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Abstract: Constrained general linear models (CGLMs) have wide applications in 

practice. Similar to other data analysis, the identification of influential obser-

vations that may be potential outliers is an important step beyond in CGLMs. We 

develop local influence approach for detecting influential observations in CGLMs. 

The procedure makes use of the normal curvature and the direction achieving the 

maximum curvature to assess the local influences of minor perturbation of 

CGLMs. An illustrative example with a real data set is also reported. 
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1. Introduction 

Influence analysis and model diagnostics are well established for the linear regression 

model. The books of Belsley et al. (1989), Cook and Weis-berg (1982), Atkinson (1985) and 

Chatterjee and Hadi (1988) surveyed the field with applications to linear regression and other 

models. The study of influential observations has been extended to other statistical models 

using similar ideas to the ones developed in the linear regression. For example, Haslett and 

Haslet (2007) and Shi and Chen (2009) extended a generalized version of residuals with 

influential measures in general linear model, Banerjee and Frees (1997) and Tan et al. (2001) 

investigate the diagnostic problems in longitudinal models. Christensen et al (1992), Zewotir 

and Galpin (2005) and Norbe and Singer (2011) discussed the extension of influence diagnostic 

methods to mixed models and so on. Case deletion is a popular way to assess the individual 

impact of cases on the estimation process. Cook (1977) paper gave an impetus to the 

development of case deletion diagnostics for all sorts of statistical models. This approach is an 

example of a global influence analysis, namely, the effect of an observation is assessed by 

completely removing it. Cook (1986) paper dealt with a local approach, that is, each case is 

given a weight 𝜔𝑖 and the effect on the parameter estimation is measured by perturbing these 

weights around, say, 𝜔𝑖 = 1. Choosing weights equal to zero or one corresponds to the global 

case-deletion approach. In our approach, a case will always correspond to an individual and 

hence to the whole vector of responses for that individual. 
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Constrained general linear models (CGLMs) are used widely in the field of econometrics, 

for example in the estimation of Cobb-Douglas production functions Chipman and Rao (1964). 

However, diagnostics for assessing the influence of observations in CGLMs have not received 

the same attention. We found the method of local influence particularly useful for CGLMs. As 

in Cook (1986), the displacement in log-likelihood was taken as the metric to evaluate local 

influence. Kim (1998, 2007) worked out the local influence and case deletion diagnostic 

approach for linear hypothesis in multiple regression which is simpler in the sense that all 

random errors were assumed to be independent of each other. In this work we will suggest a 

method of detecting outliers, using local influence in linear model when there are some linear 

relationship among model coefficients and when random errors are not necessary independent. 

It measures the sensitivity of the analysis to a change in the model caused by a minor 

perturbation and has been known as a method of detecting outliers that avoids masking and 

swamping effect. The rest of paper is organized as follows. In section 2 constrained general 

linear models is described. In section 3 three necessary computational theorems for the local 

influence measure are provided. An illustrative example is given in section 4. 

 

2. Constrained general linear models  

Consider the general linear models 

𝒚 =  𝑿𝜷 +  𝜺,                                                     (1) 

with 

Aβ = c,                                                                  (2) 

Where 𝑦 = (𝑦1, . . . , 𝑦𝑛)′is an n × 1 vector of observations, X is a n × p matrix of rank p 

whose ith row is xi′ = (𝑥𝑖1, . . . , 𝑥𝑖𝑝)′, β is a p × 1 vector of unknown parameter and ε is an n × 1 

vector of normality distributed random errors with E(ε)=0 and Cov(ε)=𝜎2V, where V is positive 

definite matrix, not necessary to be diagonal matrix and 𝜎2 is an unknown positive scalar. For 

the purpose of this article, similar to work of Shi and Chen (2009) we assume that V is known 

or can be replaced by a predetermined estimate.  

In the second equation, A is a known q × p (q ≤ p) matrix of rank q, and c is a known q × 1 

vector. In fitting general linear model (1) without constraint (2) the least squares estimate of β 

can easily be obtained as �̂� =  (𝐗′𝐕−𝟏𝐗)
−1

𝐗𝐕−𝟏𝐲. The n × 1 vector of residuals is given by e 

= y −X�̂� and the residual sum of squares satisfies 𝑠2 =  𝑒′𝐕−𝟏𝑒 = 𝑦′(𝐕−𝟏  −  𝐏)
−1

