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Abstract: Friedman’s test is a rank-based procedure that can be used to test for 

differences among t treatment distributions in a randomized complete block design.  

It is well-known that the test has reasonably good power under location-shift 

alternatives to the null hypothesis of no difference in the t treatment distributions.  

However the power of Friedman’s test when the alternative hypothesis consists of 

a non-location difference in treatment distributions can be poor.  We develop the 

properties of an alternative rank-based test that has greater power than Friedman’s 

test in a variety of such circumstances.  The test is based on the joint distribution of 

the t! possible permutations of the treatment ranks within a block (assuming no ties).  

We show when our proposed test will have greater power than Friedman’s test, and 

provide results from extensive numerical work comparing the power of the two tests 

under various configurations for the underlying treatment distributions. 
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1. Introduction 

In this paper we develop the properties of a nonparametric test for differences among t 

treatment distributions in a randomized complete block design (RCB) with b blocks. The test 

statistic is based on the joint distribution of the t! possible orderings of the treatment ranks within 

a block, and is similar to the nonparametric test proposed by Friedman (1937) in its use of these 

ranks. Like Friedman’s test, the assumptions necessary for the proposed test statistic to have a 

known, easily computed null distribution are less stringent than those required for the usual 

analysis of variance F-test. In particular, one need not assume a specific parametric family for 

the underlying treatment distributions.  

Here we develop the test statistic 𝑋2 by consideration of several inter-related null hypotheses, 

and show that the proposed test has better power than Friedman’s test for detecting differences 

in treatment distributions under a variety of conditions. 
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2. Hypotheses 

For each of t treatments, let ijX  denote the response to the j-th treatment in the i-th block, 

1, ,j t  and 1, , .i b   Let 𝐗𝒊 = (𝑋𝑖1, … , 𝑋𝑖𝑡) denote the t-vector of responses in the i-th 

block, assumed to have continuous joint distribution 𝐅𝒊(𝐱).  Denote the marginal distribution of 

𝑋𝑖𝑗 by 𝐹𝑖𝑗(𝑥).  

Consider the null hypothesis that the t components of the vector of responses have identical 

marginal distributions: 

0 1 2: ( ) ( ) ( )i i i tFH F x F x F x    for 1, , ;i b                       (1) 

 

that is, within each block, observations from different treatment groups have the same distribution 

function.  We call 𝐹𝐻0 the “Friedman null hypothesis.”  

In each block, rank the t responses from 1 to t (smallest to largest), and let 𝑅𝑖𝑗 denote the 

rank assigned to the j-th treatment response in the i-th block.  Since the cumulative distribution 

function of each response is assumed to be continuous, it follows that the probability of a tie in 

rank between two or more treatments in a block is zero.  

Following Quade (1984), we assume that blocks are independent and that all blocks have the 

same joint distribution of treatment ranks.  If the only effect of blocks on the response is additive, 

then this condition will be met.  

Letting �̅�•𝑗 denote the average rank of the j-th treatment across the b blocks, Friedman’s test 

statistic 
21

2

1

12 [ ( 1)] [ ( 1)]
t

j

j

Q b t t R t



    sums the squared deviations of the observed 

treatment average rank from the common expected value of the j-th treatment average rank under 

the assumption that all the treatment distributions are identical.   

For small values of t and b, the exact distribution of Q has been tabled (see, for example, 

Friedman 1937, or Lehmann, 1975) or may be constructed with the aid of software (van de Wiel, 

2004).  Friedman (1937) showed that as b  , Q converges in distribution to 
2

( 1)t  , a chi-

square random variable with ( 1)t   degrees of freedom.  Iman & Davenport (1980) propose the 

general rule that an asymptotic approximation to the distribution of Q should not be used when 

3,t   and for 3t   it should be used only when 9.t b   

A null hypothesis different from the Friedman null given in (1) is: 

 
0 1 2: ( ) ( ) ( ),  for 1, ,R

i i itH E R E R E R i b    ;                         (2) 

that is, the expected rank of the j-th treatment is the same for 1, ,j t (or equivalently 

( ) ( 1) 2ijE R t  for 1, ,j t ).  As Friedman’s Q sums the squared deviations of the 
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observed average treatment ranks from their expectation under 𝐻0
𝑅 in (2) above, Q is a direct test 

of this hypothesis:  large values of Q support the complement to (2) that the expected values of 

the average treatment ranks are not the same.  It is common practice for Friedman’s Q to be 

applied in situations where interest is in testing equivalency of response means across treatments 

(St. Laurent & Turk, 2013).  Even so, it is likely that in many applications, practitioners are 

unaware of the relationship between Q and the hypothesis in (2). 

