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Abstract: Many nations’ defence departments use capabilitybased planning to 

guide their investment and divestment decisions.  This planning process involves 

a variety of data that in its raw form is difficult for decisionmakers to use.  In 

this paper we describe how dimensionality reduction and partition clustering are 

used in the Canadian Armed Forces to create visualizations that convey how 

important military capabilities are in planning scenarios and how much capacity 

the planned force structure has to provide the capabilities.  Together, these 

visualizations give decisionmakers an overview of which capabilities may 

require investment or may be candidates for divestment. 
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1. Introduction 

Prior to the end of the Cold War, many defence departments based their strategic planning 

process on the threat–based planning paradigm (NATO Re-search and Technology 

Organization, 2003). This paradigm is generally equipment– centric and tends to create 

capabilities designed for operations in a single environment. In recent years this approach has 

been deemed inadequate for several reasons, such as an increase in the diversity of 

environments in which militaries operate1 (e.g., combat, humanitarian, counter–terrorism). As a 

result, many defence departments have migrated to the Capability-Based Planning (CBP) 

paradigm, whose focus is not only on equipment but also on personnel, research & 

development, infrastructure, training, etc. In contrast to threat–based planning, CBP tends to 

create capabilities that are: a system–of–systems; suitable to a wide range of environments 

rather than a single environment; and robust under uncertain conditions (Davis, 2002, Joint 

Systems and Analysis Group Technical Panel 3, 2005). 

                                                           
 Corresponding author. 

1 See examples in recent defence white papers by the Commonwealth of Australia (2013), the Government 

of Canada (2008), and the New Zealand Government (2010). 
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A component of CBP that has received much attention is how to communicate to decision–

makers the capabilities’ importance and the planned force structure’s capacity to provide the 

capabilities. Christopher et al. (2009) used a weighted average approach to aggregate capability 

assessments from multiple scenarios and then ranked the aggregate assessments to determine 

the most important capabilities. Hristov et al. (2010) used the Analytical Hierarchy Process 

(Saaty, 2001) to determine each capability’s importance and the gap between the planned force 

structure’s capacity and the required capacity. The output was a list of capabilities that required 

investment, prioritized by their importance. Rempel (2012) proposed using dimensionality 

reduction (Salkind, 2007a, Skillicorn, 2007) and partition clustering (Jain et al., 1999, Salkind, 

2007a) to visualize the importance of capabilities and show those that are required in all or only 

a few planning scenarios. Lastly, Pelletier (2013) investigated using the tau-x consensus 

ranking method (Emond and Mason, 2002) to create a ranked list of capabilities by importance. 

In this collection of work two themes are evident: first, the majority of these approaches 

focus on the importance of capabilities rather than the planned force structure’s capacity; and 

second, the approaches can be classified as either ranking or visualization. The visualization 

approach is attractive for two reasons: first, our brains understand graphics easier than words or 

numbers; and second, graphics are better at communicating multidimensional data (Economist, 

2010).  

In this paper we describe how the visualization approach is used in the CAF current CBP 

system. Similar to Rempel (2012), we use dimensionality reduction and partition clustering to 

visualize the importance of capabilities, however we extend this approach by using these 

methods to visualize the planned force structure’s capacity and apply algorithms to select which 

dimensions and how many clusters to use in the visualizations. The result is two types of 

visualizations: first, a type that shows the importance of capabilities and groups those with 

similar importance; and second, a type that shows the capabilities’ planned capacity and groups 

those with similar planned capacity. Together, these visualizations give decision–makers an 

overview of which capabilities may require investment or may be candidates for divestment.  

The remainder of this paper is organized as follows: Section 2 describes how the 

importance of capabilities and the planned force structure’s capacity to provide them are 

assessed in the CAF current CBP process; Section 3 presents a description of the 

dimensionality reduction and partition clustering techniques used; Section 4 discusses an 

example application; and Section 5 presents a conclusion. 

 

2. Capability and Force Structure Assessment 

The assessment of the capabilities’ importance and planned force structure’s 

capacity requires four components: a set of planning scenarios, a set of capabilities, a 

planned force structure, and an assessment method. We now briefly present how each of 

these is constructed in the CAF CBP system.  