𝑦, where 

𝐏 =  𝐕−1𝐗(𝐗′𝐕−1𝐗)−1𝐗′𝐕−1 The ML estimator of 𝜎2 can be obtained as 𝜎2 = 𝑠2/n (see Yan 

and Su (2009)). On the other hand the weighted least square of β under constraint (2) can be 

derived as 

�̂�∗  =  �̂� − (𝐗′𝐕−1𝐗)−1𝐀′[𝐀(𝐗′𝐕−1𝐗)−1𝐀′]−1(𝐀�̂� −  𝐜),                        (3)  

which is also the maximum likelihood (ML) estimate of 𝜷  under constraint (2) with 

normality assumption of errors.  
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Defining 𝒆∗  = (𝒚 −  𝑿�̂�∗ ), we can write  𝑠∗2  =  𝒆∗′𝐕−𝟏𝒆∗ , therefore the maximum 

likelihood estimator of 𝜎2  under (2) will be  �̂�∗2  =  𝑠∗2/𝑛 . The existence of the linear 

relationships among β can be checked by using the F-statistic given by F = [(n − p)/q]( �̂�∗2/�̂�2 

− 1) which is distributed as the F-distribution with q and n − p degree of freedom when the 

linear-ship (2) hold. More detail can be found in chapter 7 of Yan and Su (2009). 

 

3. Local influence procedure 

In this section local influence measures for CGLMs will be derived. Let 𝜔 =
(𝜔1, . . . , 𝜔𝑛)′ be an n × 1 vector in Ω of R𝑛 storing the case weights and Ω represents the set of 

relevant perturbations. For example, Ω may be the set defined by  0 ≤  𝜔𝑖  ≤  1  for 𝑖 =

 1, . . . , 𝑛. We consider the perturbed model in which the n × 1 vector ε is perturbed according to 

a normal distribution N(0, 𝜎2𝐕ω ), where 𝐕ω is perturbed variance covariance matrix V such 

that lth diagonal element of V is perturbed according to 𝑣𝑙𝑙𝜔 for 𝑙 =  1, . . . , n. This perturbation 

scheme simultaneously perturbs all the cases. When the ω are set equal to one, the perturbed 

model reduces to unperturbed model.  

Let Θ be the (p + 1) × 1 vector of parameters formed by stacking β and 𝜎2. The log-

likelihoods for the unperturbed and perturbed models is denoted by L(Θ) and L(Θ | ω) 

respectively. The classical log-likelihood L(Θ) is equal to L(Θ | 𝜔0) with 𝜔0  = (1, . . . ,1)𝑇. Let 

Θ̂and Θω be the maximum likelihood estimators of Θ under L(Θ) and L(Θ |ω) respectively. 

Then their difference can be measured by the likelihood displacement function given by  

LD(ω)= 2[L(Θ̂| 𝜔0) − L(Θ̂| ω)]. 

This likelihood displacement, together with the case-weights perturbation scheme, can be 

considered as a natural generalization of Cook’s distance (see Cook (1986) and Cook and 

Weisberg (1982)). At the point 𝜔0, achieves LD(ω) its minimum. A straight line in Ω passing 

through 𝜔0 is given by ω(l)= 𝜔0  +  𝑎𝑙, where a is scalar and l is a fixed column in vector in R𝑛. 

Cook (1986) suggested using the normal curvature  𝐶𝑙  of the graph of the likelihood 

displacement function along a direction l at the optimal point 𝜔0 to examine the local behaviour 

of LD(ω) for assessing the local influence of the perturbation in the direction l. The direction 

vector lmax associated with the largest curvature of curve at a = 0 provide information about 

outliers that cause a great change in the likelihood displacement. Observations corresponding to 

the component of 𝑙𝑚𝑎𝑥 that has substantially larger magnitude than the others are potential 

outliers. Let 

 
for the CGLMs, ∂L(Θ)/ ∂Θ evaluated at Θ = Θ̂ is not general zero. However, it will be 

shown later that the first order derivative  of likelihood displacements evaluated at a = 0 is 

zero. Thus the curvature is given by 
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Then lmax is the eigenvector corresponding to the largest absolute eigen-value of . For 

deriving  and , first we note that 

                                       
 (4)

 

                 

(5) 

where �̇� = ∂L(Θ)/∂Θ evaluated at Θ = Θ̂,  �̈� =  ∂2𝐿(Θ)/ ∂Θ ∂ΘT evaluated at Θ = Θ̂, �̇�𝑖 is 

ith element of �̇� and Θ̂𝑖𝜔 is ith element of Θ̂𝜔 .  
The infinitesimal perturbation for the likelihood estimator of β under constraint (2) can be 

considered as 

          
(6)

 
where �̂�𝜔  = (𝐗′𝐕ω

−1 𝐗)−1𝐗𝐕ω
−1𝒚. The following lemma is useful to computing the next 

theorems.  