When 𝐻0
𝑅 is not true, it can be shown that 𝐹𝐻0 also is not true (see Appendix 1).  Thus large 

values of Friedman’s Q can be considered evidence contradicting  𝐹𝐻0 .  However if the 

hypothesis in (2) is true, it is not necessarily the case that 𝐹𝐻0 is true.  So failing to reject 𝐻0
𝑅 via 

Friedman’s test statistic Q, means only that there is insufficient evidence to support that there are 

differences in the expected treatment ranks.  But that still allows for the possibility that the 

treatment distributions are not identical.  It is in this sense Q is a direct test of (2) and an indirect 

test of (1).  It is partially for this reason that we look for a more general, alternate approach to 

testing the hypothesis 𝐹𝐻0. 

 

3. Alternate Test 

3.1 Justification 

For 𝑖 = 1, … , 𝑏  let 𝐑𝒊 = (𝑅𝑖1, 𝑅𝑖2, … , 𝑅𝑖𝑡)  denote the random vector of ranks for the t 

treatments in the i-th block.  For each i, the multivariate probability distribution of 𝐑𝒊 has support 

on the set of all possible permutations of the vector of ranks (1,2, , ).t  There are !s t  such 

permutations, which we denote by 1, , s  .  For each i, the probability that 𝐑𝒊 is equal to k  

for any 1, , ,k s  is completely determined by the joint cumulative distribution function 𝐅𝒊(𝐱) 

for the treatment response vector 𝐗𝒊  For block i, let , ( ),
ki i kp P  R  the probability that 

the vector of t treatment ranks in the i-th block matches the ordering of ranks in the k-th 

permutation.  As we have assumed that the probability distribution of the ranks is identical across 

blocks, we write ( )
k i kp P  R  and let 

1
( , , )

s
p p p  be the s-vector of probabilities for 

the 𝑠 = 𝑡! possible permutations, i.e., p is the same across all blocks (assumption IIa of Quade, 

1984). Since ∑ 𝑃𝜋𝑘

𝑠
𝑘=1 = 1,  the set of all such vectors p is restricted to the standard ( 1)s -

simplex.  

For example, when 𝑡 = 3 , the 𝑠 = 3! = 6  permutations may be written 1 (1,2,3), 

2 (1,3,2),  3 (2,1,3),  4 (3,1,2),  5 (2,3,1),  and 6 (3,2,1).    Given the joint cdf 

( )iF x  of the observations in the i-th block we can calculate ,
k

p   e.g.,  

4312 4 1 2 3 1 3 2( ) ( 3, 1, 2) ( )i i i i i i ip p P P R R R P X X X          R
. 
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If the elements of iX are exchangeable then each rank ordering of the treatments is equally 

likely and 
1 1 1 1 1 1
6 6 6 6 6 6

( , , , , , ).p   

Appendix 3 includes several general results concerning the structure of the elements of p 

when the joint distribution of the random vector X exhibits some form of symmetry.   

Now consider the hypothesis: 

 
1 20 : 1

s
H p p p s     p

 (3) 

meaning that within a block each permutation of the ranks is equally likely, and hence 𝑝𝜋𝑘
= 1

𝑠⁄  

for all permutations .k   In general the three hypotheses (1), (2) and (3) are not equivalent.  

When the elements of the vector 𝑿𝑖  are exchangeable, then 𝐹𝐻0  implies 0H p
 which in turn 

implies 0

RH .  However 0

RH  does not imply 0H p
, nor does 0H p

 imply 𝐹𝐻0.  In this sense, 0H p
 

is “closer” to 𝐹𝐻0 than is 0

RH .  See Appendix 1 for a proof of this relationship. 

Because of the relationships amongst these hypotheses, one might conjecture that a direct 

test of 0H p
 would have greater power to detect departures from 0FH  than a direct test of 0 .RH   

Quade (1984) notes that the most general alternative to 0FH  that may be tested based on the 

rank vectors 𝐑𝟏, … , 𝐑𝒃 is the complement of 0 .H p
  In the remainder of this paper, we develop a 

direct test of 0H p
, determine the properties of the test, and compare it to Friedman’s test. 

 

3.2 The Test Statistic 

The random vector 𝐑𝒊 has support on the 𝑠 = 𝑡! permutations 1, , s  .  For 1, , ,k s  

let 
1,

0,

i k

ik

i k

Y





 



R

R
.  Then the s-vector  1( , , )i i isY YY  is distributed  ( 1, ),sMult n  p  i.e.,

1, , bY Y  are independent, identically distributed s-dimensional multinomial random vectors 

with number of trials 𝑛 = 1  and vector of cell probabilities   
1

( , , ).
s

p p p  Therefore 

1

~ ( , )
b

i s

i

Mult n b


 M Y p , with corresponding probability function 

1

( | ) !
!

k

k

ms

k k

p
P b

m





  M m p , where 𝐦 = (𝑚1, … , 𝑚𝑠) is the s-vector of observed counts, and 

1
.

s

kk
m b


   

When 𝐹𝐻0  is true then 0H p
 is true and 

1
0 (1, ,1)

s
 p p , in which case 𝐸(𝑴) = 𝑏𝐩𝟎  

This suggests using a goodness-of-fit statistic for the s-dimensional multinomial distribution of 
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M as a method of indirectly testing 𝐹𝐻0, but getting us “closer” to Friedman’s hypothesis than 

the test statistic Q proposed by Friedman.   

