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Abstract: In compositional data, an observation is a vector with non-negative 

components which sum to a constant, typically 1. Data of this type arise in many 

areas, such as geology, archaeology, biology, economics and political science 

among others. The goal of this paper is to extend the taxicab metric and a newly 

suggested metric for com-positional data by employing a power transformation. 

Both metrics are to be used in the k-nearest neighbours algorithm regardless of the 

presence of zeros. Examples with real data are exhibited. 
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1. Introduction 

Compositional data are non-negative multivariate data and each vector sums to the same 

constant, usually 1 for convenience. Compositional data are met in many disciplines, including 

geology (Aitchison, 1982), economics (Fry, Fry and McLaren, 2000), archaeology (Baxter et al., 

2005) and political sciences (Rodrigues Lima, 2009). Their sample space is called simplex Sd 

and in mathematical terms is 

 

where D denotes the number of components and d = D − 1.  

Ever since Aitchison (1982) suggested the use of the log-ratio transformation for 

compositional data, most of the analyses of such data have been implemented using this 

transformation. Aitchison (2003) implemented linear discriminant analysis for 

compositional data using the log-ratio transformation. Over the years though, 

researchers have suggested alternative ways for supervised classification of 

compositional data, see for example Gallo (2010) and Neocleous, Aitken and Zadora 

(2011).  
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An important issue in compositional data is the presence of zeros, which cause 

problems for the logarithmic transformation. The issue of zero values in some 

components is not addressed in most papers, but see Neocleous et al. (2011) for an 

example of discrimination in the presence of zeros. Alternatively, one could use 

alternative models (see for example Scealy and Welsh, 2011a and Stewart and Field, 

2011) or replace the zero values by making parametric assumptions (Martin-Fernandez 

et al. (2012)). 

In this paper we suggest the use of a recently developed metric, for classification of 

compositional data, when the k-nearest neighbours (k-NN) algorithm is implemented. It 

is a metric for probability distributions (Endres Schindelin, 2003 and Osterreicher 

Vajda, 2003) which can be adopted to compositional data as well, since each vector 

sums to 1. The second metric we suggest is the taxicab metric, a scaled version of 

which has already been used for compositional data analysis (Miller, 2002). We will 

extend both of these metrics by applying a power transformation. We will see that both 

of these metrics handle zeros naturally and hence they can be used regardless of them 

being present in some components. This is a very attractive feature of these metrics in 

contrast to the Aitchisonian metric suggested by Aitchison (2003) which is not 

applicable when zeros are present in the data. Examples using real data are used to 

illustrate the performance of these metrics.  

Section 2 describes the two metrics, how they can be extended and also presents 

graphically their loci of points equidistant from the centre of the simplex. Section 3 

shows the k-NN algorithm for compositional data and Section 4 contains examples 

using real data. Finally, section 5 concludes this paper. 

 

2. Metrics for compositional data  

We will present three metrics for compositional data, two of which have already 

been examined. But first we will show the power transformation. Aitchison (2003) 

defined the power transformation to be 

 

The value of α will be determined by the estimated accuracy of the k-NN algorithm. 

 

2.1 The ES-OVα metric for compositional data  

We advocate that as a measure of the distance between two compositions we can use 

the square root of the Jensen-Shannon divergence 



 
 Michail Tsagris                                                                 521 

 

 
where x, w ∈ Sd 

Endres Schindelin (2003) and Osterreicher Vajda (2003) proved, independently, that 

(2) satisfies the triangular identity and thus it is a metric. For this reason we will refer to 

it as the ES-OV metric. 

We will use the power transformation (1) to define a more general metric termed ES-

OV𝛼 metric 

 
 

2.2 The taxicabα metric for compositional data 

The taxicab metric is also known as L1 (or Manhattan) metric and is defined as 

 
We will again employ the power transformation (1) to define a more general metric 

which we will term the TCα metric 

 
 

2.3 The Aitchisonian metric for compositional data  

Aitchison (2003) suggested the Euclidean metric applied to the log-ratio transformed 

data as a measure of distance between compositions 

 

where 𝑔(z) = ∏ 𝑍𝑖
1/𝐷𝐷

𝑖=1  stands for the geometric mean. 

 

2.4 Some comments 

The power transformed compositional vectors still sum to 1 and thus the ES-OVα (3) 

is still a metric. It becomes clear that when α =1 we end up with the ES-OV metric (2). If 

on the other hand α = 0, then the distance is zero, since the compositional vectors 
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become equal to the centre of the simplex. An advantage of the ES-OVα metric (3) over 

the Aitchisonian metric (6) is that the first one is defined even when zero values are 

present. In this case the Aitchisonian metric (6) becomes degenerate and thus cannot be 

used. We have to note that we need to scale the data so that they sum to 1 in the case of 

the ES-OV metric, but this is not a requirement of the taxicab metric.  

