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Abstract: support vector machines (SVMs) constitute one of the most popular and 

powerful classification methods. However, SVMs can be limited in their 

performance on highly imbalanced datasets. A classifier which has been trained 

on an imbalanced dataset can produce a biased model towards the majority class 

and result in high misclassification rate for minority class. For many applications, 

especially for medical diagnosis, it is of high importance to accurately distinguish 

false negative from false positive results. The purpose of this study is to 

successfully evaluate the performance of a classifier, keeping the correct balance 

between sensitivity and specificity, in order to enable the success of trauma 

outcome prediction. We compare the standard (or classic) SVM (C SVM) with 

resampling methods and a cost sensitive method, called Two Cost SVM (TC 

SVM), which constitute widely accepted strategies for imbalanced datasets and 

the derived results were discussed in terms of the sensitivity analysis and receiver 

operating characteristic (ROC) curves. 
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1. Introduction and motivation 

Support vector machines (SVMs), a powerful machine learning technique, were introduced 

by Vapnik (Vapnik (1995) and Cortes and Vapnik (1995), Burges (1998), Cristianinio and 

Shawe-Taylor (2000), Scholkopf and Smola (2001)) and successfully applied in various real-

world problems, ranging from image retrieval (Tong and Chang (2001)) and handwriting 

recognition (Cortes (1995)) to face detection (Osuna et al. (1997)) and speaker identification 

(Schmidt, M.(1996)). SVMs have found popularity among machine learning researchers and 

statisticians due to its theoretical and practical advantages which justify its improved 

performance in binary classification scenario.  
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However, standard SVMs, instead of their effectiveness in balanced datasets, could be 

proved inappropriate when they are faced with imbalanced data. The issue concerning 

imbalanced data is recognized as a crucial problem in machine learning community (Chawla, et 

al. (2004)). In these cases, classifiers tend to be overpowered by the majority class and ignore 

the minority examples assuming an equal misclassification error. Therefore, the produced 

models are, often, biased toward the majority class while having a low performance on the 

minority class. Furthermore, classifiers are typically designed to maximize the overall accuracy 

which is not an appropriate evaluation measure for imbalanced data. As a consequence, in order 

to handle imbalanced data we should both, consider improved algorithms and choose other 

metrics, such as Geometric mean and AUC to measure the performance, instead of accuracy. In 

parallel with, for many applications, especially for medical diagnosis where normal cases are 

the majority, it is more important the correct balance between sensitivity and specificity means 

since we have to accurately distinguish false negative results from false positives. Numerous 

recent works, including preprocessing and algorithmic methods have been proposed and dealt 

with the crucial problem of imbalanced data. These techniques can be sorted into two different 

categories: preprocessing the data by oversampling the minority instances or undersampling the 

majority instances and algorithmic methods including cost-sensitive learning (Batuvita and 

Palade (2013)). In our comparative study we use a cost sensitive learning technique proposed 

by Veropoulos et al. (1999) called “TC SVM” due to the fact that it uses two costs for the two 

different classes. In addition we applied two different forms of re-sampling methods, namely, 

random over-sampling and random under-sampling as well. Last but not least we present a 

combination of a widely used method called Synthetic Minority Oversampling Technique 

(SMOTE) proposed by Chawla et al.(2002) with random undersampling and the results were 

developed in the last section. 

Parpoula et al. (2013) have already dealt with the analysis of a large dimensional Trauma 

dataset; however, their study lies on the comparison of several high-powered data mining 

techniques. The motivation of conducting the present study, applied in the medical dataset in 

question, is not only to enable the success trauma outcome prediction, improving the quality of 

the prediction model, but also to successfully evaluate the performance of a classifier faced 

with imbalanced data and keeping the correct balance between sensitivity and specificity. In 

this way, we compare the performance of the standard SVM with the TC SVM, random over-

/under-sampling and a combination of SMOTE method with undersampling, and the derived 

results were discussed in terms of the sensitivity analysis. The merits of our comparative study 

through a real medical data set show the effectiveness of the considered approaches. 

The rest of this paper is organized as follows. In Section 2, we present a theoretical 

background of the considered SVM classifiers. In Section 3, we present the SVM analysis and 

we carry out a comparative study for the considered methods in terms of accuracy, Geometric 

mean and the Area Under the Roc Curve (AUC). We also describe the performance criteria 

used for the evaluation of the employed methods. In conclusion, in Section 4, we summarize 

the results of our study and we highlight some concluding remarks. Note here that, we use 

classic and standard SVM with the same meaning as soft margin SVM. Moreover, we also use 

Gaussian or Radial or RBF kernel, consider exactly the same. 
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2. Theoretical background 

In this section we briefly summarize the basic concept of the considered methods by 

providing a short but required theoretical background. Firstly, we discuss the main 

problem of soft margin SVM and then the modifications resulting in TC SVM method.  

Subsequently, we discuss the main concept of the pre-processing methods that we have 

applied in our analysis.  Last subsection contains the metrics examined in our work. 

 

2.1 Introduction to Support Vector Machines  

SVM algorithm aims to find the optimal separating hyperplane which effectively separates 

the data points into the labeled classes. Let us consider that we have a binary classification 

problem. The data points are mapped into a high-dimensional feature space (Hilbert space) by a 

kernel function K (dot products between data points). For input points 𝒙𝑖  ∊  𝑅𝑝 and label of the 

class of data 𝑦𝑖  (𝑖 = 1 … 𝑛), the decision function in the feature space can be considered as 

follows  

 

𝒇(𝒙) = 𝒔𝒊𝒈𝒏 (∑ 𝒂𝒊𝒚𝒊
𝒏
𝒊=𝟏 𝑲 (𝒙, 𝒙𝒋) + 𝒃)                                            (1) 

 
where 𝑏 is the model bias. Note that only those points which lie closest to the hyperplane have 