One possibility is the chi-square goodness-of-fit statistic 

2
2

1

( )s
k k

k k

O E
X

E


 , where kO  

and kE  are, respectively, the observed and expected counts in the k th cell.  In our application 

this simplifies to  

 

2
2

1

( )s
k

k

m b s
X

b s


  (4) 

since under 0H p
, .

kkE bp b s     

Wormleighton (1959) develops the asymptotic properties of a “hierarchy of tests of 

permutation symmetry” of a t-variate distribution (as extensions of the familiar sign test for 

2)t  .  The author notes that the test statistics Q and 𝑋2 can be thought of as being at the two 

extremes of this hierarchy, with Q being a test of low order symmetry and 𝑋2 being a test of high 

order symmetry.  Wormleighton did not explore small sample properties of the 𝑋2 test, nor did 

he consider its power for alternatives to 0H p
. Wormleighton’s work has subsequently received 

scant attention in the literature.  Quade (1984) briefly mentions 𝑋2 including its asymptotic null 

distribution, but does not focus on the small sample properties of the test.  

Rayner & Best (2001, ch. 6) consider the relative merits of Page’s test, Anderson’s test, Q 

and 𝑋2 in testing for differences in treatment distributions in a randomized complete block design, 

and the relationships between these tests.  They note that under the assumption of no difference 

in treatment distributions 0( )FH , each of these test statistics is asymptotically distributed chi-

square with degrees of freedom 1, ( 1),t   
2( 1)t   and ( ! 1)t   respectively.  In choosing which 

test to apply, Rayner & Best (1990) suggest that “…better tests were those whose degrees of 

freedom matched the dimensions of the alternative hypothesis.”  

Based on standard results concerning the chi-square goodness-of-fit test in multinomial 

sampling, when 0H p
 is true: 2( ) 1;E X s   2( ) 2( 1)( 1) ;Var X s b b    and for fixed s, as 

,b  the statistic 𝑋2converges in distribution to
2

( 1)s  , a chi-square random variable with 

( 1)s   degrees of freedom (Pearson, 1900). 

In many if not most applications, we can expect that b will be small, possibly quite small 

relative to the corresponding rules of thumb for suggested use of the asymptotic chi-square 

reference distribution.  By one such rule-of-thumb (Koehler & Larntz, 1980), under the uniform 

null hypothesis, each expected cell count b s  should be greater than 10 ,s  or equivalently, 

10 10 !,b s t   provided that 𝑏 ≥ 10  For 𝑡 = 3 this suggests an experiment with at least 10 

blocks; for 𝑡 = 4, at least 16 blocks; and for 𝑡 = 6, at least 85 blocks.  While this requirement on 

the number of blocks is not unrealistically large for 3t   or 4 treatments, nonetheless in practice 
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it is useful to consider the exact, small sample distribution of these test statistics, via complete 

enumeration or simulation, particularly when b is small and t is greater than 4. 

 

3.3 Enumeration of the Exact Sampling Distribution of the Test Statistic 

The small sample properties, including the exact distribution, of both 
2X  and Q depend 

entirely on t, b and the multinomial vector of probabilities p.  

Starting from (4), the goodness of fit statistic simplifies to 
2 2

1

,
s

k

k

s s
X m b b

b b

    m m  

a quadratic function of m.  Similarly Q may be expressed as a quadratic function of m and hence 

the distributions of Q and 
2X  are both completely determined by the distribution of m (see 

Appendix 2).  Taking advantage of this relationship, the authors have written a script, Joint.R, in 

the statistical software package R (version 2.15.2), to compute by complete enumeration the exact 

joint distribution of Q and 
2X , as well as each of their marginal distributions, provided user 

input of t, b, and p.  When 3t  , Joint.R can be used to construct the null distributions of these 

statistics under 0FH , and non-null distributions for any specific alternative to 0FH  (provided 

that the joint distribution of treatment ranks is the same in each block), for any value of b.  The 

alternative of interest is determined by specification of the non-constant vector p.  Joint.R may 

also be used when 4t   or 5 to calculate the exact distributions of these statistics, but due to the 

computationally intensive nature of the calculations, realistically, only for very small values of b, 

e.g., 6.b    Joint.R is available upon request from the authors. 