Lemma 3.1. Consider the matrix of partial derivatives of (𝐗′𝐕ω
−1𝐗)−1 and denote by 𝜉𝑟 the 

r-th column of identity matrix In then  

 

Proof. By perturbing rth diagonal elements of covariance matrix V we can write Vω  =

 𝐕 − 𝜉𝑟 (𝑣𝑟𝑟  −
𝑣𝑟𝑟

𝜔𝑟
 ) 𝜉𝑟

′  so  

 

where 𝑣𝑟𝑟  =  𝜉𝑟
′  𝑉−1𝜉𝑟  is rth diagonal element of V−1. Therefore 

𝜕𝑽−1

𝜕𝜔𝑟
|𝑎=0 =

 𝐕−1 𝜉𝑟𝜉𝑟
′ 𝐕−1. Using the equality ∂𝐅(𝜔)−1/ ∂𝜔𝑟   =  −𝐅(𝜔)−1[∂𝐅(𝜔)/ ∂𝜔𝑟]𝐅(𝜔) 

for the matrix F(ω) the proof will be complete.  

Using lemma (3.1), after some algebraic calculation we easily get 

                        

(7)

 

 
where 𝐖𝑖  =  𝜉𝑖𝜉𝑖

′, in the other words 𝐖𝑖 is a diagonal matrix in which the i th element is 

one and the other elements is zero.  
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Theorem 3.1. The partial derivatives of �̂�𝜔
∗  can be derived as 

                            

 (9) 

    (10)
 

where 𝐑 = (𝐗′𝐕−1𝐗)−1𝐀′[𝐀(𝐗′𝐕−1𝐗)−1𝐀]−1𝐀 and 

 𝐏A  =  𝐕−1𝐗(𝐗′𝐕−1𝐗)−1𝐀′ 
Proof. Using lemma( 3.1) and a little complicated algebra with relations (7) and (8) the 

proof will be complete. 

Theorem 3.2. The partial derivatives of σ̂ω
∗  respect to 𝜔𝑟 and 𝜔𝑠 is  

∂�̂�𝜔
∗

∂𝜔𝑟
 |𝑎=0 =

1

𝑛
 𝒆∗′ 𝐕−𝟏𝐖𝒓𝐕−𝟏𝒆∗,                              (11) 

∂2�̂�𝜔
∗

∂𝜔𝑟 ∂𝜔𝑠
 |𝑎=0 =

1

𝑛
𝒆∗′ 𝐕−𝟏[𝐖𝑟(𝐏𝐴 − 𝐏)𝐖𝑠 + 𝐖𝑠(𝐏𝐴 − 𝐏)𝐖𝑟]𝐕−1𝒆∗.                (12) 

Proof. For the perturbed model, the maximum likelihood estimator of 𝜎2 is 

 
and using the previous relations (9) and (10) with further computations the proof will be 

complete.  

The first order derivatives of the log-likelihood evaluated at Θ = Θ̂ are easily obtained as 

 

Using (9), (11), (13) and (14) it follows from relation in (4) that = 0 

Theorem 3.3. The (r, s) th element of   is computed as  

  
(15) 
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Proof. We need to compute the second order derivative of the log-likelihood evaluated at Θ 

= Θ̂ that are given by 

 

 
Using relations (10), (12), (13) and (14) the second term in (5) turns out to be zero and 

proof will be complete. 

 

4. PBC data  

The performance of the proposed method in previous sections is illustrated with an example 

of the real data set. We consider primary biliary cirrhosis (PBC) data for 312 patients. These 

data are described in Fleming and Harrington (1999), pp.359-371. The data consist of survival 

time, an indicator for censoring and 17 covariate variables. Fleming and Harrington (1991, 

pp.160-161) suggest that the proportional hazard model with covariates log(Bilirubin), age, 

log(Albumin), log(protime), log(Protime) and Edma is biologicaly reasonable for this data. The 

linear predictor  

𝛽1𝑎𝑔𝑒 + 𝛽2 log(𝐵𝑖𝑙𝑖𝑟𝑢𝑏𝑖𝑛) + 𝛽3 log(𝐴𝑙𝑏𝑢𝑚𝑖𝑛) +  𝛽4𝐸𝑑𝑚𝑎 + 𝛽5 log(𝑃𝑟𝑜𝑡𝑖𝑚𝑒),  

for the risk score is now considered. The normality assumption of residuals of the above 

logarithm transformation regression can be checked by Q.Q plot which presented in Figure1.(a). 

