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Abstract: In alcohol studies, drinking outcomes such as number of days of any 

alcohol drinking (DAD) over a period of time do not precisely capture the 

differences among subjects in a study population of interest.  For example, the 

value of 0 on DAD could mean that the subject was continually abstinent from 

drinking such as lifetime abstainers or the subject was alcoholic, but happened not 

to use any alcohol during the period of interest.  In statistics, zeros of the first kind 

are called structural zeros, to distinguish them from the sampling zeros of the 

second type.  As the example indicates, the structural and sampling zeros 

represent two groups of subjects with quite different psychosocial outcomes. In 

the literature on alcohol use, although many recent studies have begun to 

explicitly account for the differences between the two types of zeros in modeling 

drinking variables as a response, none has acknowledged the implications of the 

different types of zeros when such modeling drinking variables are used as a 

predictor. This paper serves as the first attempt to tackle the latter issue and 

illustrate the importance of disentangling the structural and sampling zeros by 

using simulated as well as real study data. 
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1. Introduction 

In alcohol studies or more generally in behavioral and psychosocial studies, it is important, 

both conceptually and methodologically, to pay special attention to structural zeros in count 

variables. Structural zeros refer to zero responses by those subjects whose count response will 

always be zero, in contrast to random (or sampling) zeros that occur to subjects whose count 

response can be greater than zero, but appear to be zero due to sampling variability. In alcohol 

research, count of days of alcohol use is commonly used to measure alcohol assumption. 
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Subjects who were always, or become, continually abstinent from drinking during a given time 

period form the non-risk subgroup of individuals with structural zeros in such drinking 

outcomes, while the remaining subjects constitute the at-risk subgroup. Such a partition of the 

study population is not only supported by the excess number of zeros observed in the 

distributions of drinking scores from many epidemiologic studies focusing on alcohol and 

related substance use (see Section 3.2), but also conceptually needed to serve as a basis for 

causal inference.  
In the literature on alcohol use, this issue of structural zeros has been acknowledged when 

analyzing drinking variables as a response (Horton et al., 1999; Pardini et al., 2007). Although 

many studies, particularly older ones, failed to address the zero-inflated nature of their alcohol 

use variables, many more recent studies have done so across a wide range of alcohol use related 

variables (Buu et al., 2011; Connor et al., 2011; Cranford et al., 2010; Fernandez et al., 2011; 

Hagger-Johnson et al., 2011; Hernandez-Avila et al., 2006; Hildebrandt et al., 2010; Neal et al., 

2005). All these articles focus on drinking outcomes when they are used as a response, using 

approaches such as the zero-inflated Poisson (ZIP) models (Hall and Zhang, 2004; Hall, 2000; 

Tang et al., 2012; Yu et al., 2012). The problem with structural zeros when such drinking 

measures are used as a predictor has not been addressed in the literature. The issue of structural 

zero in alcohol measures when used as predictor variables is equally, if not more, important to 

consider, especially when studying causal effects of drinking on health and behavioral 

outcomes. Usually count variables are treated as a continuous predictor, with no effort to 

distinguish structural zeros from their random counterparts. This practice is adopted for 

modeling convenience, which in many studies do not reflect the realistic association of 

variables involved. For example, a structure zero in a drinking outcome represents an individual 

who abstains from drinking, while a random zero corresponds to a drinker who did not drink 

during a period of time.  Thus, the structural and random zeros represent two groups of subjects 

with quite different psychosocial outcomes. Beyond the field of alcohol research, another 

example of a predictor variable with structural zeros is the number of sexual partners in 

HIV/AIDS research, where structural zeros refer to those with lifetime celibacy or sexual 

problems, while random zeros are associated with those sexually active individuals who 

happened to have no sex during the study time.  