The planning scenarios are instantiations of the six missions described in the Canada 

First Defence Strategy (Government of Canada, 2008). Each planning scenario uses 
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Canada’s foreign policy, defence policy, and the future security environment (Chief of 

Force Development, 2009) to help specify its details (i.e., location, state and non–state 

actors, timeline, etc.). The planning scenarios are assumed to be valid for 30 years.  

Each capability to be evaluated consists of several components – people, process, 

technology, etc. – and each is defined as ‘a particular ability that contributes to a desired 

effect in a given environment within a specified time period and the sustainment of that 

effect for a designated period’ (Rempel, 2010). It is important to note that a capability 

does not define how something will be done, rather what needs to be done. For example, 

‘Indirect Fire’ is a capability, whereas a fighter aircraft is a component of a force 

structure that can perform indirect fire.  

The planned force structure, which is the existing force structure plus all planned 

changes over the next 30 years, is separated into two sets: one that includes all changes 

within the 5–15 year horizon and a second that includes all additional changes within the 

15–30 year horizon. For each scenario in each time horizon a subset of the horizon’s 

planned force structure is identified as available. Only the available subsets are 

considered when the capacity assessments are performed.  

The assessment of the capabilities’ importance and the available force structure’s 

capacity to provide the capabilities is based on qualitative judgements of subject matter 

experts. The importance of each capability in each scenario and time horizon is assessed 

to be in one of four categories: ‘Critical’, ‘Essential’, ‘Routine’, and ‘Not Required’. The 

categories are described in Table 1. Likewise, the capacity of the available force 

structure in each scenario and time horizon to provide each capability is assessed to be in 

one of five categories: ‘Excess’, ‘Matched’, ‘Ad Hoc’, ‘No Capacity’, and ‘Not 

Required’. The categories are described in Table 2. It should be noted that the capacity 

category ‘Not Required’ is only assigned to a capability when the importance category 

‘Not Required’ is assigned to the capability.  

These assessments are compiled into a set of matrices; one set of capability 

importance matrices and one set of capability capacity matrices. Each matrix in each set 

represents data for a single time horizon. 

Table 1: Qualitative capability importance category definitions. 
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Table 2: Qualitative force structure capacity category definitions. 

 

 

3. Methods 

In this section we discuss the dimensionality reduction and partition clustering 

techniques used in this paper. Since the CAF CBP approach uses qualitative assessments 

to measure the capabilities’ importance and planned force structure’s capacity, we use 

Multiple Correspondence Analysis (MCA) to perform the dimensionality reduction. We 

use a variety of partition clustering techniques (k–means, k–medoids, fuzzy clustering) 

and cluster validation techniques (Silhouette Width, Dunn’s Index, Connectivity) to 

suggest a number of clusters. The final number of clusters is based on qualitative 

inspection of the suggested solutions and selection of the most appropriate. 

 

3.1 Multiple Correspondence Analysis 

MCA is a dimensionality reduction technique that is used for categorical data. It 

accomplishes this reduction by identifying factors in the data, which are uncorrelated linear 

combinations of the attributes, that represent as much variation as possible in the data. Using 

this techniques makes it possible to visually assess similarities and differences between 

capabilities and determine whether they can be grouped.  Details of MCA are found in Nenadic 

and Greenacre (2005) and Salkind (2007b).  MCA was applied in this work as follows: 

 

(1) Create an indicator matrix:  Given a capability importance matrix A(m × n) or a capability 

capacity matrix B(m × n), where m is the number of capabilities and n is the number of planning 

scenarios, for a given time horizon with x possible categories for each assessment, an indicator 

matrix Z(m × (n  x)) is created.  The indicator matrix is then scaled as �̂� = τ−1𝑍, where τ is the 

sum of Z. 
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(2) Compute the Singular Value Decomposition: The singular value decomposition is 

computed as:  

                                         
(1)

 
where 𝜙 is a vector of the row sums of �̂�, 𝜔 is a vector of the column sums of �̂�, D𝜙 is 

diag(𝜙), D𝜔 is diag(𝜔), U is m× (n  x), S is a (n  x) × (n  x) diagonal matrix with non-

negative, non-increasing values s1,1 , s2,2 ,…, s(𝑛𝑥),(𝑛𝑥) , and 𝑉𝑇  is ( 𝑛  𝑥 )  ×  ( 𝑛  𝑥 ). The 

capabilities are given by the rows of U, the scenario/assessment category combinations are 

given by the rows of V, and the factors' coefficients are given by the olumns of V. 

 

(3)Compute the variance that is represented by each factor:  Due to the expansion of 

assessment categories in Z to scenario/assessment category combinations, the singular values 

provide a pessimistic estimate of the variation explained in each factor.  The values are adjusted 

and expressed as percentages as follows: 

                                   

  (2)

 
where α ϵ 1,2, … , (𝑛  𝑥)  and J is the total number of scenario/assessment category 

combinations.  The adjusted values are computed for those singular values that satisfy the 

inequality s𝛼,𝛼 ≥ 1/𝑛. 

 

(4) Determine which factors to retain: There are several approaches to determine the factors 

that should be used to visualize the data – scree plot, cumulative percentage of variance, broken 

stick model, Bartlett's test, cross – validation, etc. – although no single method is best.  For a 

review of these methods see Jolliffe (2002).   
In this work we use the broken stick model, due to that it works well in practice, does not 

require distributional assumptions that are unrealistic, and is not computationally intensive.  

The model works as follows: if a stick of unit length is broken at random into Λ segments, then 

the expected length of the gth segment is: 

                                            

   (3)

 
The proportion of variance explained by the gth factor is compared to 𝑙g

∗, and those which 

are greater than 𝑙g
∗ are used to visualize the data. 

 

(5) Interpret the factors: 

Interpreting the retained factors is performed by visually assessing a plot of the 

scenario/assessment category combinations and finding the groups of extreme values.  When 
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two combinations from different planning scenarios are close to each other (e.g., ‘Scenario 

1/Excess’ and ‘Scenario 2/Excess’), capabilities tend to have these assessments together.  When 

two combinations from the same planning scenario are close to each other (e.g., ‘Scenario/1 

Excess’ and ‘Scenario 1/Ad Hoc’), capabilities that have these assessments tend to have similar 

assessments in the remaining scenarios. 

 

3.2 Partition Clustering 

Partition clustering is an approach that is used to group objects with similar attributes.  It 

accomplishes this by measuring the degree of similarity between objects, and based on their 

similarity assigns objects to clusters.  Using this approach makes it possible to summarize the 

similarities and differences between the capabilities. 

In this paper we use three commonly employed partition clustering techniques: k−means, 

k−medoids, and the fuzzy method c−means.  We use multiple methods since this allows 

different solutions to be compared.  Details of the methods are found in Bezdek (1981), Hastie 

et al. (2003), and Theodoridis and Koutroumbas(2006). These techniques have a variety of 

assumptions: the data must be on the same scale; the clusters' shapes are convex, in particular 

hyperspherical; the clusters are well−separated; and the data has no outliers (Jain et al., 1999, 

Halkidi et al., 2001). These assumptions arise from the similarity metrics used in the techniques.  

If these assumptions are not met, these techniques may fail to find the appropriate clustering. 

A summary of how the methods compute their centroids and configuration cost is shown in 

Table 3. In these equations k is the number of clusters, h is the cluster index, K(h) is the set of 

capabilities assigned to cluster h, pi is the coordinates of capability i in the retained factors, 𝑐h 

is the centroid of cluster $h$ in the retained factors, 𝜋(𝑚 × 𝑘)  is a capability − cluster 

membership matrix, and 𝑓 is a fuzzifier where higher values lead to fuzzier sets.  A typical 

value for 𝑓 is 2. 

The capability membershipsare computed as: 

                                      

 
(4)

 
 

Table 3: Partition clustering techniques. 
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Partition clustering methods separate capabilities into a pre−determined number of clusters; 

however, these methods do not identify the number of clusters that best describe the data.  The 

preferred number of clusters may be identified through external, internal, or relative validation 

criteria (Jain et al., 1999, Halkidi et al., 2001).  External criteria assess the validity of a 

clustering solution based on a priori information.  Internal criteria assess the validity of a given 

clustering solution based upon the data itself.  Relative criteria compares two solutions and 

determines their relative merit.  In this work we use internal criteria as the aim is to select a 

cluster solution without a priori information. 

We use three commonly used criteria: Dunn's index, Silhouette Width, and the 

Connectivity metric.  The first and second criterion aggregate the compactness and separation 

of a given cluster solution into a single value.  The third metric measures the connectedness of a 

solution.  The Dunn's index (Dunn, 1974) of a clustering solution with k clusters is given as: 

                                       

(5)

 

where ∆ℎ is the maximum distance between a pair of capabilities in cluster h (compactness), 

and δ𝑝,𝑞 is the minimum distance between a pair of capabilities in clusters p and q (separation). 

The range of values for 𝐷𝑘 is between zero and infinity.  Clustering solutions that consist of 

compact and well separated clusters have high 𝐷𝑘 values. 

                                            

(6)

 

where 𝑑𝑖 is the mean distance of capability i to the remaining capabilities in its assigned 

cluster, 𝑏𝑖 is the minimum mean distance to the remaining clusters in the solution (i.e., compute 

the mean distance to all capabilities in each cluster, and select the minimum).  The denominator 

is a normalization term.  The range of values for 𝑆𝑘 is between -1 and 1, where larger values 

represents solutions that are compact (i.e., low 𝑑𝑖) and well separated (i.e., high 𝑏𝑖). 

The connectivity metric (Handl et al., 2005) of a clustering solution with k clusters is given 

as: 

                                            

(7)

 
where K is a clustering solution, L is the number of nearest neighbours that contribute to the 

metric, 𝑛𝑛𝑖(𝑙) is the lth nearest neighbours of capability i, and 𝑥𝑖, 𝑛𝑛𝑖(𝑙) is zero if i and 𝑛𝑛𝑖(𝑙) 

are in the same cluster and 1/ l otherwise.  The range of values for Conn(K) is between zero and 

infinity, where smaller values represent preferred solutions. 

 

4. Example 
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In this section we present an analysis and visualizations of a data set that describes the 

importance of a military's capabilities and its capacity to provide them.  The data were sampled 

from a real data set − however, the capability and scenario names have been removed and 

replaced by randomly assigned integers.  Although the data are a sample, their characteristics 

are representative of complete data set. 

 

4.1 Data 

The data used in this example are qualitative assessments as described in Section 2.  The 

data consists of importance assessments of 100 capabilities in ten planning scenarios and 

capacity assessments of a planned force structure in a given time horizon. The capabilities are 

labelled 1,…,100 and the scenarios are labelled 1,…,10.  The distribution of the importance and 

capacity assessments in the scenarios are shown in Table 4. 

Table 4: Distribution of capability importance and capacity assessments. 

 
 

4.2 Multiple Correspondence Analysis  

We ran a MCA on the capability importance and capacity data sets separately. Table 5 

shows the adjusted variance and cumulative variance for the first eight factors in each analysis.  

Using the Broken Stick model in equation (3), we determined which factors to retain for further 

analysis. Table 5 shows that the model suggests factors one, two, and three be retained for 

capability importance analysis and factors one through four for the capacity analysis.     

We interpreted the factors using the distribution of the scenario/assessment category 

combinations within them.  The interpretations of the capability importance factors are shown 

in Table 6.  The distribution of the combinations along Factor 1 is such that those with ‘Routine’ 

or ‘Essential’ assessments have low values and those with ‘Not Required’ or ‘Critical’ 

assessments have high values.  This factor is interpreted as ‘Moderate vs Extreme Importance’.  

