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Abstract: A new extension of the generalized gamma distribution with six-

parameter called the Kummer beta generalized gamma distribution is introduced 

and studied. It contains at least 28 special models such as the beta generalized 

gamma, beta Weibull, beta exponential, generalized gamma, Weibull and gamma 

distributions and thus could be a better model for analyzing positive skewed data. 

The new density function can be expressed as a linear combination of generalized 

gamma densities. Various mathematical properties of the new distribution 

including explicit expressions for the ordinary and incomplete moments, 

generating function, mean deviations, entropy, density function of the order 

statistics and their moments are derived. The elements of the observed 

information matrix are provided. We discuss the method of maximum likelihood 

and a Bayesian approach to fit the model parameters. The superiority of the new 

model is illustrated by means of three real data sets.  

 

Key words: Bayesian analysis, Generalized gamma distribution, Kummer beta 

generalized distribution, Lifetime data, Maximum likelihood estimation. 

 

1. Introduction 

The generalized gamma (GG) distribution (Stacy, 1962) is an important lifetime model 

since it includes as special models the exponential, Weibull, gamma and Rayleigh distributions, 

among others. It is suitable for modeling data with hazard rate function (hrf) of different forms 

(increasing, decreasing, bathtub and unimodal) and then it is useful for estimating individual 

hazard functions and both relative hazards and relative times (Cox 2008). The GG distribution 

has been used in several research areas such as engineering, environment, hydrology and 

survival analysis. For example, Ortega et al. (2003) discussed influence diagnostics in GG 

regression models, Nadarajah and Gupta (2007) applied this distribution to drought data, Cox et 

al. (2007) presented a parametric survival analysis based on GG hazard functions and Cox 

(2008) discussed and compared the F-generalized family with the GG model. More recently, 

Barkauskas et al. (2009) modeled the noise part of a spectrum as an autoregressive moving 

average (ARMA) model with the innovations following the GG distribution Malhotra et al. 
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(2009) provided a unifed analysis for wireless system over generalized fading channels that is 

modeled by a two parameter GG model and Xie and Liu (2009) analyzed three-moment auto 

conversion parametrization based on this model. Further Ortega et al. (2009) proposed a 

modifed GG regression model to allow the possibility that long-term survivors may be 

presented in the data and Cordeiro et al. (2011b) studied the exponentiated generalized gamma 

(EGG) distribution.  

Let γ1  (k, x/ 𝛼 ) be the cumulative distribution function (cdf) of the standard gamma 

distribution where γ1 (·,·) is the incomplete gamma function ratio defned by γ1 (k, x)= γ(k, 

x)/Γ(k),  γ(k, x) = ∫ 𝑤𝑘−1𝑒−𝑤𝑑𝑤
𝑥

0
 and Γ(·) are the incomplete and complete gamma functions. 

The probability density function (pdf) of the GG distribution, with three parameters 𝛼 > 0, β > 0 

and  k > 0, defned by Stacy (1962), has the form 

𝑔(𝑥; 𝛼, 𝛽, 𝑘) =
𝛽

𝛼Γ(𝑘)
(

𝑥

𝛼
)

𝛽𝑘−𝑘
𝑒𝑥𝑝 [− (

𝑥

𝛼
)

𝛽
] , 𝑥 > 0.                       (1) 

In the density function (1), α > 0 is a scale parameter and β > 0 and k > 0 are shape 

parameters. The cdf corresponding to (1) is 

𝐺(𝑥;  𝛼, 𝛽, 𝑘) =  𝛾1 [𝑘, (
𝑥

𝛼
)

𝛽
].                                             (2) 

For an arbitrary baseline distribution G(x;γ) with parameter vector γ and density function 

g(x;γ) Pescim et al. (2012) proposed the Kummer beta generalized (denoted by the prefix 

"KB-G" for short) cumulative function defned by 

 

𝐹𝐾𝛽𝑔(𝑥) = 𝐾 ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1𝑒−𝑐𝑡𝑑𝑡
𝐺(𝑥;𝛾)

0

,                               (3) 

where a > 0 and b > 0 are shape parameters which induce skewness, and thereby promote 

weight variation of the tails, whereas the parameter −∞ < c < ∞ “squeezes” the pdf to the left 

or right, i.e., it gives weights to the extremes of the density functions. Here, 

𝐾−1 =
Γ(𝑎)Γ(𝑏)

Γ(𝑎 + 𝑏)1 𝐹1(𝑎; 𝑎 + 𝑏; −𝑐) 

and 

11𝐹1(𝑎; 𝑎 + 𝑏; −𝑐) =
Γ(𝑎 + 𝑏)

Γ(𝑎)Γ(𝑏)
∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1𝑒−𝑐𝑡𝑑𝑡

1

0

= ∑
(a)k(−c)k

(a + b)kk!

∞

𝑘=0

 

is the confluent hypergeometric function (Abramowitz and Stegun, 1968) and  (𝑑)𝑘  =

 𝑑(𝑑 + 1). . . (𝑑 + 𝑘 − 1) denotes the ascending factorial. The density function corresponding to 

(3) can be expressed as 

𝑓𝐾𝛽𝑔(𝑥) = 𝐾g(𝑥; γ)𝐺(𝑥; γ)𝑎−1[1 − 𝐺(𝑥; γ)]𝑏−1 exp[−𝑐𝐺(𝑥; γ)].                   (4) 

Clearly, the Kummer beta distribution (Ng and Kotz, 1995) is a basic exemplar of equation 

(4) for  𝐺(𝑥; γ) = 𝑥 , where 𝑥 ∈ (0,1) . Equation (4) will be most tractable when both 

functions 𝐺(𝑥; γ) and 𝑔(𝑥; γ) have simple analytic expressions. Its major benefit is to offer 
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more flexibility to extremes (right and/or left) of the density functions and therefore it becomes 

suitable for analyzing data with high degree of asymmetry. 

The class of distributions (4) includes two important special cases: the beta-generalized 

(BG) and exponentiated generalized (EG) distributions when c = 0 and c = 0 and b =1 

respectively. We can note that the BG distributions can be limited in one aspect. They have 

only two additional shape parameters and so they can add only a limited structure to the 

generated distribution. For instance, a BG distribution may have problems to capture the 

behavior of random variables with symmetric but highly leptokurtic distributions. While the 

beta parameters offer explicit control over skewness when the parent is symmetric they have 

less control over higher moments such as kurtosis. Further the EG distribution still introduces 

only one extra shape parameter whereas three may be required to control both tail weights and 

the distribution of weight in the center. Hence the generated distribution (4) is a more flexible 

model since it has one more shape parameter than the classical beta generator.  

In this paper we study a new six-parameter model called the Kummer beta generalized 

gamma (KBGG) distribution which contains at least 28 special models. The main motivation 

for this extension is that the new model is a highly flexible lifetime distribution which admits 

different degrees of kurtosis and asymmetry. The KBGG density function is defined from (4) 

by taking (1) and (2) as the baseline model. The six-parameter KBGG density function can be 

expressed as 

(5)

 
The corresponding hrf to (5) becomes 

   

 (6)

 
Hereafter, we denote by X a random variable following (5), say X ∼ KBGG(a, b, c, α, β, k). 

This density has five shape parameters a, b, c, β and k which allow for a high degree of 

flexibility. The parameter c controls tail weights to the extremes of the distribution. The study 

of the new distribution is important since it extends some distributions previously considered in 

the literature. In fact, the generalized gamma (GG) model is clearly a basic exemplar for a = b 

= 1 and c = 0 with a continuous crossover towards models with different shapes (e.g. a 

specifized combination of skewness and kurtosis). The KBGG model contains as sub-models 

the beta generalized gamma (BGG) (Cordeiro et al., 2013a) and the exponentiated generalized 

gamma (EGG) (Cordeiro et al., 2011b) distributions when c = 0 and b = 1 in addition to c = 0, 

respectively. Plots of the new density function for selected parameter values are displayed in 
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Figure 1. It is evident that this density function is much more flexible than the GG distribution. 

The KBGG model is very flexible and hence can be used in many practical situations. In fact, it 

can be symmetric, asymmetric and also exhibit bimodality. We also provide a comprehensive 

description of some of its mathematical properties with the hope that it will attract wider 

applications in reliability, engineering, environment and in other areas of research. 

The paper is outlined as follows. In Section 2, we derive more than 28 special distributions 

from the KBGG model. In Section 3, we demonstrate that the KBGG density function can be 

expressed as a linear combination of EGG density functions. This is an important result to 

provide some mathematical properties of the KBGG distribution. We obtain explicit 

expressions for the moments and generating function (Section 4), incomplete moments (Section 

5), mean deviations and Rényi entropy (Section 6) and order statistics (Section 7). In Section 8, 

we discuss some statistical inference such as maximum likelihood method and Bayesian 

approach. Three applications given in Section 9 reveal the usefulness of the new distribution for 

analyzing real data. Concluding remarks are addressed in Section 10. 

 

2. Special distributions 

The following well-known distributions are special models of the KBGG distribution. 

 

2.1 Kummer Beta Generator 

 For k =1, the KBGG distribution reduces to the Kummer beta Weibull (KBW) 

distribution. If k =1 and β =1, it yields the Kummer beta exponential (KBE) 

distribution. If β =2 in addition to k =1, it gives the Kummer beta Rayleigh (KBR) 

distribution. For α = √2𝜎, β =1 and k = p/2, the KBGG distribution reduces to the 

Kummer beta scaled chi-square (KBSChi) distribution. For α = √𝜃, β =2 and k =3/2, 

the KBGG distribution coincides with the Kummer beta Maxwell (KBMa) 

distribution.  

 

 For β =1, the KBGG distribution coincides to the five parameter Kummer beta 

gamma (KBGa) distribution. Taking α =2, β =1 and k = p/2, we obtain the Kummer 

beta chi-square (KBChi) distribution. Moreover if α =2
1

2𝛾𝜃, β =2γ and k =1/2, the 

KBGG distribution becomes the Kummer beta generalized half-normal (KBGHN) 

distribution. If α =2
1

2𝜃, β = 2 and k = 1/2, the KBGG model gives the Kummer beta 

half-normal (KBHN) distribution. Finally, if α =√𝜔/𝜇, β = 2 and k = μ, it yields the 

Kummer beta Nakagami (KBNa) distribution. 
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Figure 1: Plots of the density function (5) for some parameter values. 
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2.2 Beta Generator (for c = 0) 

 For c = 0, the KBGG distribution reduces to the five parameter beta generalized 

gamma (BGG) distribution. If k = 1, the BGG distribution corresponds to the beta 

Weibull (BW) distribution pioneered by Famoye et al. (2005). If β = 1 and k = 1, it 

gives the beta exponential (BE):distribution (see, Nadarajah and Kotz, 2005). If β = 2 

in addition to k = 1, it yields the beta Rayleigh (BR) distribution (Cordeiro et al., 

2013b). For α =√𝜃, β = 1 and k = 3/2, the BGG distribution gives the beta Maxwell 

(BMa) distribution. 