One way to model the effect of a count variable with structure zeros as a predictor in 

regression analysis is to distinguish between random and structure zeros by including an 

indicator of structure zeros in the model, in addition to the count variable itself. This paper is 

aimed at illustrating the importance of this issue using simulation studies and how to deal with 

the issue using a real data example from the National Health and Nutrition Examination Survey 

(NHANES) database. The paper is organized as follows. In Section 2, we describe regression 

models with zero-inflated count variables as predictors and develop simulation studies to assess 

possible biases that may result when the effects of strucutral and random zero of a zero-inflated 

count predictor are not delineated. The results from simulation studies as well as a real data 

example are presented in Section 3, and the paper is concluded with a discussion in Section 4. 
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2. Materials and Methods 

For notational brevity, we consider only the cross-sectional data setting. The 

considerations as well as the conclusions obtained apply to longitudinal study data as 

well. Given a sample of n subjects, let 𝑦𝑖 denote the outcome of interest from the ith 

subject (1 ≤ 𝑖 ≤ 𝑛  ). We are interested in assessing the effect of some personal trait 

such as alcohol dependency on the outcome, along with some other covariates, 

collectively denoted by  𝑧𝑖 = ( zi1, … , z𝑖𝑝)
⊺
. Suppose that the trait is measured by a 

count variable χi with structure zeros.  

Let ri be the indicator of whether 𝑥𝑖 is a structure zero, i.e., 𝑟i=1 if 𝑥𝑖 is a structure 

zero and ri=0 otherwise. In some studies such as the real study considered in Section 3, 

the structure zeros are observed, which we assume throughout the paper unless stated 

otherwise. The indicator ri partitions the study sample (population) into two distinctively 

different groups, with one consisting of subjects corresponding to 𝑟i=1 and the other 

comprising of the remaining subjects with 𝑟i =0. Since the trait in many studies is often a 

risk factor such as alcohol use, the first group is often referred to as the non-risk, while 

the second as the at-risk subgroup. 

 

2.1 Linear and Generalized Linear Models 

Without distinguishing between structural and random zeros, one may apply generalized 

linear models (GLM) to model the association between the explanatory variables, the predictor 

of interest 𝑥𝑖  plus the covariates  zi, and the outcome. For example, if 𝑦𝑖 is continuous, we may 

use the following linear model: 

 

𝐸(   𝑦𝑖 ∣∣ 𝑥i, zi )  = α𝑥i +  𝑧i
⊺𝛽, 1 ≤ 𝑖 ≤ 𝑛                                      (1) 

 

Here one may include a covariate assuming a constant value 1 in zi so that the intercept is 

included in β as well. 

However, as mentioned in the Introduction, many count variables have structure zeros, 

which have quite a different conceptual interpretation than their random zero counterparts. This 

conceptual difference carries quite a significant implication for the interpretation of the 

coefficient α in (1). For example, within the context of drinking outcome, the difference in  𝑦𝑖 

between a subject with 𝑥i = 1 and 𝑥i = 0 has quite a different interpretation, depending on 

whether 𝑥i = 0 is a structural or random zero. If 𝑥i  = 0 is a random zero, this difference 

represents the differential effect of drinking on 𝑦i within the drinker subgroup when the 

drinking outcome changes from 0 to 1. For a structural zero, such a difference in 𝑦i speaks to 

the effect of the trait of drinking on the response yi. Thus, the model in (1) is flawed since it 

does not delineate the two types of effects and must be revised to incorporate the information of 
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structure zero.  To this end, one may simply include an indicator of structural zero as a 

covariate in the model. By expanding (𝑥i, zi) to include ri, it follows from (1) that 

𝐸(   yi ∣∣ 𝑥i, zi, ri )  = α𝑥i + zi𝛽 + γr
𝑖
 ,   1 ≤ 𝑖 ≤ 𝑛                       (2) 

Under the refined model above, the association between the trait and the response can be 

tested by checking whether both α = 0 and  γ = 0.  This involves a composite linear contrast, 

H0: α = 0,  γ = 0. If the null H0 is rejected, then either α ≠ 0 or γ ≠ 0 or α ≠ 0 or  γ ≠ 0. The 

coefficient γ is interpreted as the trait effect on the response 𝑦𝑖, all other things being equal. 

The coefficient α measures the change in 𝑦𝑖 per unit increase in 𝑥i within the at-risk group.  For 

a binary or count response 𝑦𝑖, the linear model in (2) is readily extended using an appropriate 

member of the GLM. Instead of modeling 𝐸(   yi ∣∣ 𝑥i, zi, ri )   as a linear function of the 

explanatory variables, we assume that some function of 𝐸(   yi ∣∣ 𝑥i, zi, ri ), ℎ(𝐸(   yi ∣∣ 𝑥i, zi, ri )), 

has a linear relationship with the explanatory variables. The choice of h, or link function, 

depends on whether yi is a binary or count response. For example, the logit link is a popular 

choice for modeling a binary (logistic regression), while the log link is often used for a count yi 

(Poisson log-linear model). The coefficients have the same conceptual interpretation, but their 

effects are interpreted in terms of odds ratio (logistic regression) and exponentiation (Poisson 

log-linear regression). 