With regards to Factor 2, combinations with ‘Not Required’ or ‘Routine’ assessments have low 
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values and combinations with ‘Essential’ or ‘Critical’ assessments have high values.  This 

factor is interpreted as ‘Low vs High Importance’.  Lastly, while the Broken Stick model 

indicated that Factor 3 should be retained, we were unable to find a simple interpretation and 

thus did not consider it for further analysis.   

Table 5: Multiple Correspondence Analysis results. 

 
 

Table 6: Capability importance factor description. 

 
The interpretations of the capacity factors are shown in Table 7. The distribution of the 

combinations along Factor 1 is such that those with ‘Not Required’ or ‘No Capacity’ 

assessments have higher values and those with ‘Ad Hoc’ or ‘Matched’ assessments have lower 

values.  This factor is interpreted as ‘High vs Low Utilization’. Regarding Factor 2, those 

combinations with ‘Excess’ assessments have higher values; this factor is interpreted as ‘Low 

vs High Excess Capacity’.  The distribution of combinations in Factor 3 are such that those 

with ‘Matched’ or ‘Excess’ assessments have lower values and those with ‘No Capacity’ have 

higher values; this factor is interpreted as ‘High vs Low Capacity’.  Factor 4 does not have a 

simple interpretation, and is not included in our analysis. 

 

4.3 Partition Clustering 
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Using the results of the MCA, we created four combinations of factors as shown in Table 8: 

one combination of capability importance factors and three combinations of capacity factors.  

We applied the clustering algorithms and validation metrics described in Section 3 to the 

capabilities  

Table 7: Capacity factor descriptions 

 
in each combination of factors.  We set the upper limit on the number of clusters to be 30 

(roughly one third of the number of capabilities),  For each combination of factors and 

validation metric, we selected the clustering algorithm and number of clusters that optimized 

the validation metric.  The results are shown in Table 8. 

 

Table 8: Partition clustering results. 
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The suggested algorithms and number of clusters differs between the validation metrics in 

the capability importance factors.  Inspection of the clusters reveals that two clusters split the 

capabilities into those with an emphasis on moderate importance assessments (i.e., ‘Routine’, 

‘Essential’) and those with an emphasis on extreme importance assessments (i.e., ‘Not 

Required’, ‘Critical’).  As the number of clusters increases, these two clusters are split into finer 

groupings.  Given 24 or more clusters, as suggested by the Dunn’s Index and mean Silhouette 

Width, are likely too many for a decision−maker to comprehend, we selected the 10 clusters 

solution from the k − medoids algorithm to group the capabilities.  This selection is a 

compromise between the suggested solutions. 

The suggested clustering algorithms and number of clusters agreed in each of the capacity 

factor combinations.  As a result, we used these suggested groupings. 

 

4.4 Visualization 

Using the results of the MCA and partition clustering analysis, we created four 

visualizations: Figure 1 shows the importance of capabilities and groups those with similar 

importance; Figure 2 shows the force structure’s capacity and highlights those capabilities with 

excess capacity; Figure 3 shows the force structure’s capacity and highlights those capabilities 

with low capacity; and Figure 4 combines the low and excess capacity measures in a single 

figure.  Each grey circle is a capability, the number to the right is the capability’s number.  

Markers are shown to assist with interpreting the capabilities’ location: 

 

 in Figure 1, is a capability with all ‘Not Required’ assessments;  is a capability 

with all ‘Routine’ assessments;  is a capability with all ‘Essential’ assessments; 

and * is a capability with all ‘Critical’ assessments; and 

 

 in Figure 2 through Figure 4,  is a capability with all ‘Not Required’ assessments; 

 is a capability with all ‘No Capacity’ assessments;  is a capability with all ‘Ad 

Hoc’ assessments; * is a capability with all ‘Matched’ assessments; and  is a 

capability with all ‘Excess’ assessments. 

 

Given the descriptions of the axes and the markers' locations, the visualizations are easily 

interpreted.  For example, in Figure 1 capabilities that are generally not required are in the 

lower right, capabilities that are generally assessed as ‘Routine’ or ‘Essential’ are on the left, 

and capabilities that are generally critical are in the upper right.  Capabilities between these 

regions are mixes of these categories; for example, capabilities midway between the  and  

markers are a 50/50 split between ‘Routine’ and ‘Essential’.  The visualizations in Figure 2 

through Figure 4 are interpreted in a similar manner. 
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Figure 1: Capability importance and capacity visualizations – capability importance. 