𝑎𝑖  > 0 and consist the support vectors. Let us assume the primal optimization problem in order 

to obtain the necessary parameters. The soft margin optimization problem (Cortes and Vapnik 

(1995)) can be formulated as: 

 

min𝑖𝑚𝑖𝑧𝑒   
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑛
𝑖=1           

        𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐          𝒚𝒊 (𝒙𝒊 ∙ 𝒘 + 𝒃) − 𝟏 +  𝝃𝒊 ≥  𝟎        ∀𝒊 𝒘𝒊𝒕𝒉 𝝃𝒊  ≥ 𝟎           (2)   

where w is the weight vector normal to the hyperplane, 𝜉𝑖 are the slack variables that hold for 

misclassification examples and, consequently, the term ∑ 𝜉𝑖
𝑛
𝑖=1  can be considered as a measure 

of the amount of total misclassifications of the model (esp. the training errors). The trade-off 

between maximization of the margin and minimization of error is controlled by cost 

parameter 𝐶. The Lagrangian optimization problem of (2), used for finding the parameter b and 

coefficients  𝑎𝑖, has the following formulation: 

 

   𝒎𝒂𝒙𝒊𝒎𝒊𝒛𝒆 [∑ 𝒂𝒊  𝒏
𝒊=𝟏 − 

𝟏

𝟐
∑ 𝒂𝒊𝒂𝒋 𝒚𝒊𝒚𝒋𝑲(𝒙𝒊, 𝒙𝒋)𝒊 ,𝒋 ]                         (3) 

  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜      0 ≤  𝑎𝑖  ≤ 𝐶   ∀𝑖,        ∑ 𝑎𝑖  𝑦𝑖
𝑛
𝑖=1 =  0                  
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which satisfy KKT conditions. 

Note here that SVM address with the problem of moderately imbalanced data in more 

effective way, compared to other classifiers, due to the fact that SVM only takes into account 

those instances that are close to the boundary, means the support vectors, for building its model 

(for more details see Akbani et al. (2004)). More specifically, Akbani et al. (2004) have argued 

that due to the constraint ∑ 𝑎𝑖 𝑦𝑖
𝑛
𝑖=1 =  0, the coefficients 𝑎𝑖 of each positive support vector are 

fewer  than the negative support vectors, and as a result must be larger in magnitude than the 𝑎𝑖 

values correspond to the negative support vectors. The 𝑎𝑖 in question, act as weights in the final 

classifier and consequently receive a higher weight than negative, something that counter-

balance, in some extent, the effect of support vector imbalance.  

 

2.2 Approaches for imbalanced data learning 

2.2.1 Cost sensitivity SVM (TC SVM) for imbalanced data 

As we can conclude from equation (2) the cost C given to positive and negative class is 

exactly the same. However, in case of imbalanced data, as we have already mentioned, the 

same cost could be result to a biased model toward the majority class and as a consequence 

could provide suboptimal results. Veropoulos et al. (1999) proposed a cost sensitive method 

(Two-cost method) to deal with the above problem revealed in SVMs. They generalize the soft 

margin approach so that the formulation of the Lagrangian contains two misclassification costs, 

one for each class examples. More specifically the reformulation of the optimization problem 

having two errors given as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒  {
1

2
‖𝒘‖2 +  𝐶+  ∑ 𝜉𝑖

𝑛

{𝑖| 𝑦𝑖=+1}

+ 𝐶−  ∑ 𝜉𝑖

𝑛

{𝑖| 𝑦𝑖=−1}

 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          [ 𝑦𝑖  (𝒙𝒊 ∙ 𝒘 + 𝑏) − 1 +  𝜉𝑖   ] ≥ 0 ,  𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑛 

 
And the Lagrangian takes the following form   

 

𝐿𝑃  ≡  
1

2
‖𝒘‖2 +  𝐶+  ∑ 𝜉𝑖

𝑛

{𝑖| 𝑦𝑖=+1}

+ 𝐶−  ∑ 𝜉𝑖

𝑛

{𝑖| 𝑦𝑖=−1}

 

           − ∑ 𝑎𝑖 [ 𝑦𝑖  (𝒙𝒊 ∙ 𝒘 + 𝑏) − 1 +  𝜉𝑖   ]𝑛
𝑖=1 − ∑ 𝜇𝑖

𝑛
𝑖=1 𝜉𝑖 , 

 
where 𝜇𝑖 ≥  0 and 𝛼𝑖 ≥  0. The dual formulation gives the Lagrangian  
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𝐿𝐷 ≡  ∑ 𝑎𝑖   

𝐿

𝑖=1

−  
1

2
∑ 𝑎𝑖𝑎𝑗 𝑦𝑖𝑦𝑗  𝐾(𝑥𝑖, 𝑥𝑗

𝑖 ,𝑗

) 

 

subject to 0 ≤  𝑎𝑖  ≤ 𝐶+, if  𝑦𝑖 = +1 and 0 ≤  𝑎𝑖  ≤ 𝐶−,   𝑖𝑓 𝑦𝑖 = −1.  

This dual optimization problem can be solved in just the same way as solving the standard 

SVM optimization problem. Good results can be obtained, as indicated in Akbani et al. (2004), 

by setting the ratio 𝐶+/𝐶− equal to the minority to majority class ratio.  

 

2.2.2 Sampling methods 

Data preprocessing methods can be used to balance the datasets before training SVM 

models. In data level, there are methods for balancing the classes consist of resampling the 

original data set either by over-sampling the minority or by under-sampling the majority class, 

until when there is a balance ratio between the two classes. Apart from random over-/under-

sampling there are synthetic generation methods like SMOTE (Chawla et al. (2002)) or like 

ROSE (Menardi and Torelli (2013)). Resampling methods have been addressed to train SVM 

models with imbalanced data in many different fields (see for example Akbani et al. (2004), 

Yuan et al. (2006), Batuwita and Palade (2009), Batuwita and Palade (2009)). However, such 

methods have revealed significant disadvantages. On the one hand, under-sampling may throw 

out useful information acquired from data, while over-sampling increase the computational 

burden since it increases the size of the data.  