 

4. Power Comparisons 

Rayner & Best (2001, pp. 97-100) report a simulation study comparing the power of four 

tests including Q and 𝑋2 to detect a location shift between treatments in a complete block design 

with normal errors.  They used a randomized test approach to ensure that each test had size 𝛼 =

0.05.  For 3t   and 4 treatments, 5b   and 10, and two patterns of location-shift for each 

treatment, 10,000 simulations were run.  Their results show that Friedman’s test has greater 

power than 𝑋2 for detecting location shift between treatment distributions.  They note similar 

results were obtained with uniform and double exponential error distributions.  They did not 

consider non-location differences between treatments in their study. 

In what follows, we compare the power of 
2X  to the power of Friedman’s Q for plausible 

location and non-location alternatives to identical treatment distributions based on the exact 

(small-sample) distribution of the test statistics under both the null and various alternative 

hypotheses under consideration.  We also include the RCB analysis of variance F-test for 

differences in treatment means in our comparisons as a benchmark, as it has certain well-

understood optimality properties for detecting location shifts when the treatment distributions are 
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normal.  Note that the F-test requires measurements on a continuous scale, while both the Q and 
2X  tests require only the relative rankings of the observations in each block. 

 

4.1 Design of Study 

We looked at 3,  4t   and 6 treatments for each of b = 5, 10, 20 and 40 blocks.  To compare 

the power of the Q, 2X  and F tests to detect differences in treatment distributions, we chose 

examples in which treatment distributions differ in location (median or mean) only, in scale only, 

or in both location and scale.  We considered both symmetric and skew treatment distributions 

and assumed additive block effects, which, without loss of generality were taken to be zero. 

The scenarios used in this study are listed in Table 1.  The notation is as follows:  if the 

random variable X  has a Student’s t distribution with 2 degrees of freedom, 2~ ,X t  then the 

distribution of Y X    is denoted 𝑌~𝑡2(𝜇, 𝜃) , a Student’s t distribution with 2 degrees of 

freedom, shifted to have median   and scale 𝜃. Exponential distributions were median-centered 

and parameterized using the rate equal to 
1,mean

 i.e., let ~ ( )X Exp   denote an exponential 

random variable with mean 1,  and hence median 1 ln(2).   Then 1 ln(2)X   is a 

“median-centered exponential” random variable, which we denote ( )ExpMC  .   

The superscript ‘*’ denotes additional distributions added to each block with increasing t.  

For example, scenario 3 with 𝑡 = 3 involves three independent treatment distributions per block, 

one each with responses distributed 2(0,1)t , 2(0, ),t   and 2(1,1);t  while for  3t   this 

scenario involves t independent treatment distributions, ( 2)t   of which were distributed 

2(0,1)t , and one each of 2(0, )t   and 2(1,1).t   
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Table 1: Scenarios used in power study. 

 

In scenario 1 when 0   then 0FH  is true, while for all other values of  , 0FH , 0H p
, 

and 0

RH  are all false as not only are the treatment distributions not identical, but for each 0 

the corresponding vector p is non-constant, and the expected values of the treatment ranks are 

not ( 1) 2t  .  Similarly, in scenario 2 when σ = 1, 0FH  is true.  However for σ ≠ 1, while 

0

RH  is still true, 0H p
 is not.  In scenarios 3 and 5, all values of the parameter 𝜃 yield treatment 

rank distributions where all three hypotheses are false.  In scenario 4, 0   is a special case of 

scenario 2 where 0

RH  is true but 0H p
 is not, and when 0  , all three of the hypotheses are 

false. 

 

4.2 Type I Error Rates  

Because of the discrete nature of the exact null distributions of Q and 
2X , for any fixed 

nominal significance level 0 1   it is generally not possible to find critical values for both 

Q and 
2X  that yield tests of size precisely equal to .   This is especially problematic when b is 

small.  However it is difficult to compare the power of two tests that are not of the same size.  

For this reason, rather than fix   at 0.01, 0.05 or some other value, for each combination of t 

and b, we used the exact or estimated small-sample null distribution of each test statistic to find 

critical values that would result in comparable and reasonable size tests.     

For 3,t   when 
0H p

 
is true, the vector 1

6
(1, ,1).p    For each b, the exact null 

distributions of Q and 
2X  were constructed under 

0H p , using the R script Joint.R.  Using these 

exact distributions for each value of b, critical values for Q and 
2X  were chosen to yield 

proximate nominal Type I error rates, Q  and 2 .X
    

Scenario 
Location 

Departure 

Scale 

Departure 
Parameter Values Null Non-Null 

1. 
2(0,1)t 

 and 
2( ,1)t   Varying None 0,1, 2, 3, 4   

0FH   0

c
RH  

2. 
2(0,1 )N   and 2(0, )N   None Varying 31 1 1

100 5 3 4
, , , ,1, 2, 5, 20,100 

 0FH
  0 0

c
RH H p

 

3. 
2(0,1)t 

, 
2(0, ),t   and 

2(1,1)t  
Fixed Varying 3 31 1 1

100 5 3 4 2
, , , , , 3,10, 50, 500   --  0

c
RH

 

4. 