Recalling the importance and capacity level definitions in Table 1 and Table 2, four 

characteristics of the capabilities can be extracted from the visualizations: 

 

 Enabling Capabilities:  Capabilities in the left region of Figure 1 are more likely to 

be assessed as ‘Routine’ or ‘Essential’, which are defined as supporting/enabling 

capabilities. Without the capacity to provide these enabling capabilities, critically 

important capabilities may not be able to deliver their outputs; 

 

 Special Purpose Capabilities: Capabilities in the right region of Figure 1 are more 

likely to be assessed as ‘Critical’ or ‘Not Required’, where for the former is defined as 

being critical to mission success.  These capabilities may only be required in a few 

scenarios, and thus can be interpreted as special purpose.  Regardless of their lower 

utilization, these capabilities are vital to achieving success in the planning scenarios; 
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Figure 2: Capability importance and capacity visualizations – excess capacity 

 Low Capacity Capabilities: Capabilities in the upper region of Figure 3 and 4 are 

more likely to be assessed as `No Capacity' or `Ad Hoc'.  These capabilities may be 

require investment to ensure the ability to achieve success in the planning scenarios; 

and 

 

 Excess Capacity Capabilities: Capabilities in the upper region of Figure 2 and the 

right region of Figure 4 are more likely to be assessed as `Excess'.  These capabilities 

may be candidates for divestment. 

 

Suppose a decision--maker is interested in capabilities that may require investment, such as 

Capability 80. Figure 3 shows that this capability has a low capacity and Figure 1 shows that it 

is an enabling capability with relatively high importance (between the ‘Essential’( ) marker 

and the ‘Critical’ (*).  Therefore, this capability may be a good candidate for investment − an 



 

490      Using Visualization to Support Investment & Divestment Decisions in the Canadian Armed Force 

 

enabler with relatively high importance and low capacity.  Likewise, suppose a 

decision−maker is  

 

Figure 3: Capability importance and capacity visualizations – low capacity. 

interested in capabilities that are candidates for divestment, such as Capability 99.  Figure 2 

shows that this capability has relatively high excess capacity and Figure 1 shows that it has a 

low importance. This capability may be a good candidate for divestment − relatively low 

importance and excess capacity.  
When determining if a capability requires investment or is a candidate for divestment, the 

following must be considered: 

 the capability assessments are only valid for the scenarios in the data set; 

 the capability assessments are only valid for the planned force structure and given 

time horizon; and 

 the concept of scenario concurrency is not captured. 
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These are a result of the data collected.  Most importantly, these limit the conclusions that 

can be drawn about investments and divestments.  If a capability is shown to have excess 

capacity,  

 

Figure 4: Capability importance and capacity visualizations – low vs excess capacity. 

this means that it has excess capacity in individual scenarios.  It can not be concluded that the 

capability has excess capacity if multiple scenarios occur concurrently.  This must be verified 

in a follow−on analysis. 

Even with these considerations, there are benefits to using this approach versus the ranking 

approach: (1) it gives decision−makers a simple visualization of the capabilities' importance 

and the planned force structure's capacity; (2) it immediately highlights those capabilities that 

may require investment and those that may be candidates for divestment; and (3) it provides a 

view of those capabilities that are enabling and those that are special purpose. Thus, this 

approach provides decision−makers with insights that supports their investment and divestment 

decisions. 
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5.  Conclusion  

In this paper we described how the CAF use dimensionality reduction and partition 

clustering in their CBP process to create visualizations that show the importance of capabilities 

and the capacity of a planned force structure.  The resulting visualizations allow 

decision−makers to quickly determine those capabilities that may require investment, those 

capabilities that may be candidates for divestment, and separates capabilities into those that are 

enablers and those that are special purpose.  Thus, these visualizations and the insights gained 

directly support decision−makers in their investment and divestment decisions. 
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