 

Random Sampling SVM 

Random over-sampling constitutes the simplest method that increases the minority class 

examples. It randomly replicates existing instances in the minority class so that it balances the 

class distribution. Random over-sampling doesn’t put additional information but it increases the 

weight of minority examples by replication. However, there is a problem that has been 

generally occurred, that is the over-fitting problem. As a consequence, even though we have 

high accuracy in training set, the classification performance of test set will likely be worse. 

Chawla et al. (2002) proposed Synthetic Minority Over-sampling Technique (SMOTE) in order 

to avoid over-fitting problem in random over-sampling. SMOTE method generates synthetic 

data based on the feature space similarities between minority instances. These examples will be 

generated by using the information from the k-nearest neighbours of each instance of the 

minority class. More precisely, this method finds the k-nearest neighbours of each minority 

example , randomly selects one of them, and multiplies the corresponding feature vector 

difference with a randomly taken number between 0 and 1 so as to produce a new minority 

example in the neighborhood. It should be mentioned that SMOTE not only avoids over-fitting, 
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but it also causes the decision boundaries for the minority class to move towards the majority 

class.  

Random under-sampling, contrary to oversampling, removes randomly majority instances 

keeping all examples of minority class. The training process becomes faster since many 

majority examples are ignored. However, the main disadvantage of random under-sampling is 

that potentially useful data are lost. There are some heuristic under-sampling methods which try 

to remove superfluous instances which will not affect the classification accuracy of the training 

set (Hart (1968)). 

 

Undersampling and SMOTE Combination  

SMOTE (Chawla et. al. 2002) as we have already mentioned is a well-known algorithm to 

fight the unbalanced problem to many learning algorithms. The general idea of this method is to 

artificially generate new examples of the minority class using the nearest neighbors of these 

cases. In the present modification, we simultaneously under-sample the majority class examples, 

leading to a more balanced dataset and avoiding over-fitting. 

In conclusion it should be noted that when focusing on approaches at the data level (means 

rebalancing the data distribution), there are two important problems associated with a SVM 

classifier. The first one is that over-sampling methods significantly increase the dataset size 

leading to bigger computational time and overfitting of data. Secondly an optimal ratio of class 

distribution is empirically determined by grid search procedures. 

 

2.3  Metrics for evaluating model performance 

Traditionally, the performance of a binary classifier is accomplished by using metrics 

derived from the confusion matrix (Table 1). More precisely, given a classifier and a record, 

there are four possible scenarios: 

Table 1: Confusion Matrix 

  Predicted 

  Positives Negatives 

R
ea

l Positives TP 
FN 

(Type II error) 

Negatives 
FP 

(Type I error) 
TN 

 

True Positives (TP) where positive records are correctly predicted as positive, False 

Negatives (FN) where positive records are incorrectly identified as negative, False Positives 

(FP) where negative records are classified as positive ones, and finally True Negatives (TN) 

where negative records are correctly identified as negative. Using a two-by-two confusion 

matrix we can easily represent these possible outcomes and compute the measures are followed. 
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Accuracy is the most common measure used for quantify the performance of a classifier. 

Despite the efficacy of accuracy measure on balanced data sets using standard SVM, overall 

accuracy in case of imbalanced data, constitutes an inappropriate metric. For instance, a 

classifier that predicts all samples as negative has high accuracy (4) but it cannot detect rare 

positive samples. 

 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝐅𝐏+𝐅𝐍+𝐓𝐍
               (4) 

 

Consequently, the performance of such systems, in order to get optimal balance 

classification ability, described effectively in terms of sensitivity (or true positive rate or 

positive class accuracy) and specificity (or true negative rate or negative class accuracy) 

 

𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
= 𝟏 − 𝐓𝐲𝐩𝐞 𝐈𝐈 𝐞𝐫𝐫𝐨𝐫                                (5) 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =
𝑻𝑵

𝑻𝑵+𝑭𝑷
= 𝟏 − 𝐓𝐲𝐩𝐞 𝐈 𝐞𝐫𝐫𝐨𝐫                             (6) 

More precisely, sensitivity measures the proportion of actual positives that are correctly 

identified as such, meaning that it measures the percentage of people who are having the 

disease and they are correctly identified as having the disease. The specificity measures the 

proportion of actual negatives which identified correctly meaning that it measures the 

percentage of people who are not having the disease and they are correctly identified as healthy. 

As far as the Type error I as concerned, it occurs when the null hypothesis is true, but it is 

rejected. In medical diagnosis an example of type I error includes a test that indicates a patient 

to have a disease when in fact the patient does not have the disease. A typical example of 

medical experiments regarding Type II error would be a failure to detect the disease in a patient 

who really has the disease. It should be noted that a test with high sensitivity has low type II 

error and a test with high specificity has low type I error. 

Kubat and Matwin (1997) based on these two measures proposed Geometric mean, a 

geometric mean of sensitivity and specificity 

 

𝑮𝒆𝒐𝒎𝒆𝒕𝒓𝒊𝒄 𝒎𝒆𝒂𝒏 =  √𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 ∗ 𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚            (7) 

  

Moreover, Receiver Operating Characteristic (ROC) curves are another way besides 

confusion matrices to examine the performance of a classifier in a much more intuitive and 

robust way. A ROC curve (Pepe (2000)) is used to evaluate the performance of a system with 

dichotomous outcome. The trade-off between sensitivity and specificity can be represented 

graphically as a ROC curve. The Area Under the Curve (AUC) can indicate balance 

classification ability between sensitivity and specificity as a function of varying a classification 

threshold. For more details we refer to Swets and Pickett (1982). Consequently, in order to 

handle imbalanced data we should consider other measures, such as Geometric mean and AUC.  
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3. Application – Comparative results  