Alternative metrics could be used as well, such as 

1. the Hellinger metric (Owen, 2001) 

 
2. or the angular metric if we treat compositional data as directional data (for 

more information about this approach see Stephens (1982) and Scealy and 

Welsh (2011b, 2012)) 

        
Aitchison (1992) argued that a simplicial metric should satisfy certain properties. 

These properties include 

1. Scale invariance. The requirement here is that the measure used to define the 

distance between two compositional data vectors should be scale invariant, in 

the sense that it makes no difference whether the compositions are represented 

by proportions or percentages.  

2. Subcompositional dominance. To explain this we consider two compositional 

data vectors and we select sub-vectors from each consisting of the same 

components. Subcompositional dominance means that the distance between the 

sub-vectors is always less than or equal to the distance between the original 

compositional vectors.  

3. Perturbation invariance. The requirement here is that the distance between 

compositional vectors x and w should be the same as distance between x ⊕0 p 

and w ⊕0 p, where the operator ⊕0 means element-wise multiplication and 

then division by the sum so that the resulting vectors belong to Sd and p is any 

vector (not necessarily compositional) with positive components. 

If all of the above metrics satisfy or not these thee properties should not be a 

problem. Take for example subcompositional dominance. If someone has a 

compositional dataset, there has to be a good reason why he would choose to discard 

some components and form a sub-composition. And even if he does, all the metrics are 

still applicable.  

The message this paper tries to convey is that if someone uses a well defined metric 

(or even a dissimilarity measure) in order to perform classification he should be fine with 

that. When dealing with data lying on the Euclidean space, one can use dissimilarity 
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measures as well to perform clustering or discrimination. The question of interest is how 

can we discriminate the observed groups of points as adequately as possible. 

 

2.5 Loci of points equidistant from the centre of the simplex 

Figure 1 shows the effect of the power transformation (1) on the data. As expected, 

the data come closer to the barycentre of the triangle as α tends to zero. The data used 

and plotted on Figure 1 are the Arctic lake data (Aitchison, 2003). Figures 2 and 3 show 

the plots of loci of points of the ES-OVα metric (3) and of the TCα metric (5) for different 

values of α and Figure 4 shows the contour plots of the Aitchisonian metric (6). In all 

cases, the plots of loci of points refer to the distance from the barycentre of the simplex. 

The loci of points seen on Figure 2 have similar shape regardless of the value of α. This 

is not true for the loci in Figure 3, which change as the value of α changes. 

 

3.   Supervised classification for compositional data using the k-NN algorithm 

The goal of this paper is to perform supervised classification of compositional data using 

the k-NN algorithm. For this reason we will use the ES-OVα (3) and TCα (5) metrics and 

compare their performance and suit-ability with the Aitchisonian metric metric (6). 
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Figure 1: Ternary plots of the Arctic lake data (Aitchison, 2003) for different values of α. The data are 

transformed calculated using (a) α = −1, (b) α = −0.5, (c) α = −0.1, (d) α =0.1, (e) α =0.5 and (f) α = 1. 

The k-NN algorithm is a non-parametric supervised learning technique which is 

computationally heavier than quadratic and linear discriminant analysis but easier to implement 

as it relies solely on metrics between points.  

Similarly to other supervised classification techniques it requires some parameter tuning. 

The two parameters associated with it in our case are the power parameter α and the number of 

nearest neighbours k. We describe the steps of the k-NN for compositional data in our case.  

 

1. Separate the data into the training and the test dataset.  

2. Choose a value of k, the number of nearest neighbours.  

3. Classify the test data using either the ES-OVα (3), the TCα (5) for a range of values of 

α and each time calculate the percentage of correct classification.  

4. Repeat steps 2 − 3 for a different value of k. 

 
 

Figure 2: Loci of points equidistant from the centre of the simplex using the ESOVα metric (3). In all 

cases the distances are from the barycentre of the simplex (1/3, 1/3, 1/3). The contours are calculated 

using (a) α = −1, (b) α = −0.5, (c) α = −0.1, (d) α =0.1, (e) α =0.5 and (f) α = 1. 
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5. Repeat steps 1 − 4 B (in our case B = 200) times and for each α and k and estimate the 

percentage of correct classification by averaging over all B times.  

We can of course use the Aitchisonian metric (6) instead of the ES-OVα (3) or the TCα 

metric (5). In this case we have to choose the number of nearest neighbours only, since no 

power transformation is involved. We could of course use any other metric defined in Rd . In 

this case we would have to apply the additive log-ratio transformation (Aitchison, 2003) to the 

data. The issue in that case though would be the presence of zeros in the data.  

In the next section we will see two examples using real data and see the performance of the 

algorithm when each of the two metrics is used. 

 

3.1 Examples using real data 

 
Figure 3: Loci of points equidistant from the centre of the simplex using the TCα metric (5). In all cases 

the distances are from the barycentre of the simplex (1/3, 1/3, 1/3). The contours are calculated using (a) 

α = −1, (b) α = −0.5, (c) α = −0.1, (d) α =0.1, (e) α =0.5 and (f) α = 1. 
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Figure 4: Loci of points equidistant from the centre of the simplex using the Aitchisonian metric (6). 

 

We will now see the performance of the k-NN algorithm using the ES¬OVα metric (3), the 

TCα metric and the Aitchisonian metric (6) with real data. 

 

3.1.1 Example 1. Hydrochemical data with no zero values 

The first dataset comes from hydrochemistry. A hydrochemical data set (Otero, Tolosana-

Delgado, Soler, Pawlowsky-Glahn, 2005) contains measurements on 14 elements. The data 

were gathered within a period of 2 years from 31 stations located along the rivers and main 

tributaries of the Llobregat river, one of the medium rivers in northeastern Spain. Each of these 

elements is measured approximately once each month during these 2 years. There are 4 

tributaries of interest, Anoia (143 measurements), Car-dener (95 measurements), Upper 

Llobregat (135 measurements) and Lower Llobregat (112 measurements). Thus, there are 485 

across all 4 tributaries.  

This dataset contains no zero values, so all three metrics are applicable. The size of the 

training sample was equal to 434 and thus the test sample consisted of 51 observations, which 

were sampled using stratified random sampling each time to ensure that observations from all 

tributaries are selected every time. Figure 5 shows the heat plot of the estimated percentage for 

different values of k and α.  

If α =0.5 and k = 2 the estimated percentage percentage of correct classification is equal to 

92.78% and when α = 1 and k = 3 the estimated percentage is 89.88% when the ES-OVα metric 

(3) was applied. When the TCα metric (5) is applied the results are similar, with α =0.35 and k 

=2 the estimated percentage of correct classification is 93.77% and when α =1 and k = 2, the 

estimated percentage of correct classification is 86.55%. This is an example where a value of α 

other than 1 leads to better results. The change in the percentage might seem small, but if we 

take into account the total sample size, we will see that the 3% of 485 observations is 14 

observations and it is not a small number. The Aitchisonian metric on the other hand did not do 

that well. The maximum estimated percentage was equal to 85.46% when k = 2.  
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More information (including the specificities and sensitivities for each tributary averaged 

over all 200 replications) regarding the classification results is presented in Table 1 below. A 

general conclusion about the mean sensitivities and specificities is that the lower sensitivities 

are observed when the estimated percentage of correct classification is lower and they have also 

larger standard errors. The mean specificities on the other hand are in general high and are less 

affected by the estimated percentage of correct classification. 

 

Figure 5: The estimated percentage of correct classification for the hydro-chemical data as a function of k, 

the nearest neighbours and of α using the (a) ES-OVα metric (3) and (b) TCα (5) 

 

 
 

Figure 6: The estimated percentage of correct classification as a function of k. The black and the red lines 

are based on the ES-OVα metric (3) with α =0.5 and α = 1 respectively. The green and the blue lines are 
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based on the TCα metric (5) with α =0.35 and α = 1 respectively. The turquoise line is the Aitchisonian 

metric (6). 

 

 

 

 

Table 1: Classification results for the hydrochemical data. The number inside the parentheses indicates 

the standard error of the percentages. 

 

In addition we calculated the ROC curves for each of the three metrics. In order to do this 

we performed a 1-fold cross validation. That is, we removed an observation and then using the 

parameters α and k which are given in Table 1 (since they produced the best results) we 

classified it. This procedure was repeated for all observations. Thus, we ended up with the 

predicted membership values for all observations based on the 3 metrics. This allowed us to 

draw the ROC curves for each tributary when all 3 metrics were used. The results are presented 

in Figure 7. 
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We can see that for all tributaries the ROC curves of the ES-OVα metric (3) and the TCα 

metric (5) are similar, whereas the ROC curve of the Aitchisonian metric (6) is always the 

lowest. 

 

 

Figure 7: ROC curves for all tributaries using the three metrics For ES-OVα we used α =0.35 and k = 2 

and for TCα we used α =0.5 and k = 2. For Each plot corresponds to one of the four tributaries (a) Anoia, 

(b) Cardener,(c) Upper Llobregat and (d) Upper Llobregat. 

 

3.1.2 Example 2. Forensic glass data with zero values 
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In the second example we will use the forensic glass dataset which has 214 observations 

from 6 different categories of glass with 8 chemical elements, in percentage form. The 

categories which occur are containers (13 observations), vehicle headlamps (29 observations), 

tableware (9 observations), vehicle window glass (17 observations), window float glass (70 

observations) and window non-float glass (76 observations). This dataset contains a large 

number of zeros as well, thus excluding LRA from being applied here. The data are available 

from the UC Irvine Machine Learning Repository.  

An interesting feature of this dataset is that it contains many zero values. This means that 

the Aitchisonian metric (6) is not to be used. The ES-OVα and the TCα metrics on the other 

hand are not affected by the presence of zeros, since 0 log 0 = 0. In this example the sample size 

of the test data was equal to 30, hence we used 184 compositional vectors to train the k-NN 

algorithm. Again, the test data were chosen via stratified random sampling to avoid having 

categories not been selected in the test sample. Figure 8 shows the estimated percentage as a 

function of k and α using both metrics.  

 

Figure 8: The estimated percentage of correct classification for the forensic glass data as a function of k, 

the nearest neighbours and of α using the (a) ES-OVα metric (3) and (b) TCα (5). 

This is a simpler case to draw conclusions, since the best results are obtained when α = 1 

and k = 2 for both metrics, thus the ES-OV (2) and the TC (4) metrics should be used, with the 

estimated percentage of correct classification being 71.45% and 73.35% respectively. Table 2 

presents analytical information of the classification results. Estimates of the sensitivities and of 

the specificities for each category of glass are also given. 

The mean sensitivities of ES-OVα metric (3) for Tableware and Vehicle window are low 

and the same is true for the Vehicle window when TCα (5) is used. We observed that many 

times, Tableware and Vehicle window were being wrongly classified as Vehicle float. A 

possible reason for this could be the small sample size of Tableware (this type of glass had the 
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minimum number of observations). A chemist or a forensic scientist could perhaps give a 

possible answer to this (if that is the case of these types of glass being of similar structure). 

 

 

Table 2: Classification results for the forensic glass data. The number inside the parentheses indicates the 

standard error of the percentages. 

 

The ROC curves for each glass category (based on 1-fold cross validation) using both 

metrics are presented in Figure 9. We cannot say that one metric does better than the other 

always. For some glass categories, the two ROC curves are similar and for some others one 

seems a bit better than the other. 
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Figure 9: ROC curves for all tributaries using the three metrics In all cases α = 1 and k = 3 were used in 

both metrics. Each plot corresponds to one of the six glass categories (a) containers, (b) vehicle 

headlamps, (c) tableware, (d) vehicle window glass, (e) window float glass and (f) window non-float 

glass. 

 

4.   Conclusions 

We suggested the use of a recently developed metric (2), for supervised classification when 

the k-NN algorithm is implemented. We also added a free parameter to the metric with the 

intention of improving the classification results. This free parameter was used to generalize the 

taxicab metric as well. The examples showed that both the ES-OVα (3) and the taxicabα (5) 

metric can be used for supervised clustering of compositional data, but can also be used in other 

scenarios as well.  

An advantage of both metrics over the Aitchisonian metric (6) is that they handle zeros 

naturally. This implies that no zero value replacement is necessary either parametrically 

(Martin-Fernandez et al. (2012)) or non parametrically (Aitchison, 2003). In order to appreciate 

the importance of this advantage one can think of large datasets with many zeros.   

The two metrics outbalanced the Aitchisonian metric (6) in the examples presented in this 

manuscript. When it comes to comparing the ES-OVα (3) and the taxicabα (5) metric between 

them we cannot say one is better than the other.  
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A closer examination of the ROC curves revealed valuable information, especially for the 

FGL data example (where zeros are present) regarding the classification abilities of the ES-OVα 

(3) and the taxicabα (5) metric. The sensitivities and specificities revealed interesting patterns 

of the mis-classification rates not captured by the percentage of correct classification. In 

addition, the ROC curves provided graphical evidence as for the ability of each metric to 

classify the observations.  
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