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Abstract: In the paper, we propose power weighted quantile regression(PWQR), 

which can reduce the effect of heterogeneous of the conditional densities of the 

response effectively and improve efficiency of quantile regression). In addition to 

PWQR, this article also proves that all the weighting of those that the actual value 

is less than the estimated value of PWQR and the proportion of all the weighting 

is very close to the corresponding quantile. At last, this article establishes the 

relationship between Geomagentic Indices and GIC. According to the problems of 

power system security operation, we make GIC risk value table. This table can 

have stronger practical operation ability, can provide power system security 

operation with important inferences. 
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1. Introduction 

Weighted quantile regression is proposed by Koenker(2005). When the conditional 

densities of the response are heterogeneous, he maintained weighted quantile regression might 

lead to efficiency improvements. It is considered, but reweighting based on estimated densities 

is somewhat difficult, that is the estimation of the weights is hard to do well, so it isn’t usually 

done. Often researchers prefer to try to correct sparsity function or bootstrap (Hendricks and 

Koenker 1991,Parzen et al 1994) for non iid error behavior. If the covariance structure were 

known, weighted quantile regression would be more efficient. With regard to research weighted 

quantile regression, Taylor(2008) proposed exponentially weighted quantile regression and 

applied in Value at Risk and expected shortfall. But if data exists node, exponentially weighted 

effect would be meaningless. For example, when one independent variable value corresponding 

to more than one dependent variable values, the method of exponentially weight is clearly 

unreasonable. Because the time sequence of the observed values are different, weights are 

different. So that this paper proposes a new weighting method, that is Power Weighted Quantile 

Regression. 
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2. Power Weighted Quantile Regression  

In the light of the development of Quantile regression, we propose power weighted quantile 

regression: 

min
𝛽𝜖𝑅𝑝

 ∑||xi||
α

n

i=1

𝜌𝜏 (𝑦𝑖 − 𝑥𝑖
𝑇𝛽 )                                             (1) 

                                   

where ∥ 𝑥 ∥ is norm. Quantile regression is the special case of power weighted quantile 

regression. Because when 𝛼 = 0, power weighted quantile regression is quantle regression.  

Theorem 1 If X contains in quantile regression model 𝑄𝜏 (y|x)= 𝑥𝑇𝛽 , then for any �̂� , 

solving (1), we have 
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α

I(yi < xi
Tβ̂)n
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αn

i=1

≤ τ ≤
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α
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α
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α
I(yi > xi
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α
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n
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   (3) 

 

Proof. See Appendix.  

The theorem indicates that the estimator of PWQR essentially partitions divided the 𝑦𝑖 

observations into three parts 𝑦𝑖 < 𝑥𝑖
𝑇�̂�, 𝑦𝑖 = 𝑥𝑖

𝑇�̂�, 𝑦𝑖 < 𝑥𝑖
𝑇�̂� . The sum of the weights on 𝑦𝑖 <

𝑥𝑖
𝑇�̂�, as a proportion of the sum of all the weights, is close to 𝜏. The proportion is not exactly equal to 𝜏, 

because 𝑦𝑖 = 𝑥𝑖
𝑇�̂�  may exist. That is to say, given 𝜏, the weighted proportion of those observations, 

which underlie quantile curve, is close to 𝜏 . Similarly, the sum of the weights on  𝑦𝑖 > 𝑥𝑖
𝑇�̂� , as a 

proportion of the sum of all the weights, is close to 1 − 𝜏. 

In (1), we must deal with the important α selection problem, as the quality of the linear 

estimates depends sensitively on the choice of it. A convenient and effective method is that we 

can use goodness of fit, proposed by Koenker and Machado(1999). Consider the quantile 

regression model 

𝑄𝑇(𝑦𝑖 , 𝑥𝑖) = 𝑥𝑖
𝑇𝛽 

which we can partition as 

𝑄𝑇(𝑦𝑖 , 𝑥𝑖) = 𝑥𝑖1
𝑇 𝛽1 + 𝑥𝑖2

𝑇 𝛽2 

 

and let �̂�(τ, α) = min
𝛽𝜖𝑅𝑝

∑ ||𝑥𝑖||𝑛
𝑖=1

α
𝜌𝜏  (𝑦𝑖 − 𝑥𝑖

𝑇𝛽 ), �̃�|(𝜏, 𝛼)  = min
𝛽𝜖𝑅𝑝−𝑞

∑ ||𝑥𝑖||𝑛
𝑖=1

α
𝜌𝜏 

(𝑦𝑖 − 𝑥1𝑖
𝑇 𝛽1) , so the goodness of fit is   

𝑅1(𝜏, 𝛼) = 1 −
�̂�(𝜏, 𝛼)

