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Abstract: Medical data and biomedical studies are often imbalanced with a 

majority of observations coming from healthy or normal subjects.  In the presence 

of such imbalances, agreement among multiple raters based on Fleiss’ Kappa (FK) 

produces counterintuitive results. Simulations suggest that the degree of FK’s 

misrepresentation of the observed agreement may be directly related to the degree 

of imbalance in the data. We propose a new method for evaluating agreement 

among multiple raters that is not affected by imbalances, A-Kappa (AK).  

Performance of AK and FK is compared by simulating various degrees of 

imbalance and illustrate the use of the proposed method with real data. The 

proposed index of agreement may provide some insight by relating its magnitude 

to a probability scale. Existing indices are interpreted arbitrarily. This new method 

not only provides a measure of overall agreement but also provides an agreement 

index on an individual item.  Computation of both AK and FK may further shed 

light into the data and be useful in the interpretation and presenting the results.  
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1. Introduction 

1.1 The problem 

Biomedical, social, behavioral and other studies routinely include statistical evaluations of 

agreement among multiple raters or conditions (Fienstein et al, 1985) and Fleiss’ Kappa (FK) is 

widely used to evaluate agreements (Fleiss, 1981).  

This work stems from a real problem which arose when examining agreement among 

radiologists who were evaluating mammographic breast images. Table 1 shows the results of an 

experiment where 10 radiologists at Brigham and Women’s Hospital, Boston, Massachusetts, 

independently reviewed 102 breast MRIs obtained between September 2004 and April 2008.  

Increased breast density may be associated with increased breast cancer risk, and therefore, 

classification of mammography reports is important both scientifically and clinically. The BI-

RADS algorithm developed by American College of Radiology was used to classify breast 
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composition into four categories. One of the categories indicates whether or not an image 

exhibits a ‘Fatty’ (< 25% glandular) pattern. Table 1 collapses the three non-Fatty categories 

into one and denotes them as a ‘1’: A fatty image is denoted as a ‘0’. Each line in the table 

displays a sequence of ‘1’s and ‘0’s which shows the scoring pattern for each of the 10 raters. 

 

Table 1: Classification of 102 images by 10 raters into Non-Fatty (= 1) versus Fatty (= 0) breast 

composition categories 

Yes = 1, No = 0 Number of  

‘Yes’ (= 1) 

Frequency Percent 

1001011001 

1011011111 

1101110111 

1111011001 

1111011110 

1111011111 

1111110111 

1111111001 

1111111011 

1111111101 

1111111111 

5 

8 

8 

7 

8 

9 

9 

8 

9 

9 

10 

1 

2 

1 

1 

1 

4 

1 

1 

4 

1 

85 

0.98 

1.96 

0.98 

0.98 

0.98 

3.92 

0.98 

0.98 

3.92 

0.98 

83.33 

Total - 102 100 

 

All 10 raters classified 85 (83.33%) of the 102 images into non-Fatty category indicating 

complete agreement among the raters on these images. An additional 10 images were classified 

as non-Fatty by 9 (90%) of the raters so that more than 93% of the images were classified into 

the non-Fatty category by at least 90% of the raters. Despite such a large degree of consensus 

seen among the raters, Fleiss Kappa (FK) for these data is only 0.119 (95% CI: 0.090, 0.148) 

indicating a poor or no agreement. An alternate agreement index developed in this paper called 

A-Kappa (AK) yields a value of 0.906 (95% CI: 0.889, 0.923) for the same data indicating a 

high agreement among raters.  Thus, the widely used method of evaluating agreement index FK 

yields a counter intuitive result in this instance. 

It will be shown later that a data set consisting of a large number of positive (or negative) 

events may yield a poor FK despite high observed agreement. In the context of Table 1, all the 

raters classify 83.33% images into the positive (score 1) category. There is not a single image 

where all the raters classified an image into the negative (score 0) category. Similarly, there are 

5 images with eight 1s, but there is not a single image with eight 0s. This type of data set is 

referred to as unbalanced or asymmetrical data set in this paper. This issue is further addressed 
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in Section 2.3 and then shown that the proposed measure AK is not influenced by the 

imbalance in a data set. 

Medical data are prone to imbalance due to high or low prevalence of a given 

characteristics or disease (Li, Liu and Hu, 2010). For example, in a screening setting it is likely 

to have are more healthy individuals, while in a specialty care center there may be a larger 

number of subjects with a disease. Hence, for many biomedical data Fleiss Kappa (FK) is likely 

to misrepresent or completely miss the agreement present in a data set. A-Kappa (AK) 

developed in this paper could be an alternate tool to evaluate agreement in such data sets as it is 

not influenced by the asymmetry or imbalance. 