In this section we compare the performance of the two different methods, SVM and Two-

cost SVM random sampling (random oversampling and random undersampling), a combination 

of SMOTE and random undersampling as well as a new proposed method called ROSE on a 

large dimensional Trauma data set consisting of 𝑁 = 8862 patients and 41 factors that include 

demographic, transport and intrahospital data. The main aim is to provide an unbiased 

estimation of each model’s discrimination. In this way the values of performance criteria are 

calculated from a data set which is not used in the model building process, constitute a portion 

of the original data set and called test set. A classifier should present high values of accuracy, 

sensitivity, specificity, AUROC and geometric mean and the model’s generalization 

performance is often estimated by the holdout validation. In our study we deal with a large data 

set that is split randomly into a training set, containing 75% of cases (6647) and the test set, 

containing 25% of cases (2215) in order to evaluate the performance of classifiers on new data. 

Our medical dataset is highly imbalanced since it consists of 446 positive instances (majority 

class) and 8416 instances of negative instances (minority class). This makes imperative both the 

use of pre-processing methods to balance the dataset and cost sensitive learning methods that 

give another weights into the two different classes. In addition the use of more robust measures 

than accuracy, like Geometric mean and AUC will provide more reliable conclusions. Our 

motivation for conducting this study comes from medical decision support something indicates 

that the choice of a medical data set was imperative.  For each patient the target attribute, 

variable y is binary and denotes the probability of death. Specifically variable y, expressed in 

the form of two categories -1 and 1, where -1 represent the survival, while the value of 1 the 

death. According to medical advices, all the prognostic factors should be treated equally during 

the statistical analysis and there is no factor that should be always maintained in the model. The 

names of these factors are included in the Appendix Section. The analysis, which contains all 

steps of data pre-processing and model development, was carried out using R codes and the 

algorithms were implemented using simultaneously the packages ‘e1071’ and ‘DMwR’.  

 

3.1 Standard SVM 

For a standard SVM classifier we should determine not only the kernel function but also the 

regularization parameter C the value of gamma in case of a Gaussian (RBF) kernel and the 

degrees of freedom in case of polynomial kernel. The issue of model selection in support vector 

machine is vital and influence the overall performance of the classifier, making SVM quite 

sensitive to the selection of these parameters.  

Applying a 10-fold cross validation we obtain the cost value for the best performance in 

terms of error rate, equal to 2. Figure 1 illustrates the changes in classification error for 

different values of cost parameter in case of a standard linear SVM. Besides the cost parameter, 

the intrinsic parameters of SVM classifier greatly affect its performance.  For a Gaussian (RBF) 
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basis kernel apart from the regularization parameter C, the value of gamma should be selected 

from several candidates. 

 

 

Figure 1: Performance of SVM with a linear kernel for different values of cost parameter. Red line shows 

the cost with the best performance in terms of error rate. 

 

The gamma value should normally be between 1/k (=0.0244) and 6/k (=0.14634), where k 

represents the data dimension (41 in our study). Performing a grid search we chose the one that 

result in the best performance. Figure 2 displays the difference in error, changing the gamma 

parameter. The optimal value of gamma (=0.03125) showed in the following figure (red line), 

gives the smallest error rate. We performed a selection of gamma parameter in SVM and in 

Table 2 are illustrated some selected values.  

 
Table 2: Model selection (some selected values) for gamma parameter in SVM with a Gaussian (RBF) 

kernel 

gamma Error dispersion 

0.03125 0.01275349 0.003503342 

0.06250 0.01918199 0.005812675 

0.12500 0.03666481 0.008780307 

0.25000 0.04874225 0.007506852 

0.50000 0.05032355 0.007295674 

1.00000 0.05032355 0.007295674 

2.00000 0.05032355 0.007295674 

The estimated measures in Table 3 are obtained using 𝐶 = 2 for the linear kernel, 𝐶 = 1 for 

the sigmoid, polynomial and Gaussian kernel and 𝑔𝑎𝑚𝑚𝑎 =  0.03125 for the Gaussian kernel. 

If the kernel type is set to polynomial or sigmoid the parameter bias sets the offset parameter in 

the kernel function and the default value 0 is suitable in most cases. Only if kernel type is set to 

polynomial the parameter degree is enabled and is set to be equal to 3.  
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Figure 2: Performance of SVM with a Gaussian (RBF) kernel for different values of gamma parameter 

 
Table 3 shows the performance of SVM using different kernels. Both SVM with a linear 

and SVM with a Gaussian kernel have the highest classification accuracy, sensitivity, 

specificity AUC and Geometric mean. Gaussian kernel reaches the percentage of 0.9848, 

0.77922, 0.99821, 0.8866 and 0.8796 for accuracy, sensitivity, specificity AUC and Geometric 

mean respectively. Almost similar results were given for the linear kernel.  The second best 

results were taken using a Sigmoid kernel regarding accuracy measure. However Sigmoid has 

the worst performance assuming the results for the most robust metrics as AUC and Geometric 

mean. 

 

Table 3: Comparison of standard SVM performance for different kernels on Trauma dataset 

Kernel Accuracy Sensitivity Specificity AUC Geometric mean 

 Train Test Train Test Train Test Train Test Train Test 
Linear 0.9929 0.9875 0.86986 0.84416 0.99929 0.99499 0.9204 0.9037 0.9171 0.8991 

Gaussian 0.9924 0.9848 0.84932 0.77922 0.99982 0.99821 0.9474 0.8866 0.9459 0.8796 

Polynomial 0.9748 0.9702 0.52397 0.50000 0.99822 0.99606 0.9703 0.9043 0.9698 0.8996 

Sigmoid 0.98 0.977 0.75685 0.78571 0.99163 0.98282 0.805 0.832 0.7848 0.8183 

 

It should be mentioned that there are an overfitting of data, especially in case of non-linear 

kernels considering the above measures. In parallel with, conducting SVM classification 

without selective sampling, we observed that the g-mean values are consistently low. 

 

3.2 Approaches for imbalanced data learning 

 Two-cost SVM 
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Applying Two-cost SVM one should determine two cost, as concluded from the 

aforementioned theory in the previous section. For achieving expected classification results, the 

misclassification costs play a crucial role in the construction of a cost sensitive learning model.  

We discover the optimal parameters based on different evaluation functions such as Geometric 

mean and AUC. For our Trauma dataset the minority class consists of positive instances and the 

majority class consists of negative instances. The two cost parameters are the minority cost (𝐶+) 

referred to positive instances and the majority cost (𝐶−) referred to the negative instances. We 

can reduce the effects of class imbalance by assigning a higher classification cost for the 

minority class examples than the majority class examples. Veropoulos et al. (1999) and Akbani 

et al. (2004) suggested the inverse ratio between the two class sizes as a good choice that 

improves the performance of the TC SVM method. After performing a search among different 

values for the two costs we confirm the mentioned result. 

 

 

Figure 3: Geometric mean (y-axis) measure changing the cost of majority class (x-axis) 

 

The ratio between the minority and majority class for trauma dataset is equal to 0.05299. 

More specifically, by setting the cost of the minority class equal to 1 and changing the cost of 

majority class we performed a search among many values. We execute the analysis for values 

varied from 0.01 to 2.0. The most accurate results in terms of Geometric mean measure were 

given for values 0.04, 0.0529(=ratio) and 0.06 of the majority cost as concluded from Figure 4. 

The best performance gives the value 0.06. However, the two other values gave almost 

similarly results. We finally chose the inverse ratio between the two classes, setting the ratio 

equal to the minority to majority class ratio (𝐶− =  𝐶+ ∗ 0.05299). 

Figure 4 illustrates in separate graphs the performance for accuracy, sensitivity and 

specificity, changing the cost of majority class. Dashed grey line shows the value of each 

measure in case of standard SVM. 
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Figure 4: Performance in terms of the three measures (Accuracy, Sensitivity, Specificity) changing the 

cost of majority class (x-axis) (solid red line: Two-cost SVM; dashed line: Classic SVM)  

 

In Figure 5 we consider the comparisons mentioned below but in the same graph. The 

vertical grey line indicates the cost of majority class when it was set to be equal to the ratio of 

the two classes. 

 

 

Figure 5: Comparison performance of accuracy, sensitivity and specificity majority class (x-axis) (solid 

black line: Accuracy; dashed red line: Sensitivity; dashed green line: Specificity). Vertical line indicates 

the cost of majority class when it was set to be equal to the ratio of the two classes. 
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As we can conclude from Figure 6, sensitivity was continually increasing as support vectors 

were increasing. In contrast, accuracy and specificity gathered higher values for fewer support 

vectors. Note here that increasing the majority cost we have fewer support vectors, as well.  

 

 

Figure 6: Three different measures (y-axis) versus support vectors (x-axis) in two-cost SVM. 

 

Some Comparisons among C and TC SVM 

Some comparisons between SVM and TC SVM are contained in order to obtain the 

importance of the applied methodology. First of all, we present the performance for the linear 

case and the other kernels are followed after we had chosen the best parameters. Table 4 shows 

the acquired results where SVM gathers higher accuracy in both train and test set. 

 

Table 4: Performance comparison for standard SVM and TC svm with linear kernel 

Linear Accuracy Sensitivity Specificity AUC Geometric mean 

SVM Train Test Train Test Train Test Train Test Train Test 

C 0.9929 0.9875 0.86986 0.84416 0.99929 0.99536 0.9346 0.9198 0.9323 0.9166 

TC 0.9717 0.9648 0.94863 0.93506 0.97293 0.96643 0.9608 0.9507 0.9607 0.9506 

 

Comparing standard and TC SVM, the first one has higher specificity which means that the 

classifier recognizes more actual negatives; in other words this means that using TC SVM we 

obtain lower Type I error rate. This measure alone does not tell us how well the classifier 

recognizes positive cases and so it is necessary to take into consideration both sensitivity and 
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specificity of the used classifiers. When the two algorithms are evaluated against the sensitivity, 

TC SVM has clear advantage having highest percentage, which means that the Type II error 

rates are lower than the one of C SVM (classic or standard SVM). 

Figure 8 displays the ROC curves derived from the two considered methods. The further 

the curve lays above the reference line, the more accurate the test. The AUROC achieved the 

value of 0.9198 for linear C SVM and higher value for TC SVM equals to 0.9507. Not only in 

terms of AUC but also of Geometric mean the cost sensitive method outweighs the standard 

SVM.  

 

Figure 7: Roc curves comparison for linear case 

 

Table 5 describes the performance for the standard SVM and TC SVM for the nonlinear 

case. The best measure in Geometric mean was gathered for TC SVM using Gaussian with a 

radial basis kernel. Comparative results are taken using a sigmoid kernel for all the considered 

metrics, achieving the ratio of 95.20% for Geometric mean for the TC method. 
 

Table 5: Performance comparison for the two different SVM techniques with different kernels (non-

linear case) 

Kernel SVM Accuracy Sensitivity Specificity AUC Geometric mean 

  Train Test Train Test Train Test Train Test Train Test 

 

Gaussian 

C 0.9924 0.9848 0.84932 0.77922 0.99982 0.99607 0.9246 0.8876 0.9215 0.8809 

TC 0.9655 0.9563 0.93493 0.94805 0.96706 0.95679 0.951 0.9524 0.9509 0.9524 

 

Polynomial 

C 0.9748 0.9702 0.52397 0.50000 0.99822 0.99607 0.7611 0.748 0.7232 0.7057 

TC 0.9749 0.9692 0.70890 0.71429 0.98878 0.98321 0.8488 0.8488 0.8372 0.8380 

 

Sigmoid 
C 0.98 0.977 0.75685 0.78571 0.99163 0.98750 0.8742 0.8866 0.8663 0.8808 

 TC 0.969 0.9631 0.91096 0.94156 0.97204 0.96429 0.9415 0.9520 0.9410 0.9520 
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In the above Table, C is an abbreviation for classic or standard SVM and TC for TC SVM  

It should be noted that using the cost sensitive learning method it reduces the problem of 

the overfitting. Almost similar results were given considering the AUC metric instead of 

Geometric mean measure. Gaussian kernel has clearly the highest Geometric mean and AUC 

compared to all non-linear kernels considering TC SVM whereas polynomial kernel has the 

lowest. The difference between the two kernels, Gaussian and sigmoid, is so small that both 

achieve good results for all measures. Furthermore, cost- sensitive SVM performs well for the 

linear case.  In accordance with the AUC measure, polynomial kernel has the worst results. 

Figure 7 displays a comparison in respect to the Geometric mean confirming the above 

conclusions. Comparing TC with C SVM for a Gaussian kernel, it can be inferred that the first 

method outperforms the second one in terms of geometric mean and AUC.  Unlike, as far 

polynomial kernel as concerned, the difference between the two compared methods is 

considerably higher than the previous presented kernels. 

 

 

Figure 8: Roc curves comparison for non-linear case in Test set. Red curves represent TC SVM and 

black curves Classic SVM.  

  

Figure 8 displays the ROC curves derived from all SVMs with the three non-linear kernels. 

For the ROC curves in Figure 8, regarding the Gaussian kernel, the TC method performs better 

on the average compared with the other kernels though the difference between sigmoid kernel 

is not statistically significant. As we can infer from Figure 8, Polynomial kernel shows the 

worst performance. 
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Figure 9: ROC curves derived from all kernels using both methods 

 

Figure 9 illustrates the performance of these two methods on Trauma dataset for all the 

examined kernels. In addition, it ranks the best candidate models according to the AUC 

criterion and helps the experimenter to choose the best approach for a given analysis. The 

highest AUC was obtained for the TC method with a Gaussian kernel (AUC=0.9524) and the 

second highest was marked for both TC method using a linear kernel (AUC=0.9507) and 

Sigmoid kernel (AUC=0.9520) with the second slightly outperforms the first one. Almost 

similar results were showed for the standard linear SVM (AUC=0.9198) and standard SVM 

with a Gaussian kernel (AUC=0.8876). The AUROC for the Polynomial kernel revealed the 

lowest value equal to 0.748, 0.8488 for standard and TC SVM respectively. In Figure 9 we 

mean Linear kernel with linear, Gaussian kernel with Radial, Polynomial kernel with 

abbreviation Poly and sigmoid kernel with Sigmoid. 

 

Resampling Methods 

Random Sampling SVM  

Random Over-sampling (SVM-RO) 

Learning with over-sampled training sets was repeated 20 times for each size of the 

increased training sets. Then we chose the increased training set that produced the maximum 

gmean value for the original training set. 

 

Random Under-sampling (SVM-RU) 
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We also conducted random under-sampling of the majority instances. In the same way as 

oversampling, learning with under-sampled training sets was repeated 20 times for each size of 

the reduced training set. Then we chose the reduced training set that produced the maximum 

gmean value for the original training set.  

 

SMOTE-SVM and undersampling combination 

As far as SMOTE algorithm as concerned, for the calculation of K-nearest neighbors, K 

was set to 5. Learning was performed using 20 independent synthetically enhanced datasets and 

then in order to identify the best synthetic sample size we calculate the maximum Geometric 

mean. In example, an increment of 300% is selected if the maximum average gmean of the 

original training set appears when 300% of new synthetic instances are added into the training 

dataset. While increasing minority instances gradually and simultaneously reduced the majority 

class examples, we observed for each combination Geometric mean values of the original 

training sets for each experimental dataset. Using SVM-SMOTE, the number of synthetic 

instances to achieve the desired class balance is unknown and empirical studies must be 

performed.  
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Figure 10: Geometric mean values of the training dataset in terms of increase of synthetic minority instances 

by SMOTE 

 

Minority class was over-sampled at 50%, 100%, 200%, 300%, 400%, 500% and the 

majority class was under-sampled 10%, 15%, 25%, 50%, 75%, 100%, 125%, 150%, 175%, 

200%, 300%, 400%, 500%, 600%, 700%, 800%, 1000%, 2000% as presented in Table 6. We 

chose the aforementioned rates according to Chawla et al. (2002). Due to its performance, a 

Gaussian kernel function with a radial basis 𝑘(𝑥, 𝑥′) = exp (−‖𝑥 − 𝑥′‖2/𝜎2) is used for SVM 

classification. We remind that it presents the best performance among all the kernels (linear and 

nonlinear) in our data set. 
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Table 6: Grid search for different combinations of SMOTE SVM and random undersampling 

Gaussian  Kernel Geometric mean 

Under-sampling % 50 SMOTE 100 SMOTE 200 SMOTE 300 SMOTE 400 SMOTE 500 SMOTE 

10% 0.2300692 0.7077196 0.8152652 0.8712314 0.8864990 0.8759041 

15% 0.5211030 0.8021911 0.8761406 0.9051832 0.9212721 0.9150150 

25% 0.8045620 0.8689910 0.9230279 0.9287044 0.9446142 0.9417371 

50% 0.9083428 0.9401976 0.9461497 0.9487433 0.9593880 0.9665661 

75% 0.9384779 0.9508191 0.9534347 0.9584441 0.9654686 0.9614618 

100% 0.9469343 0.9553015 0.9626488 0.9622824 0.9677662 0.9641782 

125% 0.9531918 0.9567008 0.9631719 0.9644199 0.9695098 0.9637715 

150% 0.9580112 0.9583828 0.9627070 0.9677358 0.9661614 0.9649674 

175% 0.9566272 0.9617051 0.9641814 0.9665047 0.9655365 0.9669310 

200% 0.9588921 0.9623313 0.9675190 0.9645545 0.9657113 0.9718652 

300% 0.9603146 0.9618026 0.9645217 0.9662298 0.9678828 0.9633213 

400% 0.9661793 0.9602417 0.9596261 0.9608790 0.9689449 0.9684944 

500% 0.9578417 0.9619651 0.9621467 0.9635404 0.9613943 0.9604165 

600% 0.9619149 0.9634723 0.9597816 0.9662038 0.9592851 0.9605706 

700% 0.9589905 0.9568111 0.9575871 0.9631608 0.9572629 0.9554419 

800% 0.9613749 0.9632656 0.9561161 0.9594724 0.9510912 0.9575539 

1000% 0.9593712 0.9578405 0.9574465 0.9569860 0.9560181 0.9421841 

2000% 0.9457649 0.9434341 0.9355585 0.9301694 0.9403617 0.9284354 

 

From SVM-SMOTE, the maximum Geometric mean was found for increments of 500% 

with the combination of 200% undersampling ratio, achieving the value of 97.18652% for the 

Geometric mean.  
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Table 7: Comparison of % Minority correct for different undersampling ratio changing the Over-

sampling rate 

Gaussian  

Kernel 
% Minority correct 

Smote 
200% under-

sampling 

300% under-

sampling 

400% under-

sampling 

500% under-

sampling 

50% 0.9566563 0.9487952 0.9554896 0.9444444 

100% 0.9534161 0.9386503 0.9375000 0.9266055 

200% 0.9509202 0.9494048 0.9335260 0.9216301 

300% 0.9495549 0.9427711 0.9369369 0.9230769 

400% 0.9549550 0.9501466 0.9341317 0.9120235 

500% 0.9489489 0.9316770 0.9221557 0.9221557 

 

Table 7 shows a search among different ratios of under-sampling for 50%, 100%, 200%, 

300%, 400%, 500% SMOTE-SVM respectively. Figure 11 shows the percentage of minority 

correct values of the original training sets as instances added by SMOTE with 4 different 

under-sampling ratios. The highest value revealed with the combination of 50-SMOTE SVM 

and 200% under-sampling. 
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Figure 11: A graphical presentation of % Minority correct for different undersampling ratio changing the 

Over-sampling rate 

 

3.3 Experimental Results and Discussion 

The Geometric mean values for the original training set using the 5 different methods are 

shown in the below table. Comparison of differences for all pairs of methods illustrated that 

SMOTE-SVM and oversampling have the best performance in test set.  

 

Table 8: Geometric mean of Training sets obtained from 4 different methods 

Gmean of training set in original data 

Linear kernel Train  Test in original train 

data 

C SVM 0.9192 0.9248457 

TC SVM 0.98138 0.9699514  

SVM-RU 0.9824 0.9579060 

SVM-RO 0.9792 0.9789352 

SMOTE 0.9681217 0.9687785 

 

However using random-oversampling there is a problem of overfitting of data something 

that it is more likely to happen using nonlinear kernels. For this reason, SMOTE SVM seems to 

have the best performance. SMOTE SVM slightly outperformed SVM-RU and the biased 
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Penalty method (TS SVM). Comparing the three non-linear kernels for the considered methods 

we observe that the Gaussian kernel reveals the highest performance for the Geometric mean 

metric. As far as the methods as concerned SMOTE SVM has the highest performance 

compared to C SVM, TC SVM and SVM-RU. In case of SVM-RO did not show a significant 

mean difference for the gaussian and sigmoid kernel, whereas SVM-RO outperforms SMOTE 

SVM in case of polynomial kernel. 

 

Table 9: Geometric mean of Training sets obtained from 4 different methods (nonlinear case) 

 Gmean of training set in original data 

 Gaussian kernel Polynomial Sigmoid 

C SVM 0.8904698 0.7866470 0.8596290 

TC SVM 0.9567920 0.8732783 0.9561292 

SVM-RU 0.9562475 0.8782818 0.9479898 

SVM-RO 0.9840769 0.9529313 0.9568208 

SMOTE SVM 0.9718652 0.880000 0.9606813 

 

Despite the high values of Geometric mean that creates, oversampling leads to a large 

increase on the training set something that not only increases the computational burden of the 

learning algorithm but it also leads to overfitting problems. SMOTE SVM in combination with 

undersampling doesn’t reveal overfitting and simultaneously keeps smaller data set compared 

to oversampling method. Consequently, as we anticipated, the randomness of under-sampling 

did not produce a consistent result as compared with SMOTE. As we can conclude, 

oversampling increases to a large extent the training size giving a computational burden to the 

SVM algorithm which applied in the second step.  
 

4. Concluding Remarks  

The main aim of this study was to develop a model that will enable successful prediction of 

the trauma outcome. Many strategies have been proposed dealing with imbalanced data, some 

of which have been applied in the present analysis. At data level, sampling is the most common 

approach, with oversampling outperforms the random undersampling. At the algorithmic level, 

solutions using adjusting costs have been widely proposed. An alternative cost sensitive SVM 

(TC SVM) strategy was used, since classic SVMs are proved inappropriate to deal with 

imbalanced datasets. We investigated the effect of incorporating the TC SVM on a learned 

SVM model using a medical dataset. In general, the TC SVM seem to outperform the classic 

SVM for all kernels employed in this comparative trauma study in terms of the criteria AUC 

and Geometric mean, something that confirms the significance of the TC method for 

imbalanced data. The experimental results presented in this study have demonstrated that the 
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TC method provides a very competitive solution to other existing standard methods, in 

optimization of Geometric mean and AUC for combating imbalanced classification problems. 

These results confirm the advantages of the considered approach, showing the promising 

perspective and new understanding of cost sensitive learning. On the other hand, sampling 

methods seem to outperform the C SVM. Especially a combination of SMOTE SVM with 

undersampling has revealed the best performance considering not only the Geometric mean and 

computational time, but also the overfitting problems that have been created using the other 

methods. 

This paper presents a comparative analysis of different SVM strategies on real medical data. 

Evaluating the reliability of classifier algorithms is essential to ensure data quality. We used the 

Geometric mean measure and the Area Under the Roc Curve, both obtained by sensitivity and 

specificity, for the comparison of algorithms in order to provide useful results. Note that these 

two metrics gave almost similar results. In this way we make some comparisons only in terms 

of Geometric mean. It is obvious that the effort of health care to prevent patients' death is a 

huge problem that arises, forcing researchers to be more careful in their research. Sensitivity 

and specificity measure the prognostic model’s ability to recognize the patients of a certain 

group (survivors or non-survivors). The value of this comparative study is the ability to 

calculate Type I and Type II error rates, giving lower Type II error with the cost sensitive and 

data preprocessing methods and as a consequence higher sensitivity compared to C SVM. This 

issue is of high importance for medical diagnosis due to the fact that the presented methodology 

gives us the ability to recognize the patients which are going to die and they are provided by an 

appropriate treatment. In this way, many deaths would be avoided. This method may assist as 

guidelines for improving the quality of treatment and therefore survivability of a patient 

through optimal trauma management.  Although, Parpoula et al. (2013) have already dealt with 

the analysis of the Trauma dataset; their study focuses on the comparison of several data 

mining techniques including standard SVM. Our motivation for conducting this study is 

different because what we want to achieve is the balance between sensitivity and specificity 

enable the success trauma outcome prediction. The effectiveness of the considered approach is 

obvious. 

We hope this work will convince experimenters to use not only standard SVM techniques 

but also reformulations of SVMs for the extraction of useful patterns when they deal with 

imbalanced medical datasets. Support Vector Machines are a powerful predictive tool and the 

use of the SVMs classifiers as an alternative method for supporting medical knowledge 

discovery is one of the most promising topics for further research.  
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Appendix 

Trauma Data 

Y: 0 (survival), 1 (death) 

 

–Continuous covariates: 

x1: weight, kg 

x2: age, years 

x3: Glasgow Coma Score, score 

x4: pulse, N/min 

x6: systolic arterial blood pressure, mmHg 

x7: diastolic arterial blood pressure, mmHg 

x8: Hematocrit (Ht), % 

x9: haemoglobin (Hb), g/dl 

x11: white cell count, /ml 

x15: glucose, mg % 

x16: creatinine, mg % 

x18: amylase, score 

x20: Injury Severity Score, score 

x21: Revised Trauma Score, score 

 

–Categorical covariates: 

x19: evaluation of disability (0 = expected permanent big, 1 = expected permanent small, 2 = 

expected impermanent big, 3 = expected impermanent small, 4 = recovery) 

x23: cause of injury (0 = fall, 1 = trochee accident, 2 = athletic, 3 = industrial, 4 = crime, 5 = 

other) 

x24: means of transportation (0 = airplane, 1 = ambulance, 2 = car, 4 = on foot) 

x25: Ambulance (0 = no, 1 = yes) 

x26: hospital of records 

x27: substructure of hospital (0 = orthopaedic, 1 = CT, 2 = vascular surgeon, 3 = neurosurgeon, 

4 = Intensive Care Unit) 

x28: comorbidities (0 = no, 1 = yes) 

x31: sex (0 = female, 1 = male) 

x35: doctor’s speciality (0 = angiochirurgeon, 1 = non specialist, 2 = general doctor 3 = general 

surgeon, 4 =jawbonesurgeon, 5 = gynaecologist, 6 = thoraxsurgeon, 7 = neurosurgeon, 8 = 

orthopaedic, 9 = urologist, 10 = paediatrician, 11 =children surgeon, 12 = plastic surgeon ) 

x36: major doctor (0 = no, 1 = yes) 

x41: dysphoria (0 = no, 1 = yes) 

x52: collar (0 = no, 1 = yes) 

x55: immobility of limbs (0 = no, 1 = yes) 
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x56: fluids (0 = no, 1 = yes) 

x64: Radiograph E.R. (0 = no, 1 = yes) 

x66: US (0 = no, 1 = yes) 

x67: urea test (0 = no, 1 = yes) 

x71: destination after the emergency room (0 = other hospital, 1 = clinic, 2 = unit of high care, 

3 = intensive care unit I.C.U, 4 = mortuary, 5 = operating room) 

x72: surgical intervention (0 = no, 1 = yes) 

x86: arrival at emergency room (0 = 00:00-04:00, 1 = 04:01-08:00, 2 = 08:01-12:00, 3 = 12:01-

16:00, 4 =16:01-18:00, 5 = 18:01-20:00, 6 = 20:01-24:00 ) 

x87: exit from emergency room (0 = 00:00-04:00, 1 = 04:01-08:00, 2 = 08:01-12:00, 3 = 12:01-

16:00, 4 =16:01-18:00, 5 = 18:01-20:00, 6 = 20:01-24:00 ) 

x101: head injury (0 = none, 1 = AIS  ≤ 2,  2= AIS > 2) 

x102: face injury (0 = none, 1 = AIS  ≤ 2,  2= AIS > 2) 

x104: breast injury (0 = none, 1 = AIS  ≤ 2,  2= AIS > 2) 

x106: spinal column injury (0 = none, 1 = AIS  ≤ 2,  2= AIS > 2) 

x107: upper limbs injury (0 = none, 1 = AIS  ≤ 2,  2= AIS > 2) 

x108: lower limbs injury (0 = none, 1 = AIS  ≤ 2,  2= AIS > 2) 
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