�̃�(𝜏, 𝛼)
 

Conventionally, 𝑥𝑖1 including only an ”intercept” parameter (𝑥𝑖1=1) yields the𝑅1 usually 

reported.  𝑅1(𝜏, 𝛼) measures the relative success of the corresponding quantile regression 
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models at a specific quantile with reference to an appropriately weighted sum of absolute 

residuals, which can assess goodness of fit for quantile regression models. 𝑅1(𝜏, 𝛼) lies 

between 0 and 1.Generally speaking, it’s better to have a larger 𝑅1(𝜏, 𝛼). The optimal α can be 

selected by maximizing 𝑅1(𝜏, 𝛼), that is 𝛼opt(𝜏) = 𝑎𝑟𝑔 max𝑎𝑅1(𝜏, 𝛼) 

 

3. Data 

Geomagentic Indices depicts the overall intensity of geomagenitic disturbance in a time slot 

or the index of certain geomagenitic disturbance, such as frequently-used indexes of K, Kp, ap 

and so on, of which the index K is employed to describe geomagenitic disturbance intensity of 

a single geomagnetic observatory in a time slot of three hours, which means that index K could 

only describe the geomagentic activity in certain district, not the globe. In order to present the 

geomagentic activity intensity of the globe, it needs a new index Kp by standardizing and then 

averaging 12 geomagnetic observatories from global Geomagnetic station network. Because of 

the nonlinear relationship between Kp and geomagenitic disturbance, it is transformed into 

linear relationship to get the index Kp. The size of a geomagnetic storm is classified as 

moderate, intense and super-storm according to the size of Geomagentic Indices. Generally 

speaking, the higher of the geomagentic storm intensity, the larger of GIC caused by 

geomagentic storm, which demonstrates the close relation between GIC and Geomagentic 

Indices. 

As for the evaluation of GIC, there are basically two models: physical model and statistical 

model, of which the later one is the focus of this article. Trichtchenko and Boteler(2004) from 

Canada with others has established class linear regression of GIC using ap. He and 

Ma(2011)used quantile regression. This article tries to improve the quantile regression and 

make advantage of power weighted quantile regression. Data sources: the data of GIC is based 

on the monitoring of Guangzhou lingao nuclear power plant when geomagnetic storm took 

place in 2004 to 2005, and the data of ap come from Center for Space Environment Research 

and Forecast. 

 

3.1 Comparing quantile regression and power weighted quantile regression 

As for GIC and ap, we need to establish unitary quantile regression model and unitary 

power weighted quantile regression model respectively. What’s more, we also need to give the 

regression coefficient when the quantile is0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,0.95 respect-

ively. According to goodness of fit, the corresponding selection of α is 0.0,-0.4,-0.1,-2.6,-0.4,-

0.4,-0.9,-0.4,-0.9,-1.4, 0.0. 

From the table 1, the goodness of fit of PWQR is larger than QR except α = 0. The all the 

coefficient given by PWQR is remarkable at the level of 0.01, with only part of the coefficient 

given by QR is remarkable at the level of 0.01. When tau equals to 0.3, 0.4, 0.5, 0.6 

respectively, the significance of QR fails the test, which means that it is not notable, while 

PWQR is all very notable. Except for the value of PWQR and QR are the same, the fact that the 
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coefficient before ap of PWQR are all smaller than those of QR and constant term of PWQR 

are all bigger than those of QR. From the aspect of the significance of regression coefficient and 

goodness of fit, it is easy to judge that the PWQR model is superior to the quantile regression 

model. 

 

3.2  Assessing GIC by PWQR 

From the above section, we know the coefficient when tau=0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95 

respectively. As follows: 

𝑄0.05(𝐺𝐼𝐶|𝑎𝑝) = 0.546 +  0.015𝑎𝑝  

𝑄0.1(𝐺𝐼𝐶|𝑎𝑝) = 0.573 +  0.018𝑎𝑝  

𝑄0.3(𝐺𝐼𝐶|𝑎𝑝) = 0.946 +  0.029𝑎𝑝  

𝑄0.5(𝐺𝐼𝐶|𝑎𝑝) = 1.006 +  0.048𝑎𝑝  

𝑄0.7(𝐺𝐼𝐶|𝑎𝑝) = 1.459 +  0.080𝑎𝑝  

𝑄0.9(𝐺𝐼𝐶|𝑎𝑝) = 5.703 +  0.144𝑎𝑝  

𝑄0.95(𝐺𝐼𝐶|𝑎𝑝) = 6.942 +  0.210𝑎𝑝 
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Table 1: Rregression coefficient of PWQR and QR. 

 
 

By the expressions, we could see that regression constant given by power weighted quantile 

and the coefficient of ap are inclined to increase with the increase of tau, of which tau=0.05 

represents the low tail distribution of GIC, tau=0.3 represents mid low tail distribution, tau=0.5 

represents middle information of GIC, tau=0.7 represents mid high tail information and tau=0.9 

or 0.95 represents the high tail information. So by the analysis, we could find that PWQR is 

able to depict the overall information of GIC.  

In Figure 1, from the bottom to the top, these straight lines represents regression lines when 

quantiles are 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.95 respectively. Furthermore, with the growing of ap, 

GIC tends to go up, and when ap < 110, GIC is densely distributed in the low position, with a 

few in higher position. At this point, we could use different quantile to fit the value of GIC, of 

which for certain ap, we could get different GIC fitted value of different tau, rendering the 

value given by quantile regression being able to reflect the overall information of GIC. For 

example,  
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Figure 1: Fitted lines of PWQR 

 

when ap=179, the actual value are 3.172, 3.755, 8.966, 11.282 or 44.566. The fitted value of 

different tau in the models is as following: For the actual value, we could find the fitted value of 

tau by quantile regression, such as GIC=3.75, tau=0.1 is used to fit. In practice, our concern is 

those GIC that could pose damage to electric grid, in other words, the high tail information of 

GIC distribution; or the middle level of GIC, and that is to say the PWQR when tau=0.5 

 

Table 2: Fitted values of different quantile 

 
 

According to PWQR, we get the fitted value of high tail and middle GIC when ap > 111 

(table 3). What we should highlight is that we could not only get the fitted value of GIC and 

also its probability by PWQR. For example, when ap=179, we are convinced that the 

probability of GIC that is no less than 9.57 is 50% and of GIC that is no less than15.762, 

31.476 and 44.566 is 80% ,90% and 95% respectively. This is very important for the prediction 

of geomagnetic storm. In order to predict a geomagnetic storm and ap, we could find the 

probability of GIC that is no less than certain value from the table 3, thus helping us to avoid 

economic losses caused by underestimation or overestimation of GIC. 
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Table 3: Fitted values of different quantile 

 

4. Conclusions 

This article is trying to put forward a new method of power weighted quantile regression 

(PWRQ), especially when there are a lot of knots in statistics, PWQR is proved to be superior 

to EWQR. This article proves that all the weighting of those whose actual value is less than its 

estimated value by PWQR and all the weighting proportion are very close to the corresponding 

𝜏; that all the weighting of those whose actual value is more than its estimated value by PWQR 

and all the weighting proportion are very close to the corresponding 1 − 𝜏. In this article, it also 

gives examples to testify the superiority of power weighted quantile regression to quantile 

regression. In the end, by power weighted quantile regression, we could get GIC value (which 

has little difference with actual value), and predict the probability of GIC in a certain range, 

reducing unnecessary losses.  
 

Appendix: Proof of Theorem 1 

Proof of Theorem 1: The EWQR objective function 𝑅(𝛽) is 

                              𝑅(𝛽) = min
𝛽𝜖𝑅𝑝

∑||𝑥𝑖||
𝛼

𝜌𝜏(𝑦𝑖 − 𝑥𝑖
𝑇𝛽)

𝑛

𝑖=1

 

= min
𝛽𝜖𝑅𝑝

∑||𝑥𝑖||
𝛼

𝜌𝜏(𝑦𝑖 − 𝑥𝑖
𝑇𝛽)

𝑛

𝑖=1

(𝜏 − 𝐼(𝑦𝑖 < 𝑥𝑖
𝑇𝛽)) 

The function is piecewise linear continuous function, which is not differentiable at the point 

𝑦𝑖  =  𝑥𝑖
𝑇𝛽. But there exists directional derivatives at all the points. In order to compute the 

minimum of 𝑅(𝛽), we consider its directional derivatives. The directional derivative of the 

objective function in direction w is given by 
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      ∇𝑅(𝛽, 𝑤) =
𝑑

𝑑𝑠
𝑅(𝛽 + 𝑠𝑤)|𝑠=0 

=
𝑑

𝑑𝑠
∑||𝑥𝑖||

𝛼
𝑛

𝑖=1

(𝑦𝑖 − 𝑥𝑖
𝑇𝛽 − 𝑥𝑖

𝑇𝑠𝑤)[𝜏 − 𝐼(𝑦𝑖 < 𝑥𝑖
𝑇𝛽 + 𝑥𝑖

𝑇𝑠𝑤)]|𝑠=0 

                         = − ∑||𝑥𝑖||
𝛼

𝑛

𝑖=1

ψτ(𝑦𝑖 − 𝑥𝑖
𝑇𝛽, −𝑥𝑖

𝑇𝑤)𝑥𝑖
𝑇𝑤 

where 

ψ𝜏(𝑢, 𝑣) = {
𝜏 − 𝐼(𝑢 < 0) 𝑖𝑓 𝑢 ≠ 0

𝜏 − 𝐼(𝑢 < 0) 𝑖𝑓 𝑢 = 0
 

 

The parameter vector �̂� minimizes of R(𝛽) if and only if ∇R(𝛽,w) ≥ 0 for ∀ w. 

𝑅(�̂�, 𝑤) = − ∑||𝑥𝑖||
𝛼

𝑛

𝑖=1

ψτ(𝑦𝑖 − 𝑥𝑖
𝑇𝛽, −𝑥𝑖

𝑇𝑤)𝑥𝑖
𝑇𝑤 

Because X includes an intercept term, there exists a vector γ ∈  𝑅𝑝 such that 𝑥𝑖
𝑇𝛾 = 1, 𝑖 =

 1, 2, … , 𝑛. If we let = −𝛾 in expression (4), we get 

∑||𝑥𝑖||
𝛼

ψτ(𝑦𝑖 − 𝑥𝑖
𝑇�̂�, 1) ≥ 0

𝑛

𝑖=1

 

That is  

𝜏 ∑||𝑥𝑖||
𝛼

𝐼(𝑦𝑖 > 𝑥𝑖
𝑇�̂�) + (𝜏 − 1)

𝑛

𝑖=1

∑||𝑥𝑖||
𝛼

𝐼(𝑦𝑖 < 𝑥𝑖
𝑇�̂�) + 𝜏 ∑||𝑥𝑖||

𝛼
𝐼(𝑦𝑖 = 𝑥𝑖

𝑇�̂�)

𝑛

𝑖=1

𝑛

𝑖=1

≥ 0 (5) 

 

The inequalities of expressions (5) can be rewritten as the inequalities of expression: 

              𝜏[∑||𝑥𝑖||
𝛼

𝐼(𝑦𝑖 > 𝑥𝑖
𝑇�̂�) +

𝑛

𝑖=1

∑||𝑥𝑖||
𝛼

𝐼(𝑦𝑖 < 𝑥𝑖
𝑇�̂�) 

𝑛

𝑖=1

     

+ ∑||𝑥𝑖||
𝛼

𝐼(𝑦𝑖 = 𝑥𝑖
𝑇�̂�)] ≥ ∑||𝑥𝑖||

𝛼
𝐼(𝑦𝑖 < 𝑥𝑖

𝑇�̂�)

𝑛

𝑖=1

𝑛

𝑖=1

             (6) 

Form (6) 

𝜏 ∑||𝑥𝑖||
𝛼

≥ ∑||𝑥𝑖||
𝛼

𝑛

𝑖=1

𝐼(𝑦𝑖 < 𝑥𝑖
𝑇�̂�)

𝑛

𝑖=1

 

Thereby 

∑ ||𝑥𝑖||
𝛼𝑛

𝑖=1 𝐼(𝑦𝑖 < 𝑥𝑖
𝑇�̂�)

∑ ||𝑥𝑖||
𝛼𝑛

𝑖=1

≤ 𝜏 
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So the left of (2) has proved. 

Both sides subtracting 

− ∑||𝑥𝑖||
𝛼

𝑛

𝑖=1

𝐼(𝑦𝑖 > 𝑥𝑖
𝑇�̂�) − ∑||𝑥𝑖||

𝛼
𝑛

𝑖=1

𝐼(𝑦𝑖 = 𝑥𝑖
𝑇�̂�) 

into (5),we obtain 

1 − τ ≤
∑ ||𝑥𝑖||

𝛼𝑛
𝑖=1 𝐼(𝑦𝑖 > 𝑥𝑖

𝑇�̂�) + ∑ ||𝑥𝑖||
𝛼𝑛

𝑖=1 𝐼(𝑦𝑖 = 𝑥𝑖
𝑇�̂�)

∑ ||𝑥𝑖||
𝛼𝑛

𝑖=1

 

So the right of (3) has proved. 

In a similar way, we can let w = γ (so than 𝑥𝑖
𝑇 𝑤 =  1), the right of (2) and the left of (3) 

are proved 
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