2(0,1 )N  , 2( ,1 )N   

and 2(0,20 )N  
Varying Fixed 0,1, 2, 5,10,15    0 0

c
RH H p

  0

c
RH  

5. 
(1)ExpMC   and 

(1 5)ExpMC    
Varying Fixed 1

2
0, , 1, 2, 3, 4        --  0

c
RH
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For 4t   and 5,b   the R script was used in the same fashion as described above.  However 

for 4t   and each of 10, 20b   and 40, an applet by Van de Wiel (2004) was used to compute 

the exact null distribution of Q, while the null distribution of 
2X  was estimated via simulation 

( 2,000,000).n    As in the case of  3,t 
 
using these distributions for each value of b, critical 

values for Q and 
2X  were selected to yield proximate nominal Type I error rates (exact or 

estimated).  

In the case of 6,t   for all values of b and for both Q and 
2X , the null distributions were 

estimated via simulation ( 2,000,000),n   and critical values for Q and 
2X  were chosen to 

yield proximate, estimated Type I error rates.  In those cases in which the null distribution was 

estimated via simulation, a conservative bound on the simulation standard error is 

0.10(0.90) 2,000,000 0.0002.   

For each value of t and b, the arithmetic average of the established Type I error rates for Q 

and 
2X  was used to fix the value of the nominal Type I error rate F  for the analysis of variance 

F-test, and the corresponding critical value was obtained from the F distribution with numerator 

and denominator degrees of freedom ( 1)t   and ( 1)( 1)t b   respectively.  Note that when 

treatment distributions are normal each with common variance (scenario 2 when 1  ), the 

ANOVA F-test will have a Type I error rate F .  Otherwise the size of the F-test could be 

substantially different from the nominal value F . 

The exact and estimated nominal Type I error rates obtained from this process are 

summarized in Table 2 together with the corresponding critical values *c .  Values for  ( )Q Qc  

and 2 2 ( )
X X

c  that were obtained from a simulation-based estimate of the distribution of a test 

statistic are indicated in the table by a bold font. 
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Table 2:  Nominal Type I error rates and corresponding critical values for Friedman’s Q,  and 

RCB ANOVA F. 

t b  ( )Q Qc  2 2 ( )
X X

c   ( )F Fc  

3 5 0.0239 (7.6) 0.0201 (15.4) 0.0220 (6.39) 

3 10 0.0179 (7.8) 0.0172 (14) 0.0176 (5.10) 

3 20 0.0374 (6.4) 0.0379 (11.8) 0.0377 (3.58) 

3 40 0.0402 (6.45) 0.0410 (11.6) 0.0406 (3.34) 

     

4 5 0.0167 (9.24) 0.0163 (47.8) 0.0165 (5.12) 

4 10 0.0374 (8.16) 0.0372 (38) 0.0373 (3.25) 

4 20 0.0370 (8.34) 0.0374 (37.6) 0.0372 (3.02) 

4 40 0.0391 (8.31) 0.0390 (36.8) 0.0391 (2.88) 

     

6 5 0.0143 (12.6571) 0.0138 (1003) 0.0141 (3.79) 

6 10 0.0611 (10.2857) 0.0606 (854) 0.0609 (2.30) 

6 20 0.0261 (12.4571) 0.0260 (844) 0.0261 (2.68) 

6 40 0.0254 (12.6714) 0.0254 (824) 0.0254 (2.62) 

 

4.3 Calculation of Power 

The exact distribution of both Q and 
2 ,X  and hence the power of these tests, depends upon 

the treatments only through the vector p of multinomial probabilities associated with each 

possible ordering of the treatment ranks under the alternative.  In turn, for each scenario under 

consideration p depends on a parameter 𝜃.  With this in mind, it is sometimes convenient to write 

1 − 𝛽𝑄(𝐩(𝜃)) and 1 − 𝛽𝑋2(𝐩(𝜃)) as the power of the respective tests for a given vector ( ).p  

To determine the power of Q and 
2X  for each alternative to 0H p

, first the distribution of 

each test statistic was either calculated exactly using Joint.R  (in most instances for 3)t   or 

simulated.  Exact calculation ( 3t  ) requires specification of the 6 1  vector p for each value 

of the parameter involved ( , ,  or )    in each of the five scenarios for treatment distributions 

when 0H p
  is not true (see Table 1).  In these instances the elements of p were calculated via 

exact or numerical integration using MAPLE 15.0.1 ©  (MapleSoft, Waterloo Maple, Waterloo, 

Ontario). The resulting vectors p for 3t   are available from 

http://www.stat.colostate.edu/~pturk/AuxMaterial.pdf. 

For a few cases where 𝑡 = 3 and 40,b   and for all cases when 𝑡 = 4 or 6 for all values of 

b, simulation-based estimates of the non-null distribution were obtained ( 100,000).n     

In all cases, whether the non-null distribution of Q was calculated exactly or estimated via 

simulation, the exact or estimated power 1 − 𝛽𝑄(𝐩(𝜃)) was taken to be the probability under the 

specific alternative (indexed by a parameter ),  that Q exceeds the critical value Qc .  The power  
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1 − 𝛽𝑋2(𝐩(𝜃)) was obtained in an analogous fashion for 𝑋2  In those cases where the power was 

based on a simulation-based estimate from the non-null distribution, a conservative bound on the 

simulation standard error in estimating the power is 0.5 100,000 0.0016 . 

For the RCB ANOVA F-test, in all cases, the non-null distribution of the test statistic was 

estimated via simulation ( 10,000),n   and the power 1 − 𝛽𝐹(𝜃)  was estimated.  Thus a 

conservative bound on the simulation standard error in estimating 1 − 𝛽𝐹(𝜃)  by ˆ1 ( )F   is 

0.5 10,000 0.005 . 

 

5. Results 

For the sake of brevity, graphs of the results for 4t   are not given here, but are discussed.  

In addition, tables of results on which Figures 1 through 5 are based are not included.  Both are 

available from http://www.stat.colostate.edu/~pturk/AuxMaterial.pdf.  The graphs in Figures 1 

through 5 give linear interpolated power curves  for each of the test statistics Q, 2 ,X  and F when 

3t   and 6 for each 5,b  10, 20 and 40, for each of the five scenarios discussed below. 

 

5.1 Location Shift  

When departure from identical treatment distributions is due solely to a location shift in one 

of the treatment distributions not only is 0FH  not true, but in addition 
0

RH  is not true – the 

expected rank of the j-th treatment differs from ( 1) 2t   for some 1,2, , .j t  

Scenario 1 allows comparison of the power of Q, 2 ,X  and F to detect a location shift in one 

of the t treatment distributions, using a location-shifted Student’s t distribution with 2 degrees of 

freedom, as described in section 4.1.  Graphs of the results for the power calculations for a mean 

shift in one treatment by 0,   1, 2, 3, or 4 are given in Figure 1.  Due to the symmetry of the 

problem, for each test, location shifts of 0    will give the same power, hence we consider 

only non-negative values of  . 

While the method of construction of these tests insures that for each value of t and b, the 

achieved Type I error rate (when 0  ) for Q and 
2X  matches the nominal values in Table 2, 

this is not the case for the F test.  The estimated Type I error rate for the F test is consistently 

low, ranging from 55% of its nominal value when 3t   and 5b   (0.0122 versus 0.0220), to 

74% of its nominal value when 20b   for 3,t  4 or 6 (e.g., for 3t  : 0.0279 versus 0.0377).  

This is perhaps not surprising given that the 2t  distribution used here is heavy-tailed and the F 

test is designed to detect location differences between normal treatment distributions. 

 

http://www.stat.colostate.edu/~pturk/AuxMaterial.pdf
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Figure 1:  Estimated power curves for the F, Q and 
2X  tests in Scenario 1. 

With the exception of 5,b   these graphs show that Q has greater power for detecting a 

location shift under this scenario than either 𝑋2 or F.  For 3,t   the power of 2X  becomes 

competitive with that of Q for 𝑏 = 20 and 40, particularly for larger values of .   However for 

𝑡 = 4 (not shown here), this relationship is less evident, and for 𝑡 = 6, the power of the 𝑋2 test 

falls far short of Q. 

Surprisingly, when 𝑏 = 5 the F test is as powerful ( 3, 4t  ) or more powerful (𝑡 = 6) than 

Q in detecting a location shift in treatment distributions, even though the F test is conservative 

here.   

Results (not  shown here) were also obtained using a normal location family in place of the 

2t  location family, for the same values of t and b.  As one might expect, the F test had the greatest 

power to detect a location shift, followed by Friedman’s Q, and then  𝑋2  The relative power of  

𝑋2 to Q in the normal location family was very similar to the results discussed above. 

From these examples, we conclude that the power of the  𝑋2 goodness of fit test to detect 

location differences among treatment distributions, while better than F for heavy-tailed 

distributions when 3t   and 20b  or 40, does not do as well as Q.  Excepting very small 

sample sizes ( 5b  ), Q outperforms the F test for detecting location differences in heavy-tailed 

distributions (including other examples examined but not reported here), but less well for light-

tailed distributions.  With respect to the relative behavior of the F and Q tests, this is consistent 
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with the results of O’Gorman (2001), though his results do not include symmetric distributions 

as heavy tailed as the 2t  – and he did not include 
2X  in his study. 

 

5.2 Scale Shift  

Scenario 2 allows comparison of the power of Q, 𝑋2 and F to detect a scale shift in one of 

the t treatment distributions, using a normal family, as described in section 4.1.  The graphs in 

Figure 2 give the results based on power calculations for a shift in scale by σ =
1

100
,

1

5
,

1

3
,

3

4
, 1,2,5,20,100 – encompassing both scale compression and scale expansion.  When 

1,   both 0FH  and 0H p
 are not true, however 0

RH  is true – the expected rank of the j-th 

treatment is the same for all 1, , .j t   Consequently, this is a circumstance in which we expect 

that Q will have little power to detect departure from 0H p
 and where 

2X  will do well.   

If one knew to expect that any potential differences among the treatments would be due to 

differences in scale, then one of several common tests might be used to look for treatment 

differences, including Hartley’s test or the Brown-Forsythe test.  Here, we imagine the 

practitioner using Q, 2X  and F to look for differences among treatments not knowing what the 

nature of the difference might be.  In addition, the results here will be helpful in understanding 

the ability of the three tests under consideration to detect departures (from 𝐹𝐻0) that involve both 

location and scale shifts. 

As one would expect, the estimated size of the F test under this scenario is within simulation 

error of its nominal value for all t and b.  
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Figure 2:  Estimated power curves for the F, Q and 𝑋2 tests in Scenario 2. 

None of the three tests has great power to detect a small-to-moderate shift in scale among the 

treatments.  Friedman’s Q does uniformly poorly having virtually no power to detect any shift in 

the scale of a treatment no matter how large, for 3,t   4 or 6 and 5,b   10, 20 or 40.  The F 

test is worse except for 3t  , 5.b   The 𝑋2 test is clearly superior for 10,b   20 and 40 when 

3,t   4 or 6.  For fixed t, it does better as b increases.  For 3t  , 𝑋2 is really the only serious 

choice for detecting scale shifts.  

There is a form of invariance at work here:  for 3t   in a symmetric scale-shift family f with 

scale parameter 𝜃 > 0, as 𝜃 increases the resulting multinomial probability vector ( )f p p  

traces a line segment in the standard ( 1)s -simplex – here 1 5s   .  The line segment traced 

is invariant to choice of f, though the parameterization of it (by ) depends on f.  Since the exact 

distributions of Q and 𝑋2 depend only on p, for a given 
p on the line segment and two such scale 

families ( , )f   and ( , )g  , one can find a value 𝜃 = 𝜃∗ and a value    for which 𝐏𝑓(𝜃∗) =

𝐏𝑔(𝜙∗) = 𝐏 .  It follows that for any choice of critical value, the power of Q to detect a scale 

shift 𝜃∗ in scale family ( , )f   is the same as the power of Q to detect a scale shift 
 in scale 

family ( , )g  , and similarly for 𝑋2  A similar result holds for symmetric, scale-shift families 

when 4t  .  The justification of this result for 𝑡 = 3 is given in Appendix 3.  
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Consequently, the results for Q and 2X  for 3t   in Figure 2 for the normal scale-shift 

family would be identical for any symmetric, scale-shift family, up to a change in the scale of the 

horizontal axis. 

For 3,t   similar results were obtained in an additional scale example when sampling from 

a skew normal distribution (Azzalini, 1985), with skew parameter 5  .  Whether the skew 

normal treatment distributions are centered to have common mean, or to have common median, 

the power curves for the three tests (associated with a scale shift in one of the three treatment 

distributions) are nearly identical to those displayed in Figure 2.  We conclude that (at least) in 

the presence of slight skew, the power to detect shifts in scale is well-described by the series of 

graphs in Figure 2.  

 

5.3 Location and Scale Shift 

In practice, as discussed by St. Laurent & Turk (2013), many misapplications of Friedman’s 

test occur when practitioners are aware of heterogeneity in scale of treatments, and wish to assess 

whether there is evidence for differences in medians (or means) between treatments, irrespective 

of scale differences.  In scenarios 3, 4 and 5 we investigate the power of Q, 2 ,X  and F to detect 

combinations of location and scale shift among the treatment distributions.   

Scenario 3 compares the power of each test to detect a difference among the t treatment 

distributions when ( 2)t   treatment distributions are distributed 2(0,1)t , one treatment is mean 

shifted, 2(1,1)t , and the remaining treatment is scale shifted, 2(0, )t  .  We considered 

3 31 1 1
100 5 3 4 2

, , , , , 3,10, 50, 500 
 
– encompassing both scale compression and expansion.  The 

results of the power calculations are graphed in Figure 3.  Note that there is no value of   in this 

scenario for which any of the stated null hypotheses in (1), (2) or (3) is true;  that is, for all values 

of ,  
0

RH  is not  true.   
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Figure 3:  Estimated power curves for the F, Q and  𝑋2 tests in Scenario 3. 
The power curves for Q and F have a similar shape: each test generally has more power for 

detecting treatment differences involving scale compression and location shift than for detecting 

scale expansion and location shift.  A reasonable explanation for this phenomenon is that in the 

presence of a location shift when   is small, the differences in treatment distributions is 

dominated by the location shift in the ( 1)t  -st treatment, and both of these tests have reasonably 

good power for detecting location shifts (section 5.1).  However, when   is large, the differences 

in treatment distributions is dominated by the scale shift in the t-th treatment, and neither test is 

very good at detecting scale shift (section 5.2). 

The behavior of the power curve for 
2X  can be understood in a similar fashion:  

2X  has 

good to moderate power to detect a location shift (section 5.1), and it also can have reasonable 

power to detect scale expansion (section 5.2).  When   is small, and the location shift is the 

dominant difference between the treatment distributions, the power of 
2X  is smaller relative to 

Q and F, but still greater than its power when 1.   However, when   is moderate to large in 

value, the power of 
2X  is greater, in fact exceeding that of Q and F  – particularly for 3t   (and 

for 4t   not shown here). 

Also note that excepting for 5,b   the power of Q exceeds the power of F for a fixed scale 

shift  , for 3t   and 6, and Q is substantially better for larger values of b.  We attribute this to 

the relative advantage Q has over F when dealing with heavy-tailed distributions like Student’s t 

with 2 degrees of freedom, for which the variance does not exist. 
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In Scenario 4 we compare the power of each test to detect a difference among t treatment 

distributions when ( 2)t   are distributed 
2(0,1 )N , one treatment is scale shifted, 

2(0,20 )N , 

and the remaining treatment is mean shifted, 
2( ,1 )N  .  We considered 0,1, 2, 5,10,15  .  

As in Scenario 1, the power of each test here is invariant to the sign of the location shift, hence 

we consider only non-negative values of .   Graphs of the results appear in Figure 4.  Similar to 

Scenario 3, there is no value of   here for which 0FH  is true.  However when 0   then 
0

RH  

is true, though 
0H p

 is not.   

This is precisely the situation noted by Friedman (1937, second paragraph of footnote 4 on 

page 678) as requiring “further analysis.”  Implicitly, it seems that he recognized there might be 

difficulties in detecting differences in location with his test in the presence of non-constant 

variance across treatments.  

 
Figure 4:  Estimated power curves for the F, Q and 𝑋2  tests in Scenario 4. 

With the exception of 6t   and 5,b   the F test is not a serious competitor for detecting 

location shift among the treatments in the presence of a fixed scale shift in one treatment 

distribution.  The behavior of Q is reasonably consistent across t as b increases.  When 0   

and the only difference among the treatment distributions is a scale shift, it has relatively poor 

power to detect that shift, however its power increases as   increases, consistent with the results 

seen in scenario 1.  For 3t   (and for 4,t   available in the supplemental materials), and small 

b, 
2X  has greater power than Q for detecting small or moderate location shift in the presence of 
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a scale shift, and greater or equivalent power for all location shifts for larger b.  In essence, 
2X  

“already” has power to detect a difference among treatments due to scale shift when 0   

(scenario 2) and this power increases as   increases – at least up to a point – when 5b   and 

10, and monotonically for larger b.  For 6,t   
2X  is not competitive with Q excepting when b 

is large ( 40).b    Generally for larger values of b, in the presence of a scale shift, 
2X  is to be 

preferred to Q on the basis of its greater power to detect small location shifts and equivalent 

power to detect large location shifts.   

In Scenario 5 we consider sampling from a distribution with fixed non-zero skew, where the 

treatments vary in scale, and location.  As described in section 4.1, scenario 5 compares the power 

of each test to detect a difference among t treatment distributions when ( 1)t   are distributed 

median-centered exponential, 𝐸𝑥𝑝𝑀𝐶(1), and the remaining treatment is both scale and location 

shifted, (1 5)ExpMC  .  We considered 1
2

0, , 1, 2, 3, 4       .  Graphs of the results 

are provided in Figure 5.  As in Scenario 3, 
0

RH  is not true for all choices of  . 

 

Figure 5:  Estimated power curves for the F, Q and 𝑋2 tests in Scenario 5. 

For fixed b, the power curves for Q and F behave similarly for both 3t   and 6 (and for 

4,t   available in the supplemental materials).  It is apparent that 
2X  is generally not 

competitive with Q and F for 6,t   but for both 3t   and 4, it is often superior when the 

location shift is opposite in direction to the skew, i.e., 0.    There is no clear winner here; as 

the test with the greatest power depends on the values of t, b, and  .   
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6. Discussion & Conclusions 

In searching for differences among treatment distributions in a randomized complete block 

design, Friedman’s Q provides a direct test of the hypothesis of no difference in the average 

treatment ranks, 
0

RH , