝑢, 𝑣) = 𝑎𝑟  𝑐(𝑢, 𝑣; 𝜌) 𝑢𝑟−1(1 − 𝑢)𝑛−𝑟. 
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Remark 2.2.3  We assume that(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) = {(𝑋(𝑟)𝑟, 𝑌[𝑟]𝑟), 𝑟 = 1,2,3, ⋯ , 𝑛} denotes a RSS of 

size𝑛from the copula model of bivariate standard normal distribution, then by using (2.3) we 

have 

𝐻(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) = ∑

𝑛

𝑟=1

𝐻(𝑋(𝑟)𝑟 , 𝑌[𝑟]𝑟) = ∑

𝑛

𝑟=1

{−log𝑎𝑟 + 𝑎𝑟[(𝑟 − 1)𝑍𝑛(𝑟) + (𝑛 − 𝑟)𝑍𝑛(𝑛 − 𝑟 + 1)]

                              + ∫
1

0

∫
1

0

𝑎𝑟[−log𝑐(𝑢, 𝑣; 𝜌)]𝑐(𝑢, 𝑣; 𝜌)(𝑢)𝑟−1(1 − 𝑢)𝑛−𝑟𝑑𝑢𝑑𝑣}

                              =
𝑛

2
log(1 − 𝜌2) + ∑

𝑛

𝑟=1

{−log𝑎𝑟 + 𝑎𝑟[(𝑟 − 1)𝑍𝑛(𝑟) + (𝑛 − 𝑟)𝑍𝑛(𝑛 − 𝑟 + 1)]

                              −
1

2(1 − 𝜌2)
∫

1

0

∫
1

0

[2𝜌Φ−1(𝑢)Φ−1(𝑣) − 𝜌2[(Φ−1(𝑢))2 + (Φ−1(𝑣))2]]𝑐𝑟(𝑢, 𝑣)𝑑𝑢𝑑𝑣}.

 

 

 Under the perfect ranking assumption, it is easy to see that  

𝐻(𝑋𝑅𝑆𝑆) = − ∑

𝑛

𝑟=1

∫ 𝑓(𝑟)𝑟(𝑥)log𝑓(𝑟)𝑟(𝑥)𝑑𝑥 = ∑

𝑛

𝑟=1

𝐻(𝑋(𝑟)𝑟),                                (2.6) 

where 𝐻(𝑋(𝑟)𝑟) is the entropy of the 𝑟th order statistic in a sample of size 𝑛. Ebrahimi et al. (2004) 

presented a general expression for 𝐻(𝑋(𝑟)𝑟) as  

 𝐻(𝑋(𝑟)𝑟) = 𝐻(𝑈(𝑟)𝑟) − 𝐸[log[𝑓(𝐹−1(𝑊𝑟))]], 

where 𝐻(𝑈(𝑟)𝑟) is the entropy of 𝑟th order statistic from a random sample of size 𝑛 from a 

uniform (0,1) distribution and 𝑊𝑟  has the beta distribution with parameters 𝑟  and 𝑛 − 𝑟 + 1. 

Jafari Jozani and Ahmadi (2014) obtained an expression for 𝐻(𝑋𝑅𝑆𝑆) which is given by  

 

 𝐻(𝑋𝑅𝑆𝑆) = 𝐻(𝑋𝑆𝑅𝑆) + 𝑘(𝑛), 

where  

𝑘(𝑛) = ∑

𝑛

𝑟=1

𝐻(𝑈(𝑟)𝑟) = ∑

𝑛

𝑟=1

[log(𝐵(𝑟, 𝑛 − 𝑟 + 1)) − (𝑟 − 1)(𝜓(𝑟) − 𝜓(𝑛 + 1))

               −(𝑛 − 𝑟)(𝜓(𝑛 − 𝑟 + 1) − 𝜓(𝑛 + 1))]

         = 2 ∑

𝑛−1

𝑗=1

(𝑛 − 2𝑗)log(𝑗) − 𝑛log(𝑛) − 2 ∑

𝑛

𝑟=1

(𝑟 − 1)𝜓(𝑟) + 𝑛(𝑛 − 1)𝜓(𝑛 + 1),

 

where 𝐵(𝑎, 𝑏) is the beta function, 𝜓(𝑛) =
𝑑log Γ(𝑛)

𝑑𝑛
 is the digamma function and 𝜓(𝑛 + 1) =

𝜓(𝑛) +
1

𝑛
. Also, under the perfect ranking assumption, it is easy to see that   

𝐻(𝑌[𝑅𝑆𝑆]) = − ∑

𝑛

𝑟=1

∫ 𝑔[𝑟]𝑟(𝑦)log𝑔[𝑟]𝑟(𝑦)𝑑𝑦 = ∑

𝑛

𝑟=1

𝐻(𝑌[𝑟]𝑟),                              
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where 𝐻(𝑌[𝑟]𝑟) is the Shannon entropy for concomitant of 𝑟th order statistic in FGM family. 

Tahmasebi and Behboodian (2012) presented a general expression for 𝐻(𝑌[𝑟]𝑟) as   

𝐻(𝑌[𝑟]𝑟) = 𝐼𝛼,𝑛(𝑟) − 𝐸𝑔[𝑟]𝑟
(log𝑓(𝑌))

                 = 𝐼𝛼,𝑛(𝑟) + 𝐻(𝑌) (1 + (
𝑛 − 2𝑟 + 1

𝑛 + 1
) 𝛼) + 2𝛼 (

𝑛 − 2𝑟 + 1

𝑛 + 1
) 𝜙(𝑓),              (2.7)

 

 where  

𝐼𝛼,𝑛(𝑟) =
𝑛 + 1

8𝛼(𝑛 − 2𝑟 + 1)
{(1 − (

𝑛 − 2𝑟 + 1

𝑛 + 1
)𝛼)2 [2log(1 − (

𝑛 − 2𝑟 + 1

𝑛 + 1
)𝛼) − 1]

                   −(1 + (
𝑛 − 2𝑟 + 1

𝑛 + 1
)𝛼)2 [2log(1 + (

𝑛 − 2𝑟 + 1

𝑛 + 1
)𝛼) − 1]},                             (2.8)

 

 

and  

𝜙(𝑓) = ∫
1

0

𝑢log𝑓𝑌 (𝐹𝑌
−1(𝑢)) 𝑑𝑢. 

 

For developing our results here, we shall use the following lemmas, established recently by 

Jafari Jozani and Ahmadi (2013). 

Lemma 2.2. 4𝐻(𝑋𝑅𝑆𝑆) ≤ 𝐻(𝑋𝑆𝑅𝑆) for all set size 𝑛 ∈ ℕ and the equality holds when 𝑛 = 1.  

Lemma 2.3.5𝐻(𝑋𝑅𝑆𝑆) ≤ 𝐻(𝑋𝑅𝑆𝑆
∗ )  for all set size 𝑛 ∈ ℕ  and the equality happens when the 

ranking is perfect. 

Lemma 2.4. 6𝐻(𝑋𝑅𝑆𝑆
∗ ) ≤ 𝐻(𝑋𝑆𝑅𝑆) for all set size 𝑛 ∈ ℕ and the equality holds when the ranking 

is done randomly and 𝑝𝑟,𝑟′ = ℙ (𝑋(𝑟) = 𝑋(𝑟′)𝑟′) =
1

𝑛
 for all 𝑟, 𝑟′ ∈ {1,2, … , 𝑛}. 

Also, an ordering relationship among the Shannon entropies of 𝑋𝑅𝑆𝑆
∗  ,𝑋𝑅𝑆𝑆  and𝑋𝑆𝑅𝑆  is 

obtained by Jafari Jozani and Ahmadi (2014) as  

 𝐻(𝑋𝑅𝑆𝑆) ≤ 𝐻(𝑋𝑅𝑆𝑆
∗ ) ≤ 𝐻(𝑋𝑆𝑅𝑆). 

Lemma 2.5.  7Let (𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) = {(𝑋(𝑟)𝑟, 𝑌[𝑟]𝑟), 𝑟 = 1,2,3, ⋯ , 𝑛} be a ranked set sample of 

size 𝑛 from  FGM family, then   

𝐻(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) = 𝐻(𝑋𝑅𝑆𝑆) + 𝐻(𝑌𝑆𝑅𝑆) + 𝐻(�̃�𝑆𝑅𝑆, �̃�𝑆𝑅𝑆),                       (2.9) 

where 𝐻(𝑌𝑆𝑅𝑆) = −𝑛 ∫ 𝑓𝑌(𝑦)𝑙𝑜𝑔𝑓𝑌(𝑦)𝑑𝑦  and 𝐻(�̃�𝑆𝑅𝑆, �̃�𝑆𝑅𝑆)  is the Shannon entropy for 

𝑋𝑆𝑅𝑆, 𝑌𝑆𝑅𝑆) in the copula model of FGM family.   
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Proof.  

𝐻(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) = 𝐻(𝑋𝑅𝑆𝑆) + 𝐻(𝑌[𝑅𝑆𝑆]|𝑋𝑅𝑆𝑆)          

                             =  𝐻(𝑋𝑅𝑆𝑆) − ∑

𝑛

𝑟=1

∫ ∫ log𝑓𝑌[𝑟]𝑟|𝑋(𝑟)𝑟
(𝑦|𝑥)𝑓(𝑟)𝑟,[𝑟]𝑟(𝑥, 𝑦)𝑑𝑥𝑑𝑦

                             = 𝐻(𝑋𝑅𝑆𝑆) − ∑

𝑛

𝑟=1

∫ ∫ log𝑓𝑌|𝑋(𝑦|𝑥)𝑓(𝑟)𝑟,[𝑟]𝑟(𝑥, 𝑦)𝑑𝑥𝑑𝑦

                             = 𝐻(𝑋𝑅𝑆𝑆) − ∑

𝑛

𝑟=1

∫ ∫ log{𝑓𝑌(𝑦)[1 + 𝛼(2𝐹𝑋(𝑥) − 1)

                                                                                × (2𝐹𝑌(𝑦) − 1)]}𝑓(𝑟)𝑟,[𝑟]𝑟(𝑥, 𝑦)𝑑𝑥𝑑𝑦

                             = 𝐻(𝑋𝑅𝑆𝑆) − ∑

𝑛

𝑟=1

∫ ∫ log𝑓𝑌(𝑦)𝑓(𝑟)𝑟,[𝑟]𝑟(𝑥, 𝑦)𝑑𝑥𝑑𝑦

                                 − ∑

𝑛

𝑟=1

∫ ∫ log[1 + 𝛼(2𝐹𝑋(𝑥) − 1)(2𝐹𝑌(𝑦) − 1)]𝑓(𝑟)𝑟,[𝑟]𝑟(𝑥, 𝑦)𝑑𝑥𝑑𝑦

                            = 𝐻(𝑋𝑅𝑆𝑆) − 𝑛 ∫ 𝑓𝑌(𝑦)log𝑓𝑌(𝑦)𝑑𝑦

                                −𝑛 ∫
1

0

∫
1

0

log[1 + 𝛼(2𝑢 − 1)(2𝑣 − 1)][1 + 𝛼(2𝑢 − 1)(2𝑣 − 1)]𝑑𝑢𝑑𝑣

                             = 𝐻(𝑋𝑅𝑆𝑆) + 𝐻(𝑌𝑆𝑅𝑆) + 𝐻(�̃�𝑆𝑅𝑆, �̃�𝑆𝑅𝑆).                                                    (2.10)

 

  

In the following lemma we observe that the Shannon entropy of 𝑌[𝑅𝑆𝑆]  is less than the 

Shannon entropy of 𝑌𝑆𝑅𝑆 in FGM family.  

 Lemma 2.6. 8𝐻(𝑌[𝑅𝑆𝑆]) ≤ 𝐻(𝑌𝑆𝑅𝑆) for all set size𝑛 ∈ ℕ and the equality holds when𝑛 = 1 or 

𝛼 = 0.  

Proof. By  using (11) and (12),  we have   

𝐻(𝑌[𝑅𝑆𝑆]) = ∑

𝑛

𝑟=1

𝐻(𝑌[𝑟]𝑟) = ∑

𝑛

𝑟=1

𝐼𝛼,𝑛(𝑟) − ∫ ∑

𝑛

𝑟=1

𝑔[𝑟]𝑟(𝑦)log𝑓𝑌(𝑦)𝑑𝑦

                  = ∑

𝑛

𝑟=1

𝐼𝛼,𝑛(𝑟) − 𝑛 ∫ 𝑓𝑌(𝑦)log𝑓𝑌(𝑦)𝑑𝑦

                  = 𝑤𝛼(𝑛) + 𝐻(𝑌𝑆𝑅𝑆),

 

where 𝑤𝛼(𝑛) = ∑𝑛
𝑟=1 𝐼𝛼,𝑛(𝑟).  

Note that 𝐻(𝑌[𝑅𝑆𝑆]) ≤ 𝐻(𝑌𝑆𝑅𝑆)  since 𝑤𝛼(𝑛) ≤ 0  (see Example 1, Tahmasebi and 

Behboodian, 2012). Also, 𝐻(𝑌[𝑅𝑆𝑆]) − 𝐻(𝑌𝑆𝑅𝑆) = 𝑤𝛼(𝑛) is distribution-free (doesn't depend on 

the parent distribution). 
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Remark 2.3.9 Another expressions for 𝐻(𝑌[𝑅𝑆𝑆]), 𝐻(𝑋𝑅𝑆𝑆) and 𝐻(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) in FGM family 

are given by  

 

𝐻(𝑌[𝑅𝑆𝑆]) = 𝐻(�̃�[𝑅𝑆𝑆]) + 𝐻(𝑌𝑆𝑅𝑆),                                                              (2.11)

𝐻(𝑋𝑅𝑆𝑆) = 𝐻(�̃�𝑅𝑆𝑆) + 𝐻(𝑋𝑆𝑅𝑆),                                                                 (2.12)

𝐻(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) = 𝐻(�̃�𝑅𝑆𝑆) + 𝐻(𝑋𝑆𝑅𝑆) + 𝐻(𝑌𝑆𝑅𝑆) + 𝐻(�̃�𝑆𝑅𝑆, �̃�𝑆𝑅𝑆)

 

                                                                   = 𝐻(�̃�𝑅𝑆𝑆, �̃�[𝑅𝑆𝑆]) + 𝐻(𝑋𝑆𝑅𝑆) + 𝐻(𝑌𝑆𝑅𝑆)                            

where 𝐻(�̃�𝑅𝑆𝑆) = 𝑘(𝑛) and 𝐻(�̃�[𝑅𝑆𝑆])=𝑤𝛼(𝑛) are the entropies of 𝑋𝑅𝑆𝑆 and 𝑌[𝑅𝑆𝑆] in the copula 

model of FGM family. Note that   

𝐻(�̃�𝑅𝑆𝑆, �̃�[𝑅𝑆𝑆]) = 𝐻(�̃�𝑅𝑆𝑆) + 𝐻(�̃�𝑆𝑅𝑆, �̃�𝑆𝑅𝑆),                                   (2.13) 

is the joint entropy for (𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) in the copula model of FGM family. 

Example 2.1.  10Let (𝑋𝑖, 𝑌𝑖), 𝑖 = 1,2, ⋯ , 𝑛 be a random sample from (1.1). Then, the density 

function of  𝑌[𝑟]𝑟 is  

 g[𝑟]𝑟(𝑦) = 1 + 𝛼(
𝑛−2𝑟+1

𝑛+1
)(1 − 2𝑦). 

Now, by using (2.6) and (2.7), we can easily show that 𝐻(�̃�[𝑅𝑆𝑆]) , 𝐻(�̃�𝑅𝑆𝑆)  and 

𝐻(�̃�𝑅𝑆𝑆, �̃�[𝑅𝑆𝑆]) for the copula model of FGM family have the following properties   

(𝑖)    𝐻(�̃�[𝑅𝑆𝑆]) = 𝑤𝛼(𝑛) = 𝑤−𝛼(𝑛) = ∑

𝑛

𝑟=1

𝐼𝛼,𝑛(𝑛 − 𝑟 + 1),

(𝑖𝑖)   𝐻(�̃�𝑅𝑆𝑆) < 𝐻(�̃�[𝑅𝑆𝑆]),      1 ≤ 𝑟 ≤ 𝑛,

(𝑖𝑖𝑖)  𝐻(�̃�𝑅𝑆𝑆) = 𝑘(𝑛) = ∑

𝑛

𝑟=1

𝐻(𝑈(𝑛−𝑟+1)𝑛−𝑟+1) < 0,    1 ≤ 𝑟 ≤ 𝑛,

(𝑖𝑣)   − 0.19𝑛 < 𝐻(�̃�[𝑅𝑆𝑆]) < 0,     𝑛 ≥ 2,

(𝑣)     𝐻(�̃�𝑅𝑆𝑆, �̃�[𝑅𝑆𝑆]) = 𝐻(�̃�𝑅𝑆𝑆) + 𝐻(�̃�𝑆𝑅𝑆, �̃�𝑆𝑅𝑆) < 0,

(𝑣𝑖)    𝐻(�̃�𝑅𝑆𝑆, �̃�[𝑅𝑆𝑆]) < 𝐻(�̃�𝑆𝑅𝑆, �̃�𝑆𝑅𝑆),

(𝑣𝑖𝑖)   𝐻(�̃�𝑅𝑆𝑆, �̃�[𝑅𝑆𝑆]) < 𝐻(�̃�[𝑅𝑆𝑆]),

(𝑣𝑖𝑖𝑖)  𝐻(�̃�𝑅𝑆𝑆, �̃�[𝑅𝑆𝑆]) < 𝐻(�̃�𝑅𝑆𝑆).

 

Table 1 provides values of 𝐻(�̃�[𝑅𝑆𝑆]) and 𝐻(�̃�𝑅𝑆𝑆) for 𝑛 = 3(2)9 and 𝛼 = ±.25(.25) ± 1. 

For fixed 𝑛, 𝐻(�̃�[𝑅𝑆𝑆]) is increasing (decreasing) in 𝛼 for −1 ≤ 𝛼 < 0 (0 < 𝛼 ≤ 1). As Table 1 

shows, 𝐻(�̃�𝑅𝑆𝑆) is smaller than 𝐻(�̃�[𝑅𝑆𝑆]) and 𝐻(�̃�𝑅𝑆𝑆) is decreasing in 𝑛. Also, for fixed 𝛼, 

𝐻(�̃�[𝑅𝑆𝑆]) is decreasing in 𝑛. Table 1 also provides values of 𝐻(�̃�𝑅𝑆𝑆, �̃�[𝑅𝑆𝑆]) for 𝑛 = 5(5)20 

and 𝛼 = ±.25(.25) ± 1. For fixed 𝑛, 𝐻(�̃�𝑅𝑆𝑆, �̃�[𝑅𝑆𝑆]) is increasing (decreasing) in 𝛼 for −1 ≤

𝛼 < 0  ( 0 < 𝛼 ≤ 1 ). As Table 1 shows,  𝐻(�̃�𝑅𝑆𝑆, �̃�[𝑅𝑆𝑆])  is smaller than 𝐻(�̃�𝑆𝑅𝑆, �̃�𝑆𝑅𝑆)  and 

𝐻(�̃�𝑆𝑅𝑆, �̃�𝑆𝑅𝑆) is decreasing in 𝑛. Also, for fixed 𝛼, 𝐻(�̃�𝑅𝑆𝑆, �̃�[𝑅𝑆𝑆]) is decreasing in 𝑛. 
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Table 1. 𝐻(�̃�[𝑅𝑆𝑆]), 𝐻(�̃�𝑅𝑆𝑆),𝐻(�̃�𝑆𝑅𝑆, �̃�𝑆𝑅𝑆) and 𝐻(�̃�𝑅𝑆𝑆 , �̃�[𝑅𝑆𝑆]) for the copula model of FGM family. 

 𝛼 ±0.25 ±0.5 ±0.75 ±1  

  𝐻(�̃�[𝑅𝑆𝑆]) = 𝑤𝛼(𝑛) 𝐻(�̃�𝑅𝑆𝑆) = 𝑘(𝑛) 

𝑛 3   -0.0052   -0.0208   -0.0474   -0.0854  -0.9888  

 5   -0.0114   -0.0458   -0.1062   -0.1930  -2.6110  

 7   -0.0180   -0.0734   -0.1680   -0.3064  -4.6162  

 9   -0.0246   -0.1008   -0.2312   -0.4222  -6.8970  

  𝐻(�̃�𝑆𝑅𝑆, �̃�𝑆𝑅𝑆)  

𝑛 5   -0.0390   -0.0590   -0.1690   -0.2890   

 10   -0.0424   -0.1562   -0.3468   -0.6293   

 15   -0.0633   -0.2338   -0.5202   -0.9435   

 20   -0.0848   -0.3124   -0.6936   -1.2586   

  𝐻(�̃�𝑅𝑆𝑆, �̃�[𝑅𝑆𝑆])  

𝑛 5   -2.65   -2.67   -2.78   -2.90   

 10   -8.16   -8.26   -8.46   -8.67   

 15   -14.93   -15.12   -15.36   -15.41   

 20   -22.54   -22.80   -23.16   -23.22   

 

Example 2.2 11Let (𝑋𝑖 , 𝑌𝑖) , 𝑖 = 1,2, ⋯ , 𝑛  be a random sample from Gumbel's bivariate 

exponential distribution with cdf  

 𝐹𝑋,𝑌(𝑥, 𝑦) = (1 − exp(
−𝑥

𝜃1
))(1 − exp(

−𝑦

𝜃2
))[1 + 𝛼exp(

−𝑥

𝜃1
−

𝑦

𝜃2
)]. 

In this case, the pdf of  𝑌[𝑟]𝑟 is  

𝑔[𝑟]𝑟(𝑦) =
1

𝜃2
exp(

−𝑦

𝜃2
)[1 + 𝛼(

𝑛 − 2𝑟 + 1

𝑛 + 1
)(2exp(

−𝑦

𝜃2
) − 1)]. 

Also, the entropies of 𝑋𝑅𝑆𝑆 and 𝑌[𝑅𝑆𝑆] are given by  

𝐻(𝑋𝑅𝑆𝑆) = 𝑘(𝑛) + 𝑛log𝜃1 + 𝑛, 

  𝐻(𝑌[𝑅𝑆𝑆]) = 𝑤𝛼(𝑛) + 𝑛log𝜃2 + 𝑛. 

Now,  if 𝜃1 ≤ 𝜃2,  then for fixed 𝛼  and  𝑛 ≥ 2 , we have   

𝐻(𝑋𝑅𝑆𝑆) − 𝐻(𝑌[𝑅𝑆𝑆]) = 𝑛log(
𝜃1

𝜃2
) + 𝑘(𝑛) − 𝑤𝛼(𝑛) < 0. 

Example 2.3. 12Let (𝑋𝑖 , 𝑌𝑖), 𝑖 = 1,2, ⋯ , 𝑛be a random sample from standard Morgenstern type 

bivariate logistic distribution with cdf   

𝐹(𝑥, 𝑦) = (1 + exp(−𝑥))−1(1 + exp(−𝑦))−1 {1 +
𝛼𝑒−𝑥−𝑦

(1 + 𝑒−𝑥)(1 + 𝑒−𝑦)
} ,       − ∞ < 𝑥, 𝑦 < +∞ 

The pdf of 𝑌[𝑟]𝑟 is   

𝑔[𝑟]𝑟(𝑦) = 𝑒−𝑦(1 + 𝑒−𝑦)−2 {1 + (
𝑛 − 2𝑟 + 1

𝑛 + 1
)(1 − 2(1 + 𝑒−𝑦)−1)𝛼}. 

Computations show that  

 𝐻(𝑌[𝑅𝑆𝑆]) = 𝑤𝛼(𝑛) + 2 = 𝑤𝛼(𝑛) + 𝐻(𝑋𝑅𝑆𝑆) − 𝑘(𝑛). 
Therefore,  
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 𝐻(𝑋𝑅𝑆𝑆) < 𝐻(𝑌[𝑅𝑆𝑆]). 

 

3. Rényi entropy  of RSS in  FGM family  

In information theory, the Rényi entropy is a generaliztion for the Shannon entropy. The 

Rényi entropy of order 𝜆 is defined as   

𝐻𝜆(𝑋) =
1

1 − 𝜆
log ∫

+∞

−∞

𝑓𝑋
𝜆(𝑥)𝑑𝑥,                                                (3.1) 

where 𝜆 > 0 , 𝜆 ≠ 1 , and 𝐻(𝑋) = lim𝜆→1𝐻𝜆(𝑋) = − ∫
∞

−∞
𝑓𝑋(𝑥)log𝑓𝑋(𝑥)𝑑𝑥  is the Shannon 

entropy if both integrals exist.  

The Rényi entropy of (𝑋𝑆𝑅𝑆, 𝑌𝑆𝑅𝑆) is given by   

𝐻𝜆(𝑋𝑆𝑅𝑆, 𝑌𝑆𝑅𝑆) = ∑

𝑛

𝑖=1

1

1 − 𝜆
log ∫ ∫ [𝑓𝑋𝑖,𝑌𝑖

(𝑥𝑖, 𝑦𝑖)]𝜆𝑑𝑥𝑖𝑑𝑦𝑖 = 𝑛𝐻𝜆(𝑋1, 𝑌1). 

Also, under the perfect ranking assumption in FGM family, we have   

𝐻𝜆(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) = ∑

𝑛

𝑟=1

1

1 − 𝜆
log ∫ ∫ [𝑓(𝑟)𝑟,[𝑟]𝑟(𝑥, 𝑦)]𝜆𝑑𝑥𝑑𝑦 = ∑

𝑛

𝑟=1

𝐻𝜆(𝑋(𝑟)𝑟, 𝑌[𝑟]𝑟), 

and it is easy to see that   

𝐻𝜆(𝑋𝑅𝑆𝑆) = ∑

𝑛

𝑟=1

1

1 − 𝜆
log ∫ [𝑓(𝑟)𝑟(𝑥)]𝜆𝑑𝑥 = ∑

𝑛

𝑟=1

𝐻𝜆(𝑋(𝑟)𝑟), 

where 𝐻𝜆(𝑋(𝑟)𝑟) is the Rényi entropy of the 𝑟th order statistic in a sample of size 𝑛. Baratpour et 

al. (2008) presented a general expression for 𝐻(𝑋(𝑟)𝑟) as   

𝐻𝜆(𝑋(𝑟)𝑟) = 𝐻𝜆(𝑉(𝑟)𝑟) −
1

𝜆 − 1
log𝐸ℎ𝑟

[𝑓𝜆−1(𝐹−1(𝑍𝑟))], 

where 𝐻𝜆(𝑉(𝑟)𝑟) is the Rényi entropy of the beta distribution with parameters 𝑟 and 𝑛 − 𝑟 + 1 

and 𝑍𝑟~ℎ𝑟where ℎ𝑟 is the beta pdf with parameters 𝜆(𝑟 − 1) + 1 and 𝜆(𝑛 − 𝑟) + 1. Note that 

Abbasnejad and Arghami (2011) obtained an expression for 𝐻𝜆(𝑉(𝑟)𝑟) as   

𝐻𝜆(𝑉(𝑟)𝑟) =
𝜆

𝜆 − 1
log𝐵(𝑟, 𝑛 − 𝑟 + 1) −

1

𝜆 − 1
log𝐵(𝜆(𝑟 − 1) + 1, 𝜆(𝑛 − 𝑟) + 1). 

Also, under the perfect ranking assumption, it is easy to see that   

𝐻𝜆(𝑌[𝑅𝑆𝑆]) = ∑

𝑛

𝑟=1

1

1 − 𝜆
log ∫ [𝑔[𝑟]𝑟(𝑦)]𝜆𝑑𝑦 = ∑

𝑛

𝑟=1

𝐻𝜆(𝑌[𝑟]𝑟), 

where 𝐻𝜆(𝑌[𝑟]𝑟) is the Rényi entropy for concomitant of 𝑟th order statistic in FGM family. A 

general expression for 𝐻(𝑌[𝑟]𝑟) is given by   
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𝐻(𝑌[𝑟]𝑟) =
1

1 − 𝜆
log ∫

1

0

[1 + 𝛼(
𝑛 − 2𝑟 + 1

𝑛 + 1
)(1 − 2𝑢)]𝜆[𝑓𝑌(𝐹𝑌

−1(𝑢))]𝜆−1𝑑𝑢

                 =
1

1 − 𝜆
log𝐸𝑈{[𝑔[𝑟]𝑟(𝑈)]𝜆[𝑓𝑌(𝐹𝑌

−1(𝑈))]𝜆−1},

 

where 𝑈~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1).  

An ordering relationship among the Rényi entropies of 𝑋𝑅𝑆𝑆
∗ , 𝑋𝑅𝑆𝑆 and 𝑋𝑆𝑅𝑆 is obtained by 

Jafari Jozani and Ahmadi (2014) as  

𝐻𝜆(𝑋𝑅𝑆𝑆) ≤ 𝐻𝜆(𝑋𝑅𝑆𝑆
∗ ) ≤ 𝐻𝜆(𝑋𝑆𝑅𝑆). 

Lemma 3.1. 13 Let (𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) = {(𝑋(𝑟)𝑟, 𝑌[𝑟]𝑟), 𝑟 = 1,2,3, ⋯ , 𝑛} be a ranked set sample of 

size 𝑛  from FGM family, then 

 𝐻𝜆(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) = 𝐻𝜆(𝑋𝑅𝑆𝑆) + 𝑛𝐻𝜆(𝑌|𝑋). 

Proof.  

𝐻𝜆(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) = ∑

𝑛

𝑟=1

1

1 − 𝜆
log ∫ ∫ [𝑓(𝑟)𝑟,[𝑟]𝑟(𝑥, 𝑦)]𝜆𝑑𝑥𝑑𝑦

                               = 𝐻𝜆(𝑋𝑅𝑆𝑆) + 𝐻𝜆(𝑌[𝑅𝑆𝑆]|𝑋𝑅𝑆𝑆)

                               = 𝐻𝜆(𝑋𝑅𝑆𝑆) + ∑

𝑛

𝑟=1

1

1 − 𝜆
log ∫ [𝑓𝑌[𝑟]𝑟|𝑋(𝑟)𝑟

(𝑦|𝑥)]𝜆𝑑𝑦

                               = 𝐻𝜆(𝑋𝑅𝑆𝑆) + ∑

𝑛

𝑟=1

1

1 − 𝜆
log ∫ [𝑓𝑌|𝑋(𝑦|𝑥)]𝜆𝑑𝑦

                               = 𝐻𝜆(𝑋𝑅𝑆𝑆) + 𝑛𝐻𝜆(𝑌|𝑋).                                                                     (3.2)

 

 

Analytical expressions for  𝐻𝜆(�̃�[𝑅𝑆𝑆]) , 𝐻𝜆(�̃�𝑅𝑆𝑆) and 𝐻𝜆(�̃�𝑅𝑆𝑆, �̃�[𝑅𝑆𝑆]) in the copula model 

of FGM family is obtained as   

𝐻𝜆(�̃�[𝑅𝑆𝑆]) = 𝑤𝛼,𝜆(𝑛) = 𝑤−𝛼,𝜆(𝑛) = ∑

𝑛

𝑟=1

𝐽𝛼,𝜆(𝑟, 𝑛),

𝐻𝜆(�̃�𝑅𝑆𝑆, �̃�[𝑅𝑆𝑆]) = 𝐻𝜆(�̃�𝑅𝑆𝑆) +
𝑛

𝜆 − 1
log[2𝛼(𝜆 + 1)(2𝑥 − 1)],

 

where  

  

𝐽𝛼,𝜆(𝑟, 𝑛) =
1

1 − 𝜆
log [

(1 + 𝛼(
𝑛 − 2𝑟 + 1

𝑛 + 1 ))𝜆+1 − (1 − 𝛼(
𝑛 − 2𝑟 + 1

𝑛 + 1 ))𝜆+1

2𝛼 (
𝑛 − 2𝑟 + 1

𝑛 + 1
) (𝜆 + 1)

],   

and 

  𝐻𝜆(�̃�𝑅𝑆𝑆) = ∑

𝑛

𝑟=1

𝐻𝜆(𝑉(𝑟)𝑟). 
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 In the following lemma, we compare 𝐻𝜆(𝑌𝑆𝑅𝑆) with 𝐻𝜆(𝑌[𝑅𝑆𝑆]) . This result is stated for 0 <

𝜆 < 1.   

 

Lemma 3.2. 14𝐻𝜆(𝑌[𝑅𝑆𝑆]) ≤ 𝐻𝜆(𝑌𝑆𝑅𝑆)  for all set size𝑛 ∈ ℕ and  the equality holds when  𝑛 =

1 or  𝛼 = 0.  

Proof.  For any 0 < 𝜆 < 1 and  all  𝑛 ∈ ℕ,  we have  

      

 

𝐻𝜆(𝑌[𝑅𝑆𝑆]) = ∑

𝑛

𝑟=1

𝐻𝜆(𝑌[𝑟]𝑟) =  ∑

𝑛

𝑟=1

1

1 − 𝜆
log ∫ [𝑔[𝑟]𝑟(𝑦)]𝜆𝑑𝑦

                    ≤
𝑛

1 − 𝜆
log ∑

𝑛

𝑟=1

1

𝑛
∫ [𝑔[𝑟]𝑟(𝑦)]𝜆𝑑𝑦

                    ≤
𝑛

1 − 𝜆
log ∫ [

1

𝑛
∑

𝑛

𝑟=1

𝑔[𝑟]𝑟(𝑦)]𝜆𝑑𝑦

                    =
𝑛

1 − 𝜆
log ∫ [𝑓𝑌(𝑦)]𝜆𝑑𝑦 = 𝐻𝜆(𝑌𝑆𝑅𝑆).

                           (3.3) 

                                
 

4. Mutual information of RSS in FGM family 

The mutual information for a bivariate random variables (𝑋, 𝑌) with joint pdf  𝑓𝑋,𝑌(𝑥, 𝑦) and 

marginal pdf’s 𝑓𝑌(𝑦) and 𝑓𝑋(𝑥) is defined as  

 𝑀(𝑋, 𝑌) = 𝐻(𝑋) + 𝐻(𝑌) − 𝐻(𝑋, 𝑌) = 𝐻(𝑌) − 𝐻(𝑌|𝑋),                        (4.1) 

where 𝐻(𝑋, 𝑌) is the entropy of (𝑋, 𝑌) and 𝐻(𝑌|𝑋) is the conditional entropy of 𝑌  given 𝑋 

which is   

𝐻(𝑌|𝑋) = − ∫
𝑆

𝑓𝑋,𝑌(𝑥, 𝑦)log (
𝑓𝑋,𝑌(𝑥, 𝑦)

𝑓𝑋(𝑥)
) 𝑑𝑥𝑑𝑦,                                        (4.2) 

where 𝑆 is the region 𝑓𝑋,𝑌(𝑥, 𝑦) > 0. 

The mutual information is a general measure of statistical dependence between two random 

variables (see Cover and Thomas, 1991). It captures the extent of any kind of functional 

dependency. We know that 𝑀(𝑋, 𝑌) ≥ 0 , and equality holds if and only if 𝑋  and 𝑌  are 

statistically independent. Moreover, it has the invariance property under one-to-one 

transformation of (𝑋, 𝑌).   

 

Lemma 4.1. 15Let (𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) = {(𝑋(𝑟)𝑟, 𝑌[𝑟]𝑟), 𝑟 = 1,2,3, ⋯ , 𝑛} be a ranked set sample of 

size  𝑛  from FGM family, then  

 𝑀𝛼(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) = 𝐻(�̃�[𝑅𝑆𝑆]) − 𝐻(�̃�𝑆𝑅𝑆, �̃�𝑆𝑅𝑆) = 𝑀𝛼(�̃�𝑅𝑆𝑆, �̃�[𝑅𝑆𝑆]).                  (4.3) 
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Proof. By using  (2.10) , (2.11) and (4.2),   we have  

 

𝑀𝛼(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) = 𝐻(𝑋𝑅𝑆𝑆) + 𝐻(𝑌[𝑅𝑆𝑆]) − 𝐻(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆])

                                = 𝐻(𝑌[𝑅𝑆𝑆]) − 𝐻(𝑌𝑆𝑅𝑆) − 𝐻(�̃�𝑆𝑅𝑆, �̃�𝑆𝑅𝑆)

                                = 𝐻(�̃�[𝑅𝑆𝑆]) − 𝐻(�̃�𝑆𝑅𝑆, �̃�𝑆𝑅𝑆).

                      (4.4) 

 Now by using (2.13),  we have  

 𝐻(�̃�𝑆𝑅𝑆, �̃�𝑆𝑅𝑆) = 𝐻(�̃�𝑅𝑆𝑆, �̃�[𝑅𝑆𝑆]) − 𝐻(�̃�𝑅𝑆𝑆)                          (4.5) 

With putting (4.5) in (4.4) the invariance property of mutual information is obvious and proof 

is complete.  

 

Under the perfect ranking assumption, it is easy to see that  

 

𝑀𝛼(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) = 𝐻(�̃�[𝑅𝑆𝑆]) − 𝐻(�̃�𝑆𝑅𝑆, �̃�𝑆𝑅𝑆)

                                = ∑𝑛
𝑟=1 𝐼𝛼,𝑛(𝑟) + ∑𝑛

𝑟=1 ∫ ∫ log[1 + 𝛼(2𝐹𝑋(𝑥) − 1)

                                                                                    × (2𝐹𝑌(𝑦) − 1)]𝑓(𝑟)𝑟,[𝑟]𝑟(𝑥, 𝑦)𝑑𝑥𝑑𝑦

                                = 𝑤𝛼(𝑛) + 𝑛 ∫
1

0 ∫
1

0
log[1 + 𝛼(2𝑢 − 1)(2𝑣 − 1)]

                                                                     × [1 + 𝛼(2𝑢 − 1)(2𝑣 − 1)]𝑑𝑢𝑑𝑣

                                = ∑𝑛
𝑟=1 𝑀𝛼(𝑋(𝑟)𝑟, 𝑌[𝑟]𝑟).                                                                              

(4.6) 

Also, the Pearson correlation coefficient between �̃�𝑅𝑆𝑆  and �̃�[𝑅𝑆𝑆] in the copula model of 

FGM family is given by  

 𝜌𝛼(�̃�𝑅𝑆𝑆, �̃�[𝑅𝑆𝑆]) = ∑𝑛
𝑟=1 𝜌𝛼(𝑋(𝑟)𝑟, 𝑌[𝑟]𝑟),                                (4.7) 

where an explicit expression for 𝜌𝛼(𝑋(𝑟)𝑟 , 𝑌[𝑟]𝑟)  is obtained by Tahmsebi and 

Behboodian(2012) as  

𝜌𝛼(𝑋(𝑟)𝑟, 𝑌[𝑟]𝑟) = 2𝛼√
𝑟(𝑛 − 𝑟 + 1)

3(𝑛 + 1)2(𝑛 + 2) − 𝛼2(𝑛 − 2𝑟 + 1)2(𝑛 + 2)
.                       (4.8) 

 

Table 2. 𝑀𝛼(�̃�𝑅𝑆𝑆 , �̃�[𝑅𝑆𝑆]) and 𝜌𝛼(�̃�𝑅𝑆𝑆 , �̃�[𝑅𝑆𝑆]) for the copula model of FGM family. 

  𝑀𝛼(�̃�𝑅𝑆𝑆, �̃�[𝑅𝑆𝑆]) 𝜌𝛼(�̃�𝑅𝑆𝑆, �̃�[𝑅𝑆𝑆]) 

𝛼  0.25 0.5 0.75 1 0.25 0.5 0.75 1 

𝑛 1   0.0034   0.0141   0.0324   0.0599   0.0833   0.1666   0.2500   0.3330 

 2   0.0046   0.0188   0.0438  0.0824  0.1362   0.2734   0.4124   0.5546  

 3   0.0050   0.0212   0.0496   0.0942   0.1765   0.3548   0.5370   0.7251  

 4   0.0054   0.0226   0.0530   0.1014  0.2100   0.4226   0.6404  0.8668 

 5   0.0056  0.0234   0.0554   0.1065   0.2389  0.4813   0.7302   0.9898 

 

Table 2 provides the values of 𝑀𝛼(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) and 𝜌𝛼(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) as a function of 𝑛 and 

𝛼 for 𝑛 = 1(1)5, and 𝛼 = 0.25(0.25)1. These values are derived by using (4.6) and (4.8). As 

Table 2 and easy computations show, 𝑀𝛼(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆])  and 𝜌𝛼(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆])  for the copula 

model of FGM family have the following properties  
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(i) |𝑀𝛼(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆])| < 𝜌𝛼(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]),  

(ii) 𝜌𝛼(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) = −𝜌−𝛼(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]), 

(iii) for fixed 𝑛, 𝑀𝛼(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) and 𝜌𝛼(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) increase as |𝛼| increase, 

(iv) for fixed 𝛼, 𝑀𝛼(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) and 𝜌𝛼(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) increase as 𝑛 increase, 

(v) 𝑀𝛼(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) ≤ .05𝑛. 

 

5. Kullback-Leibler information of RSS in FGM family 

 The Kullback-Leibler (KL) discrimination information between two continuous random 

variables 𝑍1 and 𝑍2 with pdf's 𝑓1 and 𝑓2, respectively, is given by   

𝐾𝐿(𝑍1, 𝑍2) = ∫
+∞

−∞

𝑓1(𝑧)log(
𝑓1(𝑧)

𝑓2(𝑧)
)𝑑𝑧 = 𝐸1(log

𝑓1(𝑍)

𝑓2(𝑍)
),                     (5.1) 

where 𝐸1  denotes the expectation with respect to 𝑓1 . 𝐾(𝑍1, 𝑍2) is non-negative and it is not 

symmetric.  

The KL discrimination information between 𝑋𝑅𝑆𝑆  and 𝑋𝑆𝑅𝑆  is distribution-free, and is 

defined by Jafari Jozani. and Ahmadi (2014)  as  

 𝐾𝐿(𝑋𝑅𝑆𝑆, 𝑋𝑆𝑅𝑆) = − ∑𝑛
𝑟=1 log𝑟(𝑛

𝑟
) + 𝑛(𝑛 − 1): = 𝑑𝑛.                           (5.2) 

Note that {𝑑𝑛, 𝑛 = 1,2, . . . } is a nondecreasing sequence of non-negative real values for all 

𝑛 ∈ ℕ . 𝐾𝐿(𝑋𝑅𝑆𝑆, 𝑋𝑆𝑅𝑆)  increases as 𝑛  increases. Also, the KL discrimination information 

between 𝑋𝑆𝑅𝑆 and 𝑋𝑅𝑆𝑆 is distribution-free, and is given by  

 𝐾𝐿(𝑋𝑆𝑅𝑆, 𝑋𝑅𝑆𝑆) = −𝑘(𝑛). 
In the following lemma, we compare 𝐾𝐿(𝑋𝑆𝑅𝑆, 𝑌𝑆𝑅𝑆) with 𝐾𝐿(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) in FGM family.   

 

Lemma 5.1. 16Let (𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) = {(𝑋(𝑟)𝑟, 𝑌[𝑟]𝑟), 𝑟 = 1,2,3, ⋯ , 𝑛}  be a ranked set sample of 

size 𝑛 fromFGM family, then 

 𝐾𝐿(𝑋𝑆𝑅𝑆, 𝑌𝑆𝑅𝑆) ≤ 𝐾𝐿(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]).                               (5.3) 
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Proof. To show the result note that   

𝐾𝐿(𝑋𝑅𝑆𝑆, 𝑌[𝑅𝑆𝑆]) = ∑

𝑛

𝑟=1

∫ 𝑓(𝑟)𝑟(𝑥)log{
𝑓(𝑟)𝑟(𝑥)

𝑔[𝑟]𝑟(𝑦)
}𝑑𝑥

                                = ∑

𝑛

𝑟=1

𝐾𝐿(𝑋(𝑟)𝑟 , 𝑌[𝑟]𝑟)

                                = ∑

𝑛

𝑟=1

∫ 𝑓(𝑟)𝑟(𝑥)log𝑓(𝑟)𝑟(𝑥)𝑑𝑥 − ∑

𝑛

𝑟=1

log𝑔[𝑟]𝑟(𝑦)

                                = −𝐻(𝑋𝑅𝑆𝑆) − ∑

𝑛

𝑟=1

log𝑔[𝑟]𝑟(𝑦)

                                         ≥ −𝐻(𝑋𝑆𝑅𝑆) − 𝑛log𝑓𝑌(𝑦) ∫ 𝑓𝑋(𝑥)𝑑𝑥

                               =  𝑛 ∫ 𝑓𝑋(𝑥)log[
𝑓𝑋(𝑥)

𝑓𝑌(𝑦)
]𝑑𝑥 = 𝐾𝐿(𝑋𝑆𝑅𝑆, 𝑌𝑆𝑅𝑆),

 

which complete the proof.  

Under the perfect ranking assumption, the KL discrimination information between 𝑌𝑆𝑅𝑆 and 

𝑌[𝑅𝑆𝑆] is distribution-free, and is obtained  

  

𝐾𝐿(𝑌𝑆𝑅𝑆 , 𝑌[𝑅𝑆𝑆]) = ∑

𝑛

𝑟=1

∫ 𝑓𝑌(𝑦)log[
𝑓𝑌(𝑦)

𝑔[𝑟]𝑟(𝑦)
]𝑑𝑦

                               = ∑

𝑛

𝑟=1

𝐾(𝑌, 𝑌[𝑟]𝑟)

                               = − ∑

𝑛

𝑟=1

∫ 𝑓𝑌(𝑦)log[1 +
𝑛 − 2𝑟 + 1

𝑛 + 1
𝛼(1 − 2𝐹𝑌(𝑦))]𝑑𝑦

                               = − ∑

𝑛

𝑟=1

∫
1

0

log[1 +
𝑛 − 2𝑟 + 1

𝑛 + 1
𝛼(1 − 2𝑢)]𝑑𝑢

                               = − ∑

𝑛

𝑟=1

𝑡𝛼,𝑛(𝑟) = 𝑧𝛼(𝑛),                                                                     (5.4)

 

where   

𝑡𝛼,𝑛(𝑟) =
𝑛 + 1

2𝛼(𝑛 − 2𝑟 + 1)
{(1 − (

𝑛 − 2𝑟 + 1

𝑛 + 1
)𝛼)[log(1 − (

𝑛 − 2𝑟 + 1

𝑛 + 1
)𝛼) − 1]

                  −(1 + (
𝑛 − 2𝑟 + 1

𝑛 + 1
)𝛼)[log(1 + (

𝑛 − 2𝑟 + 1

𝑛 + 1
)𝛼) − 1]} .

 

Furthermore the KL divergence for 𝑌[𝑅𝑆𝑆] and 𝑌𝑆𝑅𝑆 is distribution-free, and is given by  
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𝐾𝐿(𝑌[𝑅𝑆𝑆], 𝑌𝑆𝑅𝑆) = ∑

𝑛

𝑟=1

∫ 𝑔[𝑟]𝑟(𝑦)log{
𝑔[𝑟]𝑟(𝑦)

𝑓𝑌(𝑦)
}𝑑𝑦

                               = ∑

𝑛

𝑟=1

𝐾(𝑌[𝑟]𝑟 , 𝑌)

                               = − ∑

𝑛

𝑟=1

∫ 𝑔[𝑟]𝑟(𝑦)log[1 +
𝑛 − 2𝑟 + 1

𝑛 + 1
𝛼(1 − 2𝐹𝑌(𝑦))]𝑑𝑦

                               = − ∑

𝑛

𝑟=1

∫
1

0

[1 +
𝑛 − 2𝑟 + 1

𝑛 + 1
𝛼(1 − 2𝑢)]log[1 +

𝑛 − 2𝑟 + 1

𝑛 + 1
𝛼(1 − 2𝑢)]𝑑𝑢

                               = − ∑

𝑛

𝑟=1

𝐼𝛼,𝑛(𝑟) = −𝑤𝛼(𝑛) = −𝐻(�̃�[𝑅𝑆𝑆]).                                                  (5.5)

 

We known that the KL divergence is non-symmetric and can not be considered as a distance 

metric. So, the following symmetric Kullback-Leibler (SKL) distance between 𝑌𝑆𝑅𝑆 and 𝑌[𝑅𝑆𝑆] is 

given by  

𝑆𝐾𝐿(𝑌𝑆𝑅𝑆, 𝑌[𝑅𝑆𝑆]) = 𝐾𝐿(𝑌𝑆𝑅𝑆 , 𝑌[𝑅𝑆𝑆]) + 𝐾𝐿(𝑌[𝑅𝑆𝑆], 𝑌𝑆𝑅𝑆) = 𝑧𝛼(𝑛) − 𝑤𝛼(𝑛).         (5.6) 

The Rényi information of order 𝜆  between 𝑍1  and 𝑍2  with marginal pdf’s 𝑓1  and 𝑓2  is 

defined as   

𝐾𝜆(𝑍1, 𝑍2) =
1

𝜆 − 1
log ∫ [

𝑓1(𝑧)

𝑓2(𝑧)
]𝜆−1𝑓1(𝑧)𝑑𝑧,                                (5.7) 

  

 where 𝐾(𝑋, 𝑌) = lim𝜆→1𝐾𝜆(𝑋, 𝑌)  is the KL information between 𝑋  and 𝑌 . The Rényi 

information of order 𝜆 between 𝑋𝑅𝑆𝑆 and 𝑋𝑆𝑅𝑆 is distribution-free,  and is derived by   

𝐾𝜆(𝑋𝑅𝑆𝑆, 𝑋𝑆𝑅𝑆) = ∑

𝑛

𝑟=1

1

𝜆 − 1
log ∫ [

𝑓(𝑟)𝑟(𝑥)

𝑓(𝑥)
]𝜆−1𝑓(𝑥)𝑑𝑥 = − ∑

𝑛

𝑟=1

𝐻𝜆(𝑉(𝑟)𝑟).      (5.8) 

  

Also, the Rényi information of order 𝜆 between 𝑌[𝑅𝑆𝑆] and 𝑌𝑆𝑅𝑆 is distribution-free,  and is 

obtained by   

𝐾𝜆(𝑌[𝑅𝑆𝑆], 𝑌𝑆𝑅𝑆) = ∑

𝑛

𝑟=1

1

𝜆 − 1
log ∫ [

𝑔([𝑟]𝑟(𝑦)

𝑓(𝑦)
]𝜆−1𝑓(𝑦)𝑑𝑥 = − ∑

𝑛

𝑟=1

𝐽𝛼,𝜆(𝑟, 𝑛).       (5.9) 
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