 

2.2 Zero-inflated Models 

When the outcome yi itself is a count response with structure zeros, it is not appropriate to 

apply Poisson or negative binomial (NB) log-linear models, the popular models for count 

responses. Instead, one needs to apply the zero-inflated Poisson (ZIP) or zero-inflated negative 

binomial (ZINB) model[Lambert, 1992; Tang et al., 2012; Welsh et al., 1996]. ZIP extends 

Poisson by including a logistic regression component so that it models both the at- and non-risk 

groups. Thus, estimates from the Poisson loglinear regression indicate increased/reduced effect 

of an explanatory variable on the count response of interest within the at-risk subgroup, while 

those from the logistic indicate increased/reduced risks of an explanatory variable for being in 

the non-risk subgroup, i.e., having the trait. By replacing Poison with NB, ZINB also addresses 

the weakness of the Poisson component in ZIP to account for overdispersion, a common 

violation of the Poisson that restricts the variance to be the same as the mean.  

If ignoring the structure zero in 𝑥i, one may model yi using a ZIP:  

structural zero 𝑦i | 𝑥i, zi~ Bernoulli(𝜐i),   logit (𝜐𝑖) = 𝛼′ 𝑥i + zi
⊺𝛽′ ,               

  (3) 

non-structural zero count  𝑦𝑖  | 𝑥i, zi~Poisson(μ𝑖) ,  log(μ𝑖) = 𝛼 𝑥i + zi
⊺𝛽, 

where Bernoulli(𝜐)  (Poisson(μ)) denotes a Bernoulli (Poisson) distribution with mean 𝜐 (μ),  

and logit (𝜐)  = 
   υ

1+υ
 is the logit function. Under the ZIP above, the effect of  𝑥i on the outcome 
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𝑦𝑖 is broken down into two parts, with one on the likelihood of being a structure zero, or being 

a member of the non-risk subgroup, determined by the logistic model in (3), and the other on 

the outcome 𝑦𝑖 within the at-risk subgroup determined by the Poisson model in (3). Thus, one 

needs to test the null: H0: α = α′ = 0, to check if the trait is associated with the outcome 𝑦𝑖 . 
Similar to the linear model case, we can add as the indicator 𝑟𝑖 of structure zeros of  𝑥i as an 

additional predictor for the ZIP in (3) to obtain: 

structural zero 𝑦i |  𝑥i, zi, ri~ Bernoulli(𝜐i),  logit (𝜐𝑖) = 𝛼′ 𝑥i + zi
⊺𝛽′ + γ′ri,   

non-structural zero count  𝑦𝑖  | 𝑥i, zi, ri~Poisson(μ𝑖) ,  log(μ𝑖) = 𝛼 𝑥i + zi
⊺𝛽 + γrI,                  

(4) 

In this refined model, we need four coefficients to describe the relationship between the 

trait and the outcome. The coefficient γ measures the differential effect of the at- and non-risk 

group defined by  𝑥i on the at-risk group defined by 𝑦i, while the coefficient γ′ captures the 

differential effect of the at- and non-risk group defined by  𝑥i on the non-risk group defined by 

𝑦i. The coefficient α quantifies the increase in the outcome 𝑦i within the at-risk group per unit 

increase in  𝑥i within the at-risk subgroup defined by  𝑥i, and the coefficient α′is the log odds 

ratio for the change of likelihood of being in the non-risk group defined by y per unit increase 

in  𝑥i among the at-risk subjects defined by  𝑥i. If the trait and the outcome are not related, then 

all the four coefficients are zero: 

α = α′ = γ = γ′ = 0. Note that for notational brevity, we have assumed no interaction 

among the explanatory variables in the models discussed above. In practice, some of these 

variables may also create interaction effect on the response 𝑦i. Such interactions are readily 

incorporated into all the models discussed. 

 

2.3 Simulation Studies 

We performed simulation studies to show the importance of addressing structure zeros in 

studying the effect of a trait, measured by a count variable X, on a response of interest Y. The 

count predictor X was generated from a ZIP consisting of a Poisson with 

mean μ and a point mass at zero, with a mixing probability of p (proportion of subjects with 

the trait. We considered four different types of resonse Y: continuous, binary, Poisson 

distributed count and zero inflated Poisson count response. We simulated data using the GLM 

for the first three cases. For the last case scenario, a Poisson variate was generated by GLM and 

then mixed with a constant zero based on the mixing probability of ZIP.  

In all cases, the explanatory variables include X and the indicator R of structural zero of X. 

In addition to the true model, or Model I, which includes both X and R, we also considered 

Model II, which is identical to Model I, but with the indicator R removed. In the literature of 

alcohol studies, it is common to group drinking counts into categories before they are analyzed. 

Thus, we also dichotomized X according to whether X is positive. Thus, we also created Models 

III and IV by replacing X with such a dichotomized X in Models I and II, respectively. 
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A Monte Carlo (MC) size of 1,000 was used for all the models. We collected the point 

estimates of the coefficient of the count variable (X), and compared the bias and standard 

deviation of the estimates under the four different models. Further, we tested whether the trait 

was associated with the outcome Y and compared power across the models with type I error set 

at 0.05. 

 

3. Results 

3.1 Simulation Results 

3.1.1 Continuous Response 

For a continuous Y, the association of Y with X and R was specified as follows: 

Y=c0 + c1𝑋 + c2𝑅 + ε, ε~𝑁(0, 𝜎2),                                           (5) 

 Where εis the error term. If c1 and c2 have different signs, say c1> 0 >c2, then the mean of 

the at-risk subgroup defined by positive X  > the mean of the non-risk group defined by 

structure zeros of X. In this case, this monotone relationships among the three subgroups will 

remain, even if the random and structure zeros are not distinguished between each other. 

However, if 𝑐1 and c2 have the same sign, say both are positive, 𝑐1, 𝑐2 > 0, then the mean of the 

at-risk subgroup defined by positive X  > the mean of the at-risk group defined by random zeros 

of X < the mean of the non-risk group defined by structure zeros of X. In such cases, the mean 

of the non-risk group may be bigger than the at-risk subgroup defined by positive X, depending 

on the relationship between 𝑐1  and c2 , and the monotone relationship among the three 

subgroups may fail, if random and structure zeros are combined. Thus, to assess power, we ran 

simulations to cover both situations, wherec1 and c2 had the same and different signs.  

The zero inflated predictor X was simulated from a ZIP with the probability of being 

structural zero p = 0.2 and the mean of the Poisson component μ = 0.3. We simulated 1,000 

samples with sample sizes of 100, 200, 500, and 1000, for several sets of parameters: 

 

𝑐0 = 0.5, 𝑐1 = −0.5, −0.25, 0, 0.25, 0.5,    𝑐2 = 0.5, 𝜎2 = 0.5                       (6) 

For each simulated data, we fit the four aforementioned models,i.e., 

Model I   :  𝑌 = 𝑐0 + 𝑐1𝑋 + 𝑐2𝑅 + ε,   ε~𝑁(0, 𝜎2), 

Model II  :  𝑌 = 𝑐0 + 𝑐1𝑋 + ε,   ε~𝑁(0, 𝜎2) ,  

Model III : 𝑌 = 𝑐0 + 𝑐1𝐼𝑋 + c2𝑅 + ε,   ε~𝑁(0, 𝜎2) , 

Model IV : 𝑌 = 𝑐0 + 𝑐1𝐼𝑋 + ε,   ε~𝑁(0, 𝜎2), 

where I X denotes the dichotomized X with I X=1(0)  for X > 0 (X  ≤ 0). 

To save space, we only present some of the simulation results. Shown in Table 1 are the 

estimates (mean) of the parameters 𝑐0, 𝑐1 , and 𝑐2 , and associated standard errors (Std err) 
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averaged over the 1,000 MC replications when sample size is 200. As expected the standard 

errors were similar between Models I and II as well as Models III and IV. However, the 

estimates from Model II (IV) were biased as compared to their counterparts from Model I (III). 

Although the estimates for parameters from Models I and III were not the same as their 

corresponding true values, the differences reflected the sampling variability. Note that the “true” 

value of the parameter c1 under Model III should in fact be 

E( Y | X > 0 ) −E(Y | X=0 and R=0) =  
μc1

Pr(𝑋 > 0)
=

0.3𝑐1

1−exp (−0.3)
 , 

i.e., -0.58, -0.29, 0.00, 0.29, and 0.58, respectively, because of the grouping of subjects with 

X > 0. 

 

Table 1: Parameter estimates (Mean) and standard errors (Std err) averaged over 1,000 MC replications 

for the four models considered in the Simulation Study with a continuous response. 
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Table 2: Estimated power in testing the association between the trait and the outcome based on 1,000 MC 

replications for the four models considered in the Simulation Study with a continuous response. 

 
 

Even if one does not care about the size of the effect of X on Y and just wants to detect 

association between the two variables, an application of the incorrect model such as Models II 

and Model IV may still be quite problematic. For example, we also examined power in 

detecting association between the trait and the outcome for the different models, with a type I 

error of 0.05. For Models II and IV, we can simply test the null: H0 : c1 = 0 for this purpose. 

However, for Models I and III, there are two terms pertaining to the association of interest, one 

relates to the difference between the structural and random zero in X (c2) and the other is 

associated with difference between positive X and random zeros in X (c1). So, we need to test a 

composite null: H0 : c1 = c2 = 0 in Models I and III. We computed the proportions of p-values 

that were less than 0.05 for these hypothesis tests as the empirical power estimates. Shown in 

Table 2 are the estimated power to test the effect of the trait based on 1,000 MC replications 

with sample sizes 100, 200, 500 and 1000 in the range of values of c1 (and c2) considered. The 

models with the structure zero indicators included (Models I and III) were much more powerful 

in detecting the association between Y and X than their counterparts (Models II and IV). Thus, 

models that do not account for structural zeros such as Models II and IV may not even be able 

to perform such a “crude” task. 

 

3.1.2 Binary Response Y 
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For a binary outcome Y , we simulated the response from a GLM with a logit link to relate 

X and R with Y :  

Y | X, R ∼ Bernoulli (ν), logit (ν) = c0 + c1X + c2R.                              (7) 

Accordingly, we used four logistic models to fit the simulated data, akin to the four models 

in the continuous case, i.e., Model I and III included both X and R, while Model II and IV only 

included X. We again considered the four different sample sizes as in the continuous case, but 

report only the results for sample size = 200 for the parameter estimates for space consideration.  

Table 3: Parameter estimates (Mean) and standard errors (Std err) averaged over 1,000 MC replications 

for the four models considered in the Simulation Study with a binary response. 
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Table 4: Estimated power in testing the association between the trait and the outcome based on 1,000 MC 

replications for the four models considered in the Simulation Study with a binary response. 

 
 

The averaged estimates of the parameters c0, c1, and c2, and associated standard errors and 

power over the 1000 MC replications are shown in Tables 3 and 4. The standard errors were 

comparable between the corresponding models (Model I vs. II and Model III vs. IV), but the 

large bias observed in the continuous case persisted in each of the two incorrect models 

(Models II and IV). We again compared power between the correct (Models I and III) and 

incorrect (Models II and IV) models in detecting association between the trait and the response 

with the type I error set at 0.05. All power entries in Table 4 had much smaller values as 

compared the corresponding entries in Table 2, again confirming the fact that the incorrect 

models might incur a significant loss of power when detecting association between X and Y . 

 

3.1.3 Poisson Count Response Y  

For a Poisson distributed count variable Y, we generated Y from a GLM with a log function 

to link X and R to Y :  

Y ∼ Poisson (µ), log (µ) = c0 + c1X + c2R. 

We fit four Poisson loglinear regression models to the data generated with the same set of 

parameter values as in the previous cases. We performed the simulation for each of the four 
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sample cases, but report the results for the case with sample size = 200 for the parameter 

estimates.  

Table 5: Parameter estimates (Mean) and standard errors (Std err) averaged over 1,000 MC replications 

for the four models considered in the Simulation Study with a Poisson response. 

 
 

Table 6: Estimated power in testing the association between the trait and the outcome based on 1,000 MC 

replications for the four models considered in the Simulation Study with a Poisson response. 

 
Shown in Table 5 are the averaged estimates of the parameters c0, c1, and c2, and associated 

standard errors over the 1000 MC replications. The results show a similar pattern as in the 

previous cases; the standard errors were comparable between the corresponding models (Model 
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I vs. II and Model III vs. IV), but the large bias again remained in the two incorrect models 

(Models II and IV).  

Shown in Table 6 are the estimated powers to test the effect of the trait based 1,000 MC 

replications the sample sizes 100, 200, 500 and 1000, in the range of values of c1 (and c2) 

considered. Similar to the previous cases, the power estimates also show a significant loss of 

power for the incorrect models (Models II and IV) when −0.25 ≤ c1 ≤ 0.25. Note that although 

power was similar at c1 =0.25 (−0.25), the settings were of no practical interest, since all power 

was close to 1. Note also that the power entries of Table 6 show that although not as powerful 

as the linear Y case, the Poisson Y was much more powerful than the binary Y to detect 

association between X and Y, all other things being equal.  

 

3.1.4 Zero inflated Poisson Response Y  

Finally, we considered a count response with structural zeros generated from the following 

ZIP:  

non-structural zero count Y | X, R ∼ Poisson (µ) , log (µ)= c0 + c1X + c2R,                     

  (8) 

 

structural zero Y | X, R ∼ Bernoulli (ν) , logit (ν)= c0 + c1X + c2R.    

As in the previous cases, we fit four different ZIPs to the data simulated with the same set 

of parameter values (in addition to c0, c1 and c2 are in previous cases, we set𝑐0
′ = 𝑐0, 𝑐1

′ =

𝑐1 and 𝑐2
′ = 𝑐2 ). Again, we report the results for the case with sample size = 200 for the 

parameter estimates.  

 

Table 7: Parameter estimates (Mean) and standard errors (Std err) averaged over 1,000 MC replications 

for the four models considered in the Simulation Study with a ZIP response. 
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Table 8: Estimated power in testing the association between the trait and the outcome based on 1,000 MC 

replications for the four models considered in the Simulation Study with a ZIP response. 

 
 

Shown in Table 7 are the averaged estimates of the parameters c0, c1 and c2, and associated 

standard errors over the 1000 MC replications. The same patterns of bias again emerged from 

the incorrect models (Models II and IV). The incorrect models also yielded much lower power 

than their correct counterparts. Shown in Table 8 are the estimated power to test the effect of 

the trait on the response. As seen, the ZIP seems to have similar power as the binary response 

Y , which is not surprising given that one of the components of ZIP is the binary response for 

modeling the structural zero of Y . Note that there are two components in ZIP models and thus 

the results are obtained from testing composite hypotheses. To see if the trait is associated with 

the outcome, we tested the null, H0 : 𝑐1 = 𝑐1
′ = 𝑐2  = 𝑐2

′ = 0 , for Models I and III. 

 

3.2 A Case Study Example 

We now illustrate the effect of bias in model estimates with a real data example based on 

the 2009-2010 National Health and Nutrition Examination Survey (NHANES). In this database, 

we identified a measure of alcohol use to be examined as an explanatory variable for depressive 

symptoms (count response). Both the alcohol and depression outcomes show a preponderance 

of zeros because of a large percent of the surveyed population is not at risk for either of the 

health issues. The relationship between the two has been reported in a number of studies 
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(Brown and Schuckit, 1988; Dackis et al., 1986; Davidson, 1995; Gibson and Becker, 1973; 

Hasin and Grant, 2002; Merikangas et al., 1998; Penick et al., 1988; Pettinati et al., 1982; 

Swendsen et al., 1998; Willenbring, 1986).  

The NHANES is an annual national survey of the health and nutritional status of adults and 

children in the United States. A nationally representative sample of about 5,000 persons 

participates each year. Interviews and assessments are conducted in respondents’ homes. Health 

assessments are performed in equipped mobile centers, which travel to locations throughout the 

country. Starting in 2007, NHANES has been oversampling all Hispanics (previously Mexican 

Americans were oversampled). In the 2009-2010 data set, data were collected from 10,537 

individuals of all ages during the two-year period between January 2009 and December 2010. 

The race/ethnicity of the sample is 22.5% Hispanic-Mexican American, 10.8% Hispanic-other, 

18.6% non-Hispanic Black, 42.1%, non-Hispanic White, and 6.1% other.  