In two raters’ case the phenomenon of high observed agreement with low Cohen’s Kappa 

often found with asymmetrical or unbalanced data has been studied and some remedies have 

been suggested (Feinstein et al, 1990; Cicchetti et al, 1990; Lantz et al, 1990). These remedies 

primarily suggest reporting some alternate indices along with Cohen’s Kappa. Lantz and 

Nebenzahl (1990) maintain that Kappa alone has little interpretive value and recommend 

reporting alternative indices along with Kappa. 

In this article we show that Fleiss Kappa, the most widely used agreement index among 

multiple raters, shows the high agreement low Kappa behavior similar to that of Cohen’s Kappa. 

A new method for evaluating agreement among multiple raters, A-Kappa (AK), is proposed in 

this article. This method is not affected by the type of imbalances described above and is able to 

capture the observed agreement.  Furthermore, in the case of balanced data set it reduces to FK.  

It is proposed that both FK and AK be reported with the results of data analysis. 

 

2. An Alternate Measure of Agreement 

2.1 Proposed agreement index: A-Kappa 

Suppose that each of the )2(r  independent raters classifies the ith image ),...,2,1( Ni   

into one of two categories by assigning a score of 1 or 0 to indicate presence or absence of a 

disease, respectively. When all the raters agree on a given image, we will have either all 1s or 

all 0s.  Similarly, when the sequence consists of an equal numbers of 1s and 0s (50% of each) it 

is considered a situation of complete absence of agreement. 

Let ia denote the number of 1s in the sequence for the ith image. In other words, ia  raters 

out of r total raters classify the ith image into the disease category and remaining r - ia  into the 

non-disease category. We assume that each image is read by all of the r readers.  

The proposed measure of agreement A-Kappa (AK) is defined as 

    



N

i

i rrNrraAK
1

22 )]([])2[(    (2.1) 
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The derivational argument behind the definition AK in equation (2.1) is provided in Section 

3.1 where more than two categories are addressed. More specifically when 𝑘 = 2  , equation 

(3.5) reduces to equation (2.1). 

The following results follow from the definition of AK given by equation (2.1). Proofs are 

given in the Appendix. 

Proposition 1. When there are two raters, AK reduces to Maxwell’s Random Error (RE) 

coefficient (Maxwell, 1977): 

REPAK  12 0 ,                 (2.2) 

where 0P  is the proportion of images on which the two raters agree.  Note that, RE was 

originally proposed as an alternate measure of agreement between two raters to address the 

issue of high agreement and low Cohen’s kappa. 

Proposition 2.  If iw is the proportion of pairs of raters who agree and iv  is the proportion 

of pairs who disagree on the ith image, then 

NvwAK i

N

i

i /)(
1


     

(2.3)
 

Proposition 3. AK for multiple raters r  is the average of AK for all possible pairs of raters. 

Let 
ijAK denote AK obtained from the ith and jth raters. Similarly, let 

ijP ,0
denote the 

proportions of images on which both of these raters agree. Then 

)2,(/2 ,0 rCPAK
r

ji

ij


 , where 2)]1([)2,(  rrrC   (2.4) 

 

2.2 Relationship between A-Kappa (AK) and Fleiss Kappa (FK) 

In the section, relationship between AK is developed and shown that for balanced or 

symmetrical data these indices are identical. Concept of balanced or symmetrical data was 

introduced at the beginning of this paper. It will be revisited here to establish equality between 

AK and FK.  

Proposition 4. )1(41 FKqpAK   where p is the proportion of one positive 

classifications (or proportions of ‘1’s) in the entire data set, and pq  . 

Proof: Recall that, rN , and ia  ),...,2,1( Ni  denote the total number of images (or objects 

to be evaluated), total number of raters and number of raters who classify the ith image as 

positive (or who assign ‘1’), respectively. Let rap ii /  denote the proportion raters who 

classify the ith image into the positive category. Similarly, let NarNap iii /)/(  

denote the overall proportion of positive responses, and Narpq iii /)(1   . Then the 

Fleiss Kappa (FK) is defined as (Fleiss, 1981) 
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  FK=    qprNrara ii )1(/)(1             (2.5) 

Multiplying both sides of it by qp4  

     )1(/)(444   rNraraqpFKqp ii
 

     =    )1(/)(4114   rNraraqp ii
   (2.6) 

Upon simplification,    )1(/)(41   rNrara ii
=    )1(/))2(( 2  rNrrrai

=AK(from 

the definition of AK) 

Therefore, from (2.6) 

  )1(41 FKqpAK                 (2.7) 

2.2.1 Symmetrical or balanced data 

In the present context, symmetry may be defined in several ways. At the basic level, if 50 

% of observations (e.g. images) in a data set come from one population (say healthy) and 

remaining 50% come from a second population (e.g. disease) then such a data set could be 

considered a balanced data set. Even with experienced raters, it is likely that there will be 

instances of misclassifications, and therefore, it is unlikely that an image will be assigned either 

1or 0 by all raters. But with large data sets one can expect that they will be evenly misclassified. 

In other words, one would expect that for every misclassification into positive category there 

will be a misclassification into the negative category. Imbalance in data set may be due to 

design (e.g. more positive images in the collected data) or prevalence (e.g. rare disease). For 

example, if a data set contains considerably more positive (or negative) images, then the data 

set will be imbalanced.  Hence, a data set in which there is an image with a given number of 1s 

for each image with the same number of zeros will be considered a symmetrical or balanced 

data. Lack of this gives rise to an unbalanced data set. According to this definition data set 

presented in Table 1 is an unbalanced data set. 

Proposition 5. AK≥FK. When the data set is balanced then AK= FK for balanced or 

symmetrical data set. 

Proof: In the case of balanced data (see definition above) the entire data set be can be 

presented in terms of 2/N  pairs of image such that for a pair consisting of ith  and thi'  

images, we have rap ii /  and rap ii /1'    so that, .1'  ii pp Therefore, in a balanced 

data set, 2/1)2/(/)/(   NNNarNap iii
 . Hence, qp  2/1  . Therefore, from 

(2.7), in balanced (or symmetrical) data set, AK=FK. 

Next,  

AK< FK  FKFKqp  )1(41  from equation (2.7) 

)41(41 qpFKqp  FK1 . But in fact FK   1.   Therefore, AK   FK. 
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So, Fleiss Kappa (FK) yields a smaller value than AK in an unbalanced or asymmetrical 

data set.   

It is worth noting that if the number of 1s is equal to the number of 0s in data set then also 

AK= FK whether or not the data set meets the definition of symmetry. If 1’s and 0’s are 

assigned completely randomly then both AK and FK will be equal to zero indicating lack of 

agreement. 

 

2.3 Simulations 

We conducted several simulations to gain some insight into A-Kappa’s performance and to 

compare it with Fleiss Kappa, and aid in its interpretation.  

We based our simulations on 10 raters, 2 categories and 10,000 images. Let 𝛽denote the 

proportion of diseased images. Let 𝜋 denote the probability of correctly classifying an image by 

a rater and is assumed to be the same for 𝜋 = each rater. Each rater is assumed to assign a score 

 

Table 2: Comparison of A-Kappa and Fleiss’ Kappa using 10,000 images (samples) 

𝜋 = Probability of classifying an image correctly  

𝛽 = Proportion of images from normal subjects 

of 1 to a diseased image and 0 to a healthy image (from normal subjects) according to a 

binomial probability   = P[X =1|diseased image] = P[X =0|healthy image]. One can visualize 

the entire data set composed of two subsets one consisting of healthy images only and disease 

image. Simulated data sets were generated with  = 0.50, 0.60, 0.70, 0.80, 0.90, 0.95 and 0.99, 

and 𝛽 = 0.50, 0.70, 0.90 and 0.95 where 𝛽 = proportion of images from the normal (healthy) 

subjects. It is not necessarily true tah probability = P[X =1|diseased image] = P[X =0|healthy 

image] for each rater, but even this simple assumption can be used to generate imbalanced data. 

Our goal here is to simply demonstrate the vulnerability of FK and robustness of AK in certain 

types of data.  All simulations and subsequent computations were carried out using SAS 9.2. 

Note that, this is not the unique way to generate columns (or rows) of 0 and 1 in order to 

show that AK may fail to reflect the observed agreement in ‘unbalanced’ data. 

 

 
  

Percent  images 

9+ raters agree  

 

A-Kappa 

Fleiss Kappa with given β 

0% 0.50  0.70 0.90 0.95 

0.5 3.93 0.011 0.011 0.011 0.011 0.011 0.011 

0.6 5.22 0.046 0.009 0.046 0.041 0.023 0.018 

0.7 16.08 0.168 0.011 0.168 0.147 0.075 0.046 

0.8 37.32 0.365 0.016 0.365 0.327 0.179 0.108 

0.85 54.27 0.495 0.019 0.495 0.453 0.269 0.167 

0.90 73.25 0.646 0.027 0.646 0.606 0.402 0.268 

0.95 91.00 0.813 0.032 0.813 0.785 0.614 0.458 

0.99 99.05 0.960 0.044 0.960 0.952 0.896 0.820 
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2.4 Performance of A-Kappa vs Fleiss KappaTable 2 presents results of simulat-

ions described above. 

The first column of Table 2 shows values of 𝜋, the second column shows percent to images 

on which 9 (90%) or more rater agree. This is taken as a measure of crude or observed 

agreement 

A quick glance at Table 2 shows that when 𝜋 = 0.5 both AK and FK indicate absence of 

agreement. This is a situation when raters classify images randomly.  However, when   is 

different from 0.5 then FK varies with the proportion of positive images while AK remains the 

same for a given 𝜋.  When the proportion of samples of diseased images is equal to the samples 

of healthy images then both AK and FK yield the same value for all  . On the other hand, 

when a majority of images are from diseased patients (or from healthy patients) then FK is 

further from the observed (or crude) agreement than AK. In such situations AK captures the 

observed agreement better than FK.  For example, when 𝜋 = 0.90, then observed agreement = 

0.7325 (at least 90% of raters agree on 73.25% images) and A-Kappa = 0.646, but Fleiss Kappa 

could be as low as 0.03 when almost all images are either positive or negative and could be as 

high as 0.646 (value of AK) when 50% images are positive. 

The above results showing difference between AK and FK are also depicted in Figure 1. 

When the underlying proportion of positive images is roughly 0.5 (   = 0.5), the lines for AK 

and FK are the same for all values of 𝜋. That is why lines for AK and FK50 (i.e. FK values 

when 50% images are positive) are not distinguishable in Fig. 1. Also, AK and FK are the same 

(and near zero) irrespective the proportion of diseased images when raters assign scores of 0 or 

1 to an image randomly (i.e. when 𝜋 = 0.50). 

Figure 1 
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2.5 An Interpretation of A-Kappa (AK) 

Landis and Koch (1977) provided an interpretation of Kappa statistic. However, those 

interpretations are considered arbitrary. Except for Kappa =1 and 0 implying perfect and chance 

agreement, respectively, other value fail to convey the degree of agreement in terms of an 

interpretable scale. The following discussion may help shed some light into interpretation of 

AK. 

Assume that the same image is evaluated by a set of r  raters by assigning 0 or 1 to the 

image for the presence and absence of a disease.  Also, assume that some time has elapsed 

between two evaluations.  

Proposition 6.  Let ia  and rap ii ˆ denote the number and proportion of raters 

who assigned 1 during the ith   evaluation.  If it is assumed that the sequence of 0 and 1 

are generated by an underlying Bernoulli distribution with a parameter ]ˆ[ ipEp  , then 

2)12(][  pAKE      (2.8) 

(See appendix for a proof of this result). 

Equation ( 2.8) may shed light into the interpretation of an AK value  as  

2/)1( AKp  .     (2.9) 

Thus for an AK value, we can say one would have obtained the same AK if each rater 

would classify a diseased image correctly with the probability given by equation (2.9). 

However, it is not necessarily true that the data in hand was generated with this probability. 

Equation (2.8) indicates that when 90% of the raters assign 1 or 90% raters assign 0 (say, to 

all the images), then AK is about 0.64).  In the case of two raters the proportion of images on 

which two raters agree is expected to be 0.9×0.9+0.1×0.1 = 0.81+0.01 = 0.82 so that AK = 

2(0.82) - 1 = 0.64 (see equation 2.2). On the other hand, if data yields AK = 0.64, then one 

would obtain the same AK from data set where probability of correctly classifying an image by 

each rater is 0.90. No such interpretation exists for FK where the interpretation is completely 

arbitrary (Landis et al 1977). 

 

3. Multiple Rates and Multiple Categories 

Although the main focus of the paper is evaluation of agreement among multiple of raters 

(or situations) on two possible classification (or categories), results presented in previous 

sections are briefly extended to multiple category situation in the following sections. Some 

additional insights on AK are also presented. 

 

3.1 Derivation of A-Kappa (AK) for multiple categories and multiple raters 
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Assume that each rater classifies an image into one of the k categories. Let 
ija denote the 

number of raters who classified the ith ),...,2,1( Ni   image into the jth ),...,2,1( kj 

category so that 



k

j

ij ra
1

 for each image. In case of complete agreement on the ith image, all 

raters will classify the image into the same category. In the case of complete lack of agreement 

the ith image will be categorized into each category by an equal number of raters. Therefore in 

this case, kr /  raters are expected to classify such an image into each of the k categories. One 

can think of agreement as the discrepancy or distance from complete disagreement. This 

discrepancy may then be expressed as 

    



k

j

ij

k

j

ij krakra
1

22

2

1

//     (3.1) 

This quantity can be rescaled by dividing it by its maximum possible value so that the 

distance between observed data and the state of complete disagreement lies between 0 and 1.  

The maximum value of the expression given in (3.1) is given by 

kkrkrr /)1(/ 222   

Therefore, the rescaled distance for the ith image is   

  )]1(/[(/ 2

1

2
 



krkrakG
k

j

iji    (3.2) 

Hence, the mean of iG across N images can be considered as the ‘crude’ agreement among 

raters. This is given by 

  )1/(1))1(/(/ 2

1 1

2

1

 
 

kkNrakNGG
N

i

k

j

ij

N

i

i    (3.3) 

However, some of this agreement may be due to chance. Opinions differ regarding the 

definition of chance induced agreement. For example, Maxwell uses 0.5 as a chance induced 

agreement and Cohen uses the marginal probabilities of the 2×2 table under consideration.  

Another way to quantify the agreement due to chance might be to estimate the agreement 

expected in a sample that comes from a population lacking agreement among raters. In terms of 

the notation used above, error due to chance may be given by the expected value of G  given 

that there is an absence of agreement in the population. 

Proposition 7. The expected value of G  given that there is an absence of agreement in the 

population is given by  

 rGE /1][        (3.4) 

(See appendix for a proof) 
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A-Kappa (AK) is the measure G  adjusted for agreement due to chance and rescaled to 

yield the maximum possible value of 1 is, given by : 

   )1/()1()/11/()/1(  rGrrrGAK    (3.5) 

The functional forms of AK for two raters and multiple raters seem different, but in fact 

they are the same as shown below. A-Kappa for two categories was developed first and then it 

was shown as an extension of Maxwell’s Random Error (RE). Since the error due to chance 

was already imbedded in Maxwell RE, no error adjustment was discussed. 

Proposition 8.   When k = 2, then 

)(/])2[()1/()1( 2

1

2 rrNrrarGr
N

i

i  
           

(3.6)

 

which is the same as equation 2.1 (A proof is given in the appendix). 

 

3.1.1 Agreement on individual item (image) 

Note that, A-Kappa proposed in this article is the average of )1()1(  rrGi across the 

observations (images), where iG is defined by equation (3.2). Therefore, this quantity could be 

considered as a measure of agreement among raters on the ith observation (image).   

Let )1/()1(  rrGAK ii , then NAKAK
N

i

i /
1




   (3.7) 

This characteristic of AK is similar to the agreement index proposed by O'Connell and 

Dobson (1984), but AK is much simpler to compute and uses a different strategy to estimate 

chance induced agreement. One advantage of obtaining agreement on an individual image 

(observation) is that the investigators could identify and investigate images with high 

disagreement. This could especially be useful when training novice raters. Equation (3.6) also 

points that AK from two or more data sets could be easily combined to yield the overall AK 

from the combined data set as shown below. Let a data set of sample size )( 21 NN  be 

partitioned into data sets having sample sizes 1N and 2N . If 21 , AKAK and cAK  are AK from 

the first set, second set and combined set of data, respectively, then 𝐴𝐾𝑐 = (𝑁1𝐴𝐾1)/(𝑁1 +
𝑁2) + (𝑁2𝐴𝐾2)/(𝑁1 + 𝑁2). Thus, AK from a combined data set is the weighted average of 

AKs from the component data sets. This is not necessarily true for FK.  

 

3.2 Asymptotic distribution of A-Kappa (AK) 

Following the notations of the previous sections, suppose r raters classify each of the N 

images into one of the k categories. Suppose that the number of ratings ikii aaa ,...,, 21
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corresponding to the ith image (observation) have a multinomial distribution with probabilities 

),...,, 2
 ikii  i1(π . Let ikii aaar  ...21 , and let ),...,,( 21

 ikiii pppp denote the 

sample proportion (proportions of raters), where rap ijij / .  

 

 

Proposition 9.  The Asymptotic variance of AK is given by  

])1()1(/[)(4)( 222

1

2

1

2

1

32 







  

 

krNpprkAKV
N

i

k

j

ij

k

j

ij
. 

(A proof is given in the appendix). 

 

3.3 Simulations for Multiple Categories 

Simulations results from earlier section have shown that in the case of two categories, FK 

and AK are equivalent when there is absence of agreement or when the data are symmetrical. 

Otherwise FK may fail to reflect the high degree of observed agreement.  

Here, we present a few simulations using multiple raters and multiple categories. These 

simulations show that as with two categories, FK may fail to reflect a high observed agreement 

in case of multiple categories.  We generated 10,000 items (images) and assumed that each of 

the 10 raters classified each image into one of five categories.  Let ip  denote the probability 

with which a rater assigns an image into the ith )5,4,3,2,1( i category.  When each image is 

randomly assigned into one of these categories, i.e., when ip = 0.2 for all i, then AK= FK = 

0.0004. In this case, both indices truly reflect the absence of agreement among the raters. Next, 

suppose that 10000 images of category 4 are evaluated by 10 raters, and each rater can correctly 

classify the images with a probability 0.9. For a simple example, let  𝑝1 = 𝑝2 = 𝑝3 = 𝑝5 = 

0.025 and 90.04 p , then FK = 0.013 and AK = 0.770. Under this simulated scenario, at least 

8 raters (80% or more) are found to classify 9,433 (94.33%) images into the 4th category. 

Therefore, FK fails to reflect high degree of agreement among the raters. 

Next, we simulated that where with 50% of the images 4 and 50% were of category were of 

category 2, and the raters can correctly classify the image with probability of 0.9 into these two 

categories (with remaining probability equally distributed over remaining categories).  In this 

case, the simulated data showed that at least 8 raters (80% or more raters) classified 4,486 

images in category 2 and 4,699 images in category 4 so that at least 80% of the raters agreed on 

9,184 (91.84%) images. FK for this data turned out to be 0.674 while AK = 0.770. Thus this 

balancing in the data brought FK value almost to the level of AK, while AK remained the same. 

Hence, in the case of more than two categories and multiple raters FK may fail to 

reflect the high degree of observed agreement in asymmetric data, while AK may not 

be influenced by such asymmetry 
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3.4 Real Example (multiple categories) 

Consider the study described in the introduction section.  Ten raters were asked to classify 

the breast composition of 102 images into the four categories: the breast is almost entirely fat (< 

25% glandular), SFD: scattered fibroglandular densities (approximately 25-50% glandular), HD: 

the breast tissue is heterogeneously dense (approximately 51% – 75% glandular), ED: the 

breast tissue is extremely dense ( > 76% glandular). Table 3 shows AK and FK among multiple 

raters and multiple categories.  

Note that, FK indicates that the raters have poor agreement on whether the images are fatty 

or not. AK on the other hand shows there is an excellent agreement among the raters. Most of 

the raters classify images into non-Fatty categories. In Table 3, both AK and FK are 0.403 

when classifying an image into heterogeneously dense (HD).    

 

Table 3: 

Agreement among 

raters on breast 

composition classifications 

 

 

 

 

 

 

 

 

 

This indicates that if the data were re-arranged into HD versus non-HD category, then it 

indicates perhaps the numbers HD and non-HD images are similar. In all other situations we 

have AK > FK indicating lack of such symmetry. However, the asymmetry is not substantial 

except for Category 1 (Fatty vs non-Fatty). In conclusion, if only FK was used we might have 

been misinformed about the agreement among the raters   

 

4. Discussion  

 

Classification 

Agreement  Index 

A-Kappa Fleiss Kappa 

Fatty 0.906 0.119 

SFD 0.583 0.466 

HD 0.403 0.403 

ED 0.715 0.570 

Overall 0.534 0.454 
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Cohen’s Kappa (CK) is used routinely to evaluate agreement between two raters or two 

conditions, but has been criticized for being simply a function of prevalence, and counter-

intuitive by several investigators. Using simulations, it is shown in this article that Fleiss Kappa 

(FK) a measure of agreement among multiple raters inherits some of these shortcomings of CK.  

A new and simple method for evaluating agreement A-Kappa (AK) among multiple raters 

is proposed. This method reduces to Maxwell’s Random Error (RE) proposed to address the 

high agreement low kappa paradox in case of two raters. In this article it is shown, by 

simulations, that Fleiss’ kappa (FK) may also yield low kappa although there is a high degree 

of agreement among the raters. This is especially true in the case of imbalanced data where one 

class of items is relatively less than the other.  

AK, proposed in this paper, may be used as an alternate or an additional index in the case of 

multiple raters. The proposed measure does not have the seemingly paradoxical characteristic 

of FK. Computing both AK and FK may provide additional insight. The difference between the 

two values may indicate whether the data are dominated by one kind of classification of image. 

As indicated by simulations, FK coincides with AK when proportions of positive and negative 

image are the same. A small FK may not really be an indication of low agreement, while a 

small AK is indication of low agreement.  Also, AKs from two data sets can be easily 

combined to yield the AK from the combined data set. We recommend calculating both AK and 

FK. 

In the case of two categories, A-Kappa may have a meaningful interpretation in a more 

familiar scale of probability as discussed in this paper. Existing interpretation of Kappa values 

are considered somewhat arbitrary. Computation of both AK and FK may further shed light 

into the data and be useful in the interpretation and presenting the results. This is similar to 

recommendation by of computing both maximum and minimum Kappa in two raters two 

categories situation. 

Though not the focus of the paper, there exists a body literature with model based 

approaches to evaluate agreement (Agresti, 1992 and 2002; Tanner et al 1985).  Similar to the 

kappa-like indices, most of the model based methods have also dealt with the situation of two 

raters, and the number of parameters to be estimated increases exponentially with number of 

raters creating computational challenges.  Estimating equation approaches are also proposed to 

model agreement in data with multiple raters having binary and multiple categories 

(Williamson et al, 2000, Klar et al, 2000). AK will also be examined from repeated measures 

viewpoint in a future study. However, investigators especially in biomedical studies still 

routinely use CK and FK to evaluate agreement. This paper highlights some situations where 

these methods may fail to capture the agreement and propose an alternative method which 

reduces to existing methods proposed in two raters’ situations.  

Current limitations of AK include its inability to incorporate raters’ characteristics. 

However, this is also the case with FK and CK. Evaluation AK with repeated measures (or 

hierarchical) approach is being explored. This will allow us to adjust for confounding factors. 

Despite such limitations its simplicity and intuitive nature, it provides some insights into the 

nature of agreement and the data set itself. It is very simple to calculate.   
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Appendix A 

Proposition 1. In the case of two raters, REPAK  12 0 . 

Proof: From equation 2.1, in the case of two categories and r raters,  





N

i

i rrNrraAK
1

22 )]([])2[(  

Noting that when r =2 then,  

)/(])2[( 22 rrrrai        111(2
2

 rrrrai
 1)1(2 2  ia  

Also, when there are only two raters, then ia  (number of raters who agree on the ith image) 

takes values 0, 1 or 2.  So, the term 2)1( ia  = 1 when the two raters agree, and 2)1( ia = 0 

when the two raters disagree.  

 

Therefore, when r = 2, 

)]([/])2[( 2

1

2 rrNrraAK
N

i

i 


 = AEP 12 0  

where 0P  is the proportion of images on which both raters agree. 

Proposition 2. If iw is the proportion of pairs of raters who agree and iv  is the proportion of 

pairs who disagree on the ith image, then   NvwAK
N

i

ii /
1




  

Proof: Assume that ia  raters out of r classify the ith image into disease category (by 

assigning a score of 1) and remaining r - ia  into the non-disease category (assigning a score of 

0). Let 2/)1()2,(  xxxC . 

Then both members of ia
C2 pairs of raters will assign 1 and both members of iar

C


2 pairs will 

assign 0 to the ith image. Similarly, one member of )( ii ara  pairs will assign 1 while the 

other member will assign 0 to the ith image.  Therefore, 

)2,(/)]2,()2,([ rCarCaCw iii   and   )2,(/][ rCarav iii   

Hence difference in proportion of images on which there is pair-wise agreement and 

disagreement on the ith image is given by 

        )2,(/)]()2,()2,([ rCaraarCaCvw iiiiii 

)]1(/[)](2)1)(()1([  rraraararaa iiiiii

)]1([/])2[(
1

2 


rrrra
N

i

i
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Thus, 

  AKrrNrraNvw
N

i

i

N

i

ii  


)]([/])2[(/ 2

1

2

1

 

Proposition 3.  AK for multiple raters r  is the average of RE for all possible pairs of raters. 

Let 
ijRE denote Maxwell’s Random Error from the ith and jth raters. Similarly, let 

ijP ,0
denote 

the proportions of images on which both raters agree. Then 

)2,(/)2,(/)12( ,0 rCRErCPAK
r

ji

ij

r

ji

ij 


 , where 2/)1()2,(  rrrC . 

Proof: Assume that readings of N images by r raters are presented in N rows and r columns.  

Let the r columns be denoted by rXXX ,..., 21 . Also assume hX  (representing the hth rater) 

takes values either 1 or 0.  Next consider 2/)1( rr  variables 
1,1312 ,..., rrVVV such that  

)1)(1( tstsst XXXXV  , t>s 

Note that, stV = 1 when sX and tX  both take 1 or both take 0 otherwise .0stV  The AK 

coefficient from the sth and tth rater is then )12( stV  where
stV is the average of stV taken 

across N images (or observations), and can be expressed as NVV
N

i

stist /
1




 .  

We need to show that )2,(/)12( rCV
r
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N
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
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1
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Proposition 6. 
2)12(][  pAKE    

Proof: Note that, by definition, )]([/])2[( 2

1

2 rrNrraAK
N

i  . 

Also, )/(])2[( 22 rrrrai   = )1/(1)1/2)][(1/([ 2  rrarr i  

= )1/(1)144)](1/([ 2  rararr ii  

Under the assumption that each rater will assign a score of 1 with probability 𝑝, 𝑎𝑖~𝐵(𝑟, 𝑝). 

Therefore,   rpaE i  , 
22 ]}[{][)( iii aEaEaVar   so that 22 )()1(][ rpprpaE i  . 

Using this information, we have
2)12(][  pAKE . 

Proposition 7. The expected value of G given that there is an absence of agreement in the 

population is given by rGE /1][ 
  

 

Proof: From equation  (3.2),  

)]1(/[)()1/(1)]1(/[][ 22
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22
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


N

i

iji krkraGkr
1

2 )//()()1(       

  

Note that, under the assumption of random classification of images by the raters, ith image 

will be classified into each category by kr / raters.  Therefore, iGkr )1(   is distributed as 
2

with )1( k  degrees of freedom, and its expected value will be (𝑘 − 1) . Hence, 

1])1([  kGkrE i  which implies that rGE i /1][  . Therefore, 

  rNGEGE
N

i

i /1/][][
1




. 

Proposition 8.  When k = 2,  
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1
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N
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Proof:  Note that, from equation (3.2),    )]1(/[(/ 2

1

2
 



krkrakG
k

j

iji .   

When k = 2, then 1/)(2 22

2

2

1  raaG iii . Noting that raa ii  21 , and dropping the 

second subscript, we have 

22222 /)2(1/])([2 rrararaG iiii  . 

So that,  

)1(/])2[()1/()1( 2  rrrrarrG ii . 

Therefore, 

)(/])2[()1/()1( 2

1

2 rrNrrarGr
N

i

i  


. 

Proposition 9.  Asymptotic variance of AK is given by  

  ])1()1(/[])([4)( 222

1

2

1

2

1

32   
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krNpprkAKV
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k

j

ij

k

j

ij  

Proof: Recall that r raters classify each of the N images into one of the k categories. 

Suppose that the number of ratings ikii aaa ,...,, 21 corresponding to the ith image (observation) 

have a multinomial distribution with probabilities ),...,, 2
 ikii  i1(π . Let𝑟 = 𝑎𝑖1 + 𝑎𝑖2 +

⋯ + 𝑎𝑖𝑘 , and let ),...,,( 21
 ikiii pppp denote the sample proportion (proportions of raters), 

where rap ijij / . Then it follows that 

   ])(,[)( iii

d

ii Nr πππdiag0πp  ,    

where )( iπdiag  is a diagonal matrix with matrix with elements of iπ  on the main diagonal. 

Under the assumption that images are independent, the variance covariance matrix for the entire 

sample will be a block diagonal matrix with each block being of the form expressed as in (3.6).  

The following results can be used to estimate asymptotic variance of AK. 

From equation (3.2),  for the ith image, 
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Therefore, from the Delta method, 
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Hence the variance of 
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Therefore, the variance (asymptotic) A-Kappa statistic for the ith image is given by 

             )1/()1()(  rrGAKV ii  
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Assuming independent images and noting that that the overall A-Kappa for the given data 

set is the average of AK across the images (observations) we have, 
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Since parameters 

ij  are generally unknown, they are replaced by their sample estimates 

rap ijij /  in the above equation. 
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