 

 For β = 1, the BGG distribution yields the four parameter beta gamma (BGa4) 

distribution. If α = 1 in addition to β = 1, the special case corresponds to the beta 

gamma (BGa3) distribution. Further, if α =2
1

2𝛾𝜃 , β =2γ and k = 1/2, the BGG 

distribution becomes the beta generalized half-normal (BGHN) distribution defined 

by Pescim et al. (2010). If α =2
1

2𝜃, β =2γ and k = 1/2, the BGG model reduces to the 

distribution called the beta half-normal (BHN) (see, for example, Pescim et al., 2010). 

 

 Finally, if α =√𝜔/𝜇 , β = 2 and k = μ, the BGG distribution becomes the Beta 

Nakagami (BNa) distribution. 

 

2.3 Exponentiated Generator (for b = 1 and c = 0) 

 For b = 1 and c = 0 we obtain from (5) the EGG density function. If k = 1, the EGG 

distribution reduces to the exponentiated Weibull (EW) distribution introduced by 

Mudholkar et al. (1995). If β = 1 in addition to k = 1, the special case corresponds to 

the exponentiated exponential (EE) distribution (see, Gupta and Kundu, 2001). If β = 

2 in addition to k = 1, the special case corresponds to the generalized Rayleigh (GR) 

distribution (Kundu and Raqab, 2005). For α =√𝜃 , β = 2 and k = 3/2, the EGG 

distribution becomes the exponentiated Maxwell (EMa) distribution. 

 

 For β = 1, the EGG distribution reduces to the three parameter exponentiated gamma 

(EGa3) distribution. If α = 1 in addition to β = 1, the special case corresponds to the 

exponentiated gamma (EGa2) distribution. If α =2
1

2𝛾𝜃, β = 2γ and k = 1/2, the EGG 

distribution becomes the exponentiated generalized half-normal (EGHN) distribution. 

 

 If α =2
1

2𝜃, β = 2 and k = 1/2, the EGG model reduces to the exponentiated half-

normal (EHN). Finally, if α = √𝜔/𝜇, β = 2 and k = μ, the EGG distribution becomes 

the exponentiated Nakagami (ENa) distribution. 
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2.4 Baseline distributions (for a = b = 1 and c = 0) 

 For a = b = 1 and c = 0, the new model reduces to the three parameter generalized 

gamma (GG) distribution. The case k = 1 gives the classical two parameter Weibull 

(W) distribution. If β = 1and β = 2, in addition to k = 1, the special cases coincide 

with the exponential (E) and Rayleigh (R) distributions, respectively. For 𝛼 = √2𝜎, β 

= 1 and k = p/2, the special case gives the scaled chi-square (SChi) distribution. If α 

=√𝜃 in addition to β = 2 and k = 3/2, it reduces to the Maxwell (Ma) distribution (see, 

for example, Bekker and Roux, 2005). 

 

 Setting β = 1, the special case gives the classical gamma (Ga) distribution. If α = 2, in 

addition to β = 1 and k = p/2, we obtain the chi-square (Chi) distribution. If α 

=21/(2𝛾)𝜃 in addition to β = 2γ, k = 1/2, it coincides with the generalized half-normal 

(GHN) distribution pioneered by Cooray and Ananda (2008). Taking α =2
1

2𝜃  in 

addition to β = 2 and k = 1/2, it reduces to the well-known half-normal (HN) 

distribution. Further, if α =√𝜔/𝜇 in addition to β = 2 and k = μ, the special case 

corresponds to the Nakagami (Na) distribution. 

 

Several special KBGG models are listed in Table 1. 
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Table 1: Some special cases of the KBGG distribution 

 

 
 

3. Expansion for the density function 

A useful expansion for equation (5) can be derived using the concept of exponentiated-G 

(“EG” for short) distributions. First, we use an expansion for the density function (4) given by a 

linear combination of EG densities. The properties of some exponentiated distributions have 

been studied by several authors, see Mudholkar and Srivastava (1993) and Mudholkar et al. 

(1995) for exponentiated Weibull (EW), Gupta et al. (1998) for exponentiated Pareto (EPa), 

Gupta and Kundu (2001) for exponentiated exponential (EE) and, more recently, Cordeiro et al. 

(2011) for exponentiated generalized gamma (EGG) distribution. 

Pescim et al. (2012) demonstrated that 
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𝑓(𝑥) = ∑ 𝑐𝑟𝑣𝑟+1(𝑥)

∞

𝑟=0

,                                                       (7) 

where the coefficients (for r = 0, 1 . . .) are 𝑐𝑟  = ∑ ∑ 𝑡𝑖,𝑗,𝑘,𝑟+1
∞
𝑘=𝑟+1

∞
𝑖,𝑗=0 , 

𝑡𝑖,𝑗,𝑘,𝑟 = 𝑡𝑖,𝑗,𝑘,𝑟(𝑎, 𝑏, 𝑐) =
𝐾(−1)𝑖+𝑗+𝑘+𝑟𝑐𝑖

𝑖! (𝑎 + 𝑖 + 𝑗)
(

𝑎 + 𝑖 + 𝑗

𝑘
) (

𝑘

𝑟
) (

𝑏 − 1

𝑗
) 

and 𝑣𝑟+1(𝑥) =  (𝑟 +  1)𝑔(𝑥)𝐺(𝑥)𝑟denotes the EG density function with power parameter 

r + 1.  

Equation (7) reveals that the KB-G density function is a linear combination of EG densities. 

This result is important to derive some mathematical properties of the KBGG distribution from 

those of the EGG distribution. This equation holds for any real non-integers a, b and c. 

Replacing (1) and (2) in 𝑣𝑟+1(𝑥), we obtain the EGG(α, β, k, r + 1) density function 

                (8)
 

We require a power series for the incomplete gamma function ratio in (8) given by 

                             

(9)

 

By application of an align in Section 0.314 of Gradshteyn and Ryzhik (2007) for a power 

series raised to a positive power, we obtain for any r positive integer 

                                      

  (10)

 

where the coefficients 𝑑𝑟,𝑚 (for m = 1, 2, . . .) satisfy the recurrence relation 

            

      (11)

 

and 𝑑𝑟,0 = 𝑎0
𝑟. The coefficient 𝑑𝑟,𝑚 comes from 𝑑𝑟,0, … , 𝑑𝑟,𝑚−1 and hence from 𝑎0, … , 𝑎𝑚. 

The coefficients 𝑑𝑟,𝑚 can also be written explicitly as functions of the quantities 𝑎𝑚.  

Further, combining equations (9) and (10), we obtain 
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(12) 

where the coefficients 𝑑𝑟,𝑚 are obtained from equation (11) with 𝑎𝑝 = (−1)𝑝/(𝑘 + 𝑝)𝑝!. 

Combining (8) and (12) and after some algebra manipulations, we can rewrite the EGG density 

function as 

                              

 (13) 

where 

 
k⋆ = k(r + 1) + m and 𝑔𝛼,𝛽,𝑘⋆(𝑥) is the density function of the GG(α, β, k⋆) distribution. 

Combining (7) and (13), we obtain 

                                  

  (14)

 
where 𝜂𝑟,𝑚  =  𝑒𝑟,𝑚 𝑐𝑟. 

Equation (14) reveals that the KBGG density function can be expressed as a linear 

combination of GG densities. This equation is the main result of this section. It plays an 

important role in this paper. In the next sections, based on this equation, we obtain some KBGG 

structural properties including explicit expressions for the ordinary and incomplete moments, 

generating function, mean deviations and order statistics. 

 

4. Moments and generating function  

The sth moment of X can be expressed from (14) as 

 
and then 

                                                                             

  (15)

 
where 𝑋𝑘⋆  ∼  GG(𝛼, 𝛽, 𝑘⋆). 

Equation (15) is an important result since it provides the moments of the KBGG 

distribution as a linear combination of GG moments. So, we have 
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Next, on setting 𝑢 = (
𝑥

𝛼
)

𝛽
 in last integral, E(𝑋𝑘⋆

𝑠 ) reduces to 

 
Replacing the last result in (15), we obtain the sth moment of X as 

                            

   (16)

 
where  𝜂𝑟,𝑚 is defined by (14). 

Equation (16) is readily computed numerically using standard statistical software. It (and 

other expansions in this paper) can also be evaluated in symbolic computation software such as 

Mathematica and Maple. In numerical applications, a large natural number N can be used in the 

sums instead of infinity. Several mathematical quantities of X (central, incomplete and factorial 

moments, variance, skewness and kurtosis) can be derived from this result. 

The skewness and kurtosis measures can be determined from the ordinary moments using 

well-known relationships. Plots of the skewness and kurtosis of the KBGG distribution as 

functions of c for selected values of a and b for α = 0.5, β = 1.0 and k = 2.0 are displayed in 

Figures 2 and 3, respectively. Figures 2a and 2b indicate that the additional parameter c 

promotes high levels of asymmetry. 

 
Figure 2: Skewness of the KBGG distribution as a function of c for some values of a and b for α = 0.5, 

𝛽 = 1.0 and k = 2.0. (a) b = 2.0 and (b) a = 1.2 
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Further, we provide a representation for the moment generating function (mgf) of X, say 

M(t) = E[exp(tX)], from the linear combination of GG generating functions. From equation (14), 

we have 

                                  

 (17)

 
Where 𝑀𝛼,𝛽,𝑘⋆(𝑡) denotes the mgf of the GG(α, β, 𝑘⋆) distribution. 

We can derive 𝑀𝛼,𝛽,𝑘⋆(𝑡)  as 

 

Using the power series for the exponential function and replacing 𝑢 =  (𝑥/𝛼) 𝛽  in this 

integral, 𝑀𝛼,𝛽,𝑘⋆(𝑡) reduces to 

                         

(18)

 

Computing the integral in (18), we obtain 

 

Consider the Wright generalized hypergeometric function defined by 
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Figure 3: Kurtosis of the KBGG distribution as a function of c for some values of a and b for α = 0.5, 𝛽= 

1.0 and k = 2.0. (a) b = 2.0 and (b) a = 1.2 

 

Combining the last two results, we can rewrite the mgf of the GG distribution as 

 

                               

 (19)

 
provided that 𝛽 > 1. 

The KBGG generating function follows by inserting (19) in equation (17). For 𝛽 > 1, we 

have 

                                

 (20)

 
Equations (16) and (20) are the main results of this section. The mgf of any KBGG sub-

model, as those discussed in Section 2, can be determined from (20) by substitution of known 

parameters. 

 

5. Incomplete moments 

The answers to many important questions in economics require more than just knowing the 

mean of the distribution, but its shape as well. This is obvious not only in the study of 
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econometrics but in other areas as well. Incomplete moments of the income distribution form 

natural building blocks for measuring inequality: for example, the Lorenz and Bonferroni 

curves and Pietra and Gini measures of inequality depend upon the incomplete moments of the 

income distribution. The sth incomplete moment of X is defined by 𝑚𝑠(𝑦) = ∫ 𝑥𝑠𝑓(𝑥)𝑑𝑥
𝑦

0
. 

From the linear combination (14), we have 

                                     

(21)

 

where  𝑡𝑠
⋆ (𝑦)  = ∫ 𝑥𝑠𝑔𝛼,𝛽,𝑘⋆

𝑦

0
(𝑥)𝑑𝑥 denotes the sth incomplete moment of the GG 

distribution with parameters 𝛼, β and k⋆ given by 

 
Calculating the integral above, 𝑡𝑠

⋆ (𝑦) reduces to 

 
Substituting the last equation in (21), we obtain 

                    

  (22)

 
 

6. Other Measures 

Here, we derive the means deviations, Lorenz and Bonferroni curves and the Rényi entropy 

of the KBGG distribution. 

 

6.1 Mean deviations 

We can derive the mean deviations about the mean 𝜇1
′ (𝛿1) and about the median 𝑀 = (𝛿2) 

in terms of the first incomplete moment. The median is obtained by inverting 𝐹(𝑀)  =

 𝐾 ∫ 𝑡𝑎−1(1 − 𝑡)𝑏−1𝑒−𝑐𝑡𝑑𝑡 = 1/2
𝛾1[𝑘,(

𝑀

𝛼
)

𝛽
]

0
 numerically. They can be expressed as 

𝛿1 = 2[𝜇1
′ 𝐹(𝜇1

′ ) − 𝑚1(𝜇1
′ )]  and  𝛿2 = 𝜇1

′ − 2𝑚1(𝑀), 

where 𝑚1 (·) is the first incomplete moment of X given by (22) with s = 1. We have 

                 

 (23)
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The measures 𝛿1  and 𝛿2  are calculated from (23) by setting 𝜔 = (𝜇1
′ )  and 𝜔 =  𝑀 , 

respectively. 

Bonferroni and Lorenz curves are useful in fields such as reliability, economics, 

demography, insurance and medicine. For the KBGG distribution, these curves can be obtained 

(for given 0 < π < 1) from B(π) = (𝜋𝜇1
′ )−1𝑚1(𝑞) and L(π) = (𝜇1

′ )−1𝑚1(𝑞), respectively, where 

𝜇1
′ = E(X),  q = 𝐹−1(𝜋) can be computed for a given probability π by inverting (3) numerically 

when 𝐺(𝑥;  𝜋)  is the GG cdf. These curves determined from equation (23) and have 

applications in several fields. 

 

6.2 Rényi Entropy 

Entropy has been used in various situations in science and engineering and numerous 

measures of entropy have been studied and compared in the literature. The Rényi entropy is 

defined by 

 
Note that the integral above is obtained from (5) as 

(24)

 
Using the exponential and binomial expansions in (24), we obtain 

         

    (25)

 

Noting that 𝜉 > 0 and a > 0 are real non-integers, we can expand [𝛾1 (𝑘, (
𝑥

𝛼
)

𝛽
)]

𝜉(𝑎−1)+𝑖+𝑗

 

as 

           
and then 
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Replacing ∑ ∑𝑟=0

∞∞
𝑝=0  by ∑ ∑𝑝=𝑟

∞∞
𝑟=0  , quantity, I(𝜉) can be expressed in the form 

 

(26)

 
where 

 
Using expansion (12) in (26), we obtain 

     

(27)

 
Calculating the integral in (27), we have 

 

where 

 
Finally, the Rényi entropy reduces to 

 
 

7. Order statistics 

Here, we derive an explicit expression for the density function of the ith order statistic 𝑋𝑖:𝑛, 

say 𝑓𝑖:𝑛(x), in a random sample of size n from X ∼ KBGG(a, b, c, α, β, k). It is well-known that 

 

and using the binomial expansion, we obtain 
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 (28)

 

We demonstrate that 𝑓𝑖:𝑛(𝑥) can be expressed as a linear combination of GG densities. First, 

we provide an expansion for the KBGG cdf. Pescim et al. (2012) demonstrated that 

                                  

(29)

 

where the coefficient 𝑏𝑟 = ∑ ∑𝑘=𝑟
∞∞

𝑖,𝑗=0 𝑡𝑖,𝑗,𝑘,𝑟  denotes a sum of constants and 𝑡𝑖,𝑗,𝑘,𝑟  is 

defined in (7). 

Equation (29) gives the KBGG cdf as an infinite weighted power series of the baseline cdf. 

Inserting (2) in (29), we have 

                         

  (30)

 

Combining (7) and (30), the pdf of the ith order statistic reduces to 

(31) 

Applying the identity (10) in (31), we have 

       

(32)

 

where 𝑑𝑖+𝑗−1,𝑟
⋆  can be obtained from (11) as 𝑑𝑖+𝑗−1,𝑟

⋆ = (𝑟𝑏0)−1 ∑ [𝑝(𝑖 + 𝑗) −𝑚
𝑝=1

𝑟]𝑏𝑝 𝑑𝑖+𝑗−1,𝑟−𝑝
⋆   for 𝑟 ≥ 1 and 𝑑𝑖+𝑗−1,0

⋆ = 𝑏0
𝑖+𝑗−1

 Inserting (12) in equation (32), we 

obtain 

   

(33)

 
Substituting (13) and (33) in equation (31), we can write 
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(34) 

where k⋆⋆ = k(2r + 1) + 2m and 

 

denotes the GG(α, β, k⋆⋆) density function. 

Equation (34) reveals that the density function of the KBGG order statistics is an infinite 

linear combination of GG densities. Hence, ordinary moments of order statistics can be 

determined directly from those quantities of the GG distribution. 

The sth moment of 𝑋𝑖:𝑛 comes from (34) as 

      (35) 

where 𝑋𝑟,𝑚 ∼ GG(α, β, k⋆⋆). Equation (35) is the main result of this section. 

Based upon these moments, we can derive expansions for the L-moments as infinite 

weighted linear combinations of suitable KBGG means. The L-moments are analogous to the 

ordinary moments but can be estimated by linear combinations of order statistics. They are 

linear functions of expected order statistics defined by Hosking (1990) and are relatively robust 

to the effects of outliers. 

 

8. Inference and estimation 

8.1 The Classical Inference 

Here, the estimation of the model parameters of the KBGG distribution is investigated by 

the maximum likelihood method. Let 𝑋 =  (𝑋1, . . . , 𝑋𝑛) be a random sample of the new 

distribution with unknown parameter vector 𝜃 = (a, b, c, α, β, k)T . The total log-likelihood 

function for 𝜃 is 

 

The elements of score vector are given by 
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where  𝑢𝑖 = (
𝑥𝑖

𝛼
)

𝛽

, 𝑣𝑖 = (
𝑥𝑖

𝛼
)

𝛽

𝑒𝑥𝑝 [− (
𝑥𝑖

𝛼
)

𝛽

] , 𝑠𝑖 = 𝑙𝑜𝑔 (
𝑥𝑖

𝛼
) , γ′(𝑘, 𝑢𝑖)|𝑘 = ∑

(−1)𝑛

𝑛!

∞
𝑛=0 𝐽( 𝑢𝑖 , 𝑘 +

 𝑛 – 1,1), ψ(·) is the digamma function and 𝐽( 𝑢𝑖, 𝑘 +  𝑛 –  1, 1) is defined in Appendix A. The 

partial derivatives of K in relation to a, b and c are given by 
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and 

 

Maximization of (36) can be performed using well established routines such as the nlm 

routine or optimize in the R statistical package. Setting these equations to zero, Ua(𝜽) = Ub(𝜽) 

= Uc(𝜽) = Uα(𝜽) =Uβ(𝜽) = Uk(𝜽) = 0, and solving them simultaneously yields the maximum 

likelihood estimate (MLE) �̂� of 𝜽. These equations cannot be solved analytically and statistical 

software can be used to solve them numerically by means of iterative techniques such as the 

Newton-Raphson algorithm. 

For interval estimation and hypothesis tests on the parameters in 𝜽, we require the 6 × 6 

total observed information matrix J(𝜽) = −{Urs}, where the elements Urs for r, s = α, β, k, a, b, c 

are given in Appendix A. The estimated asymptotic multivariate normal N6( 𝜽 ,J( �̂� )−1) 

distribution of  �̂� can be used to construct approximate condence regions for the parameters. An 

asymptotic condence interval (ACI) with signicance level γ for each parameter 𝜃𝑟  is given by 

 

where �̂�𝜃𝑟,𝜃𝑟 is the rth diagonal element of J(𝜽)−1 estimated at �̂�, for r = 1, . . . , 4, and 𝑧𝛾/2 

is the quantile 1 − γ/2 of the standard normal distribution. 

We can compute the maximum values of the unrestricted and restricted log-likelihoods to 

construct likelihood ratio (LR) statistics for testing some sub-models of the KBGG distribution. 

For example, we may use LR statistics to check if the fit using the KBGG distribution is 

statistically “superior” to the fits using the KBW, BGHN, EW and GG distributions for a given 

data set. In any case, considering the partition 𝜽 = (𝜽𝟏
𝑻, 𝜽𝟐

𝑻)
𝑻
, tests of hypotheses of the type H0 : 

𝜽𝟏 = 𝜽𝟏
(𝟎)

  versus HA : 𝜽𝟏 ≠ 𝜽𝟏
(𝟎)

 can be performed using the LR statistic  𝜔 =  2{ℓ(�̂�) −

 ℓ(�̃�)}, where �̂� and �̃� are the estimates of 𝜽 under HA and H0, respectively. Under the null 
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hypothesis H0 , 𝜔 
𝑑
→ 𝒳q

2 , where q is the dimension of the vector 𝜽𝟏 of interest. The LR test 

rejects H0 if 𝜔 > 𝜉𝑟, where 𝜉𝑟denotes the upper 100γ% point of the χ𝑞
2  distribution. 

 

8.2 The Bayesian Inference 

As is well-known, the Bayesian approach allows the incorporation of previous knowledge 

of the parameters through informative prior density functions. When this information is not 

available, we can consider a non-informative prior. In the Bayesian context, the information 

referring to the model parameters is obtained through a posterior marginal distribution. Thus, 

two difficulties usually arise. The first refers to attaining marginal posterior distribution, and 

the second to the calculation of the moments of interest. Both cases require numerical 

integration that, many times, do not present an analytical solution. To overcome these problems, 

we use the simulation method based on the Markov Chain Monte Carlo (MCMC), such as the 

Gibbs sampler and Metropolis-Hastings algorithms. 

Since we have no prior information from historical data or from previous experiment, we 

assign conjugate but weakly informative prior distributions to the parameters. Since we assume 

informative (but weakly) prior distribution, the posterior distribution is a well-defined proper 

distribution. We suppose that the elements of the parameter vector 𝜽 = (a, b, c, α, β, k)T are 

independent and consider that the joint prior distribution of all unknown parameters has a 

density function given by 

                     (37)
 

where, a ∼ Γ(𝑎1, 𝑏1),  𝑎1 and 𝑏1 known; b ∼Γ(𝑎2, 𝑏2), 𝑎2 and 𝑏2 known; c ∼ N(𝜇0, 𝜎0
2), 𝜇0 

and 𝜎0
2 known; 𝛼 ∼Γ(𝑎3, 𝑏3), 𝑎3 and 𝑏3 known; β ∼Γ(𝑎4, 𝑏4), 𝑎4 and 𝑏4 known; k ∼Γ(𝑎5, 𝑏5), 

𝑎5 and 𝑎5 known; where Γ(𝑎𝑖 , 𝑏𝑖) denotes the gamma distribution with mean 𝑎𝑖 /𝑏𝑖 , variance 

𝑎𝑖 /𝑏𝑖
2  for 𝑎𝑖  > 0 and 𝑏𝑖  > 0, and 𝑁(𝜇0, 𝜎0

2) denotes the normal distribution with mean 𝜇0 , 

variance 𝜎0
2 for 𝜇0 ∈ ℝ and 𝜎0

2 > 0. We note that gamma and normal priors are most commonly 

used priors for positive and real-values parameters. 

Combining the likelihood function (36) and the prior distribution (37), the joint posterior 

distribution for a, b, c, α, β and k reduces to 

(38)

 
The joint posterior density (38) is analytically intractable because the integration of the 

joint posterior density is not easy to perform. So, the inference can be based on MCMC 
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simulation methods such as the Gibbs sampler and Metropolis-Hastings algorithm, which can 

be used to draw samples, from which features of the marginal distributions of interest can be 

inferred. In this direction, we first obtain the full conditional distributions of the unknown 

quantities given by 

 

 
and 

 
Since the full conditional distributions do not have explicit expressions, we require the use 

of the Metropolis-Hastings algorithm to generate the variables a, b, c, α, β and k for the KBGG 

distribution. 

 

9. Applications 

In this section, we use three real data sets which come from diverse fields such as actuarial 

sciences (D1), environment (D2) and engineering (D3) to compare the fits of the KBGG 

distribution with those of three sub-models (i.e. BGG, EGG and GG distributions) and also to 

the following non-nested model: the Kumaraswamy generalized gamma (KwGG) distribution 

(Pascoa et al., 2011). The primary reason for choosing these data is that they allow us to show 
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how in different fields it is necessary to have positively skewed distributions with non-negative 

support. Moreover, these data sets present different degrees of variability, skewness and 

kurtosis. 

 

9.1 Applications 

Description of the data sets 

D1 Actuarial sciences: It is important for the Mexican Institute of Social Security (IMSS) 

to study the distributional behaviour of the mortality of retired people on disability 

because it enables the calculation of long and short term financial estimation, such as 

the assessment of the reserve required to pay the minimum pensions. The data set 

corresponding to 280 lifetimes (in years) of retired women with temporary disabilities, 

which are incorporated in the Mexican insurance public system and who died during 

2004 were reported and analyzed by Balakrishnan et al. (2009). 

D2 Environmental sciences: These data were analyzed by Leiva et al. (2009) and 

correspond to daily ozone level measurements in New York in May-September, 1973, 

from the New York State Department of Conservation. 

D3 Engineering: Failures can occur in microcircuits because of the movement of atoms 

in the conductors in the circuit, which is referred to the electromigration. The data set 

refers to an accelerated life test of 59 conductors reported by Lawless (1982). 

Table 2 gives a descriptive summary for these data and suggest positively skewed 

distributions with different degrees of variability, skewness and kurtosis. 

 

9.2 Maximum likelihood estimation 

First, in order to estimate the model parameters, we consider the maximum likelihood 

estimation method discussed in Section 8.1. We take the estimates of α, β and k from the fitted 

GG distribution as starting values for the numerical iterative procedure. All the computations 

were performed using the R statistical software. Table 3 lists the MLEs of the parameters and 

the values of the following statistics for some models: Akaike Information Criterion (AIC), 

Consistent Akaike Information Criterion (CAIC) and Bayesian Information Criterion (BIC). 

The results indicate that the KBGG model has the smallest values of the statistics (AIC and 

CAIC) among all fitted models. So, it could be chosen as the more suitable model. 

Table 2: Descriptive statistics for the three data sets. 
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Table 3: MLEs of the model parameters for the three data sets and the corresponding AIC, CAIC and 

BIC statistics. 

 
A comparison of the proposed distribution with some of its sub-models using LR statistics 

is given in Table 4. The p-values indicate that the proposed model yields the best fit to the three 

data sets. This gives a clear evidence of the potential of the three parameters when modeling 

real data. 

In order to assess if the model is appropriate, Figure 4 displays histograms and the 

estimated KBGG density functions for these data sets, respectively. We can conclude that the 

new distribution is a very suitable model to fit the three data sets. 

 

9.3  Bayesian analysis 

For the three data sets, the following independent priors were considered to perform the 

Metropolis-Hastings algorithm: 𝛼 ∼  Γ(0.01, 0.01) ,  𝛽 ∼  Γ(0.01, 0.01) , 𝑘 ∼  Γ(0.01, 0.01) , 

𝑎 ∼  Γ(0.01, 0.01) , 𝑏 ∼  Γ(0.01, 0.01)  and c∼ N(0,100), so that we have vague prior 

distributions. Considering these prior density functions, we generate two parallel independent 

runs of the Metropolis-Hastings with size 300, 000 for each parameter, disregarding the first   

30, 000 iterations to eliminate the effect of the initial values and, to avoid correlation problems, 

we consider a spacing of size 10, obtaining a sample of size 27,000 from each chain. To 

monitor the convergence of the Metropolis-Hastings algorithm, we perform the methods 

suggested by Cowles and Carlin (1996) using the between and within sequence information, 

following the approach developed in Gelman and Rubin (1992) to obtain the potential scale 

reduction, �̂�. In all cases, these values were close to one, indicating the convergence of the 

chain. 
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Table 4: LR statistics for the three data sets. 

 
 

The approximate posterior marginal density functions for the parameters are displayed in 

Figures 5, 6 and 7 for the first, second and third data sets, respectively. In Table 5, we report 

posterior summaries for the parameters of the KBGG model for the three data sets. We note 

that the values for the means a posteriori (Table 5) are quite close (as expected) to the MLEs 

obtained for the KBGG model given in Table 3. “SD” denotes the standard deviation from the 

posterior distributions of the parameters and “HPD” denotes the 95% highest posterior density 

intervals. 



 

686                                 The Kummer Beta Generalized Gamma Distribution  

 

Table 5: Posterior summaries for the parameters from the KBGG model for the three data sets. 
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Figure 4: Histograms and the estimated KBGG density functions for the current data sets. 

 

10. Concluding remarks 

We introduce the Kummer beta generalized gamma (KBGG) distribution with three 

additional shape parameters because of the wide usage of the GG distribution and the fact that 

the current generalization provides extensions to its continuous extension to still more complex 
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situations. The new distribution unifies more than 28 distributions and yields a general 

overview of these distributions for theoretical studies. In fact, the KBGG distribution (5) 

generalizes the Weibull, gamma, exponentiated Weibull, exponentiated gamma, beta Weibull, 

beta gamma, Kummer beta Weibull and Kummer beta gamma distributions and other important 

lifetime models. The KBGG density function can be expressed as a linear combination of GG 

density functions which allow us to derive some of its mathematical properties. The estimation 

of the model parameters is approached by the method of maximum likelihood and the Bayesian 

analysis. We consider the likelihood ratio (LR) statistic and other criteria to compare the 

KBGG model with its sub-models and other non-nested model. The potentiality of the KBGG 

distribution is illustrated in three applications to real data sets. The new model provides a rather 

flexible mechanism for fitting a wide spectrum of real world lifetime data in reliability, biology 

and other areas. 

 
Figure 5: Approximate posterior marginal densities for the parameters of the KBGG model for the first 

data set. 
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Figure 6: Approximate posterior marginal densities for the parameters of the KBGG model for the second 

data set. 

 

Appendix A: Elements of the observed information matrix 

The elements of the observed information matrix, J(𝜃), for the parameters α, β, k, a, b and c 

are: 
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Figure 7: Approximate posterior marginal densities for the parameters of the KBGG model for the third 

data set. 
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where 

 
𝜕2𝐾

𝜕𝑎2  ,
𝜕2𝐾

𝜕𝑏2  ,
𝜕2𝐾

𝜕𝑐2  ,
𝜕2𝐾

𝜕𝑎𝜕𝑏
 ,

𝜕2𝐾

𝜕𝑎𝜕𝑐
 and 

𝜕2𝐾

𝜕𝑏𝜕𝑐
 are defined in Pescim et al. (2012). The J(., ., .) 

function can be determined from the integral given by Prudnikov et al. (1986, vol. 1, Section 

2.6.3, integral 1) 
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