Alcohol Use Measure. In NHANES, for measurement of alcohol use, a different 

assessment was done for those aged 12 to 19 vs. those aged 20 and older; the assessment for the 

former age group asked only about the past 30 days, while the one administered to the latter age 

group asked about the past year. Therefore, for the current case study example we only used the 

data from the cohort aged 20 and older. Alcohol use (for those aged 20 or above) was assessed 

with a computer-assisted personal interview (CAPI). Specific questions of interest for the 

current work included number of days of any alcohol drinking (DAD) in the past year, which is 

commonly used in alcohol research. This variable was converted to average number of days 

drinking per month in our analysis. There were 6218 subjects in the data set with age of 20 and 

older.  

In NHANES, one question asks “In your entire life, have you had at least 12 drinks of any 

type of alcoholic beverage?” This variable has been used previously to differentiate lifetime 

abstainers, who will answer “no” to this question and ex-drinkers, who will answer “yes”, in 

NHANES (Tsai et al., 2012). Thus, the subjects who answered “no” to this question constitutes 

structural zeros. These results show that zero was endorsed by two distinctively different risk 

groups in this study population for the question about drinking.  

Depression symptoms were measured in those aged 12 and above in the 2009-2010 

NHANES with the Patient Health Questionnaire (PHQ-9) administered by CAPI. The PHQ-9 is 

a multiple-choice self-report inventory of 9 items specific to depression. Each item of the PHQ-

9 evaluates the presence of one of the nine DSM-IV criteria for depressive disorder during the 

last two weeks. Each of the 9 items can be scored 0 (not at all), 1(few days), 2 (more than half 

the days) and 3 (nearly every day) and a total score is obtained. Among the 6218 subjects with 

CAPI, 5283 subjects reported PHQ-9, so there are about 935 subjects with missing values in the 

PHQ-9.  

Covariates. In epidemiological samples, several demographic characteristics, including 

female gender, older age, not being married, low education, low income level, poor physical 

health, social isolation, minority status, and urban residence, have been associated with higher 

levels of depressive symptoms or presence of a major depressive disorder, though overlap 

among some of these factors suggests that these may not all be independent influences 
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(Gonz’alez et al., 2010; Leider-man et al., 2012; Oh et al., 2013; Roberts et al., 1997; Rushton 

et al., 2002; Weissman, 1996; Wilhelm et al., 2003). Based on these findings, in our analyses of 

the relationship of alcohol use to depressive symptoms, we incorporated relevant demographic 

variables available in NHANES (age, gender, education, race) as covariates.  

 

Figure 1: Distributions of DAD and PHQ9 for the 2009-2010 NHANES data, with the darker-shaded bar 

in the distribution of DAD representing structural zeros. 

Shown in Figure 1 are the distributions of PHQ9 and DAD, both exhibiting a 

preponderance of zeros. Goodness of fit tests also rejected the fit of the data in each case by the 

Poisson (p-value < 0.001). Further, the Vuong test showed that ZIP provided a much better fit 

than the Poisson (p-value < 0.001). These findings are consistent with our prior knowledge that 

this study sample is from a mixed population consisting of an at-risk and non-risk subgroup for 

each of the behavioral and health outcomes.  

Statistical Model. We applied the ZIP to model the PHQ-9 score with DAD in the past 

month as the predictor, adjusting for age, gender, race and education. Since we had the 

information to identify the non-risk group for the DAD variable, we conducted the analysis 

using two different models. In the first ZIP model, or Model I, we explicitly modeled the effect 

of structural zero of DAD on PHQ9 using a binary indicator (NeverDrink = 1 for structural and 

NeverDrink = 0 for sampling zero) and thus both the indicator of the non-risk group for 

drinking (NeverDrink) and DAD variable were included as predictors. As a comparison, we 
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also fit the data with only the DAD predictor and thus the structural and sampling zeros were 

not distinguished in the second ZIP, or Model II. We used SAS 9.3 PROC GENMOD to fit the 

models, with parameter estimates based on the maximum likelihood approach.  

Analysis Result. Among the 5283 subjects with both CAPI and PHQ¬9, there were a small 

amount of missing values in the covariate and the actual sample size used for the analysis was 

5261. Shown in Tables 9 and 10 are the parameter estimates of the Poisson and Zero Inflated 

components of the two ZIP models, respectively. The high statistical significance of the non-

risk subgroup indicator in Model I indicates that Model I was more appropriate than Model II 

for the relationship of interest. In fact, Model I has a smaller AIC (28998.1975 for Model II vs. 