It is seen that the assumption of normality of residuals is not violated. Because the effect of 

Bilirubin and Albumin on risk score can be similar, so the following linear-ship for this linear 

predictor can be considered. 

𝛽2 − 𝛽3 = 0                                                       (16) 

Since the log likelihood function L(y, η) is available, where 𝜼 = (𝜂1, . . . , 𝜂𝑁), and where 

𝜂𝑖 = 𝑥𝑖𝜷.  The Newton-Raphson iteration leads to the sequence of estimates �̂�𝑡+1 = �̂�𝑡  −

 (𝐗′𝐕(�̂�𝑡)
−1

 𝐗)−1𝐗′𝐒(�̂�𝑡) , where 

𝐕(�̂�𝑡) = [∂2 log{𝐿(𝒚, 𝜼)}/𝜕𝜼′𝜕𝜼] −1and 𝐒(𝜷𝒕) =  {𝜕𝐿(𝒚, 𝜼)}/𝜕𝜼. Further simplification gives 

�̂�𝑡+1  = (𝐗′𝐕(�̂�𝒕)
−1

 𝐗)−𝟏 𝐗)−𝟏  𝐕(�̂�𝒕)−1 𝒛(�̂�𝒕), 

where 𝒛(𝜷𝒕) =  𝐗𝜷 −  𝐕(𝜷𝒕 )𝐒(𝜷𝒕).  The process is iterated until convergence at the 

maximum likelihood estimate �̂�, that is  

�̂� = (𝐗′𝐕−1𝐗)𝐗′𝐕−1𝒛, 
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in which V = V(�̂�) and z = z(�̂�𝒕). Based these informations the one step approximation for 

�̂�𝜔  is'  

�̂�ω  = (𝐗′𝐕𝛚
−𝟏𝐗)

−1
𝐗′𝐕𝝎

−𝟏𝐳.                                               (17) 

Finally the one step approximation for �̂�ω
∗  will be achieved substituting (17) in (6). By 

applying theorems of (3.1 -3.3) the matrix of  in expression (15) can be obtained by 

replacing y with z. In order to check the adequacy of the linear relationship in (16) for the PBC 

data, we use the extended usual F-test for hypothesis given in chapter 7 of (Yan and Su (2009)). 

The value of F-test statistic is 0.468 and the associated p-value is 0.5. Hence it is reasonable to 

conclude that this linear relationship is not rejected in the linear predictor model for this dataset. 

An index plot of the direction cosines in lmax for the linear model with 𝛽2  −  𝛽3 = 0 is provided 

in Figure 1.(b) from which it is seen that cases 81, 293, 107 and 253 are stand out. Hence these 

observations can be considered as outliers for the GLM model with constraint 𝛽2  − 𝛽3 = 0. 

The direction cosines for other observations are small enough. In the overall analyses of PBC 

data these observations have an influence on the model fit. Fleming and Harrington (1991) 

indicated that there was a data bases error in the pro-time of observation 107. This result can be 

supported by investigating the CGLM residuals, observations 253, 293, 81 and 107 have largest 

absolute residuals |𝑒𝑖
∗|, 7.62, 5.43, 4.19 and 1.86 respectively and the other observations have 

small residuals relative to this cases. Plot of standardized CGLM residuals is presented in 

Figure 2 and like Figure 1.(b) the results of this measure is similar. 

 
Figure 1: (a):Q-Q plot of residuals (b):Index plot of the direction cosines in lmax for PBC data 
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Figure 2: Plot of standardized CGLM residuals 

 

5. Conclusions 

No method of influence measures is available for constrained linear models with general 

covariance matrix of errors. Instead of using case deletion, this paper uses the local influence 

approach to study the detection of influential observations in CGLMs. We have shown how to 

extend and use likelihood placement and local influence to detect influential cases when one is 

faced with CGLMs. Local influence is a useful tool for identifying importantly influential cases 

and for assessing the effects that perturbations to the assumed data/model will have on 

inferences. The methods are computationally simple and the results are easy to displaying 

graphically. They give useful information about model and the data assumptions that needs 

extra scrutiny. A new feature of our approach is that we extended local influence diagnostics for 

parameters in CGLMs and derived a closed formulae which is able to detect anomalous 

observations in the data. 
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