28969.2253 for Model I) and BIC (29116.4228 for Model II vs. 29100.5868 for Model I).  

 

Table 9: Comparison of model estimates (Estimate), standard errors (Std err) and p-values (P-value) 

fromthe Poisson component for the count response (including random zeros) (Std err) for the Real Study 

Data. 

 
 

 

 

 

 

 

 

 

 

 

 



 
H.He, W.Wang, P.Chrits-Christoph, R.Gallop, W.Tang, D.Chen and X.M.Tu                  455 

 

Table 10: Comparison of model estimates (Estimate), standard errors(Std err) and p-values(P-value) from 

the Logistic component for the probability of occurrence of structural zeros for the Real Study Data. 

 
  

Based on the tables, the model without the indicator of the non-risk subgroup (Model II) 

failed to detect any association between DAD and depression symptoms (p-value=0.14 for the 

Poisson and 0.19 for the Zero-Inflated components), while the model with this indicator 

included (Model I) successfully identified a significant association between drinking and 

depression. The non-drinkers are less likely being at-risk of depression (p-value < 0.0001 for 

the Zero-Inflated component) and have less depressive symptoms (p-value=0.0005 for the 

Poisson component). On the other hand, DAD is also a predictor of depressive symptoms for 

the at-risk drinking subgroup (p-value = 0.0423 for the Poisson component). However, the 

amount of drinking does not seem to increase the likelihood of depression (p-value = 0.6191 for 

the Zero-Inflated component).  

 

4. Discussion  

In this paper, we discussed the importance of untangling the structural and random zeros in 

alcohol research. This is the first study to discuss this important issue in alcohol research. 

Attention to the zero-inflated nature of alcohol use measures has been mixed in the broad 

scientific literature. Although older studies completely ignored structural zeros, many newer 

ones have attempted to address this issue. However, all efforts to date have focused on the 

statistical problems when drinking outcomes are used as a response, or dependent variable, in 

regression analysis, with no attention paid to the equally important problem of biased estimates 

when such outcomes are used as an explanatory, or independent, variable. Indeed, this problem 

is not limited to alcohol research, since we failed to find any study in the extant literature that 

even acknowledged this problem. Our findings are significant in this respect since they show 
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for the time the critical importance of delineating the effects of the two different types of zeros 

in drinking outcomes like the DAD.  

Both our simulated and real study examples demonstrate that it is critical that we model and 

delineate the effects of structural and random zero when using a zero-inflated count outcome as 

an explanatory variable in regression analysis. Otherwise, not only are we likely to miss 

opportunities to find association between such a variable and an outcome of interest (due to 

significant loss of power), but also to obtain results that are difficult to interpret because of high 

bias in the estimate and dual interpretion of the value zero of such a count variable. For 

example, the estimated coefficient −0.0017 of DAD in the Poisson component of ZIP Model II 

for the relationship between PHQ9 and DAD had about 30% upward bias as compared to 

−0.0023 for the same coefficient of the Poisson component of Model I ZIP of the analysis in the 

NHANES study. Even if ignoring such bias, the estimate −0.0017 was difficult to interpret; 

without accounting for structural zeros as in ZIP Model I, the change in DAD from 0 to 1 has a 

dubious meaning, since it may mean the change in amount of drinking within alcohol users or it 

may mean the difference between alcohol users vs. lifetime abstainers.  

In all the examples considered, we assumed linear functions of explanatory variables for 

notational brevity. In practice, more complex functions of explanatory variables may be 

considered utilizing piecewise linear, polynomial functions or even nonparametric methods 

such as local polynomial regression. Also, we limited our considerations to cross-sectional 

studies, but the same considerations are readily applied to longitudinal studies.  

We assumed that structural zeros of a count explanatory variable are known. In many 

studies, this may not be the case. For example, no lifetime abstinence was collected in 

NHANES for heavy drinking, another popular predictor for many behavioral and health 

outcomes. Thus, it is not possible to study the effect of the trait of heavy drinking on depression 

using the models considered in the study. Further research is needed to address this 

methodological issue to facilitate research in alcohol and other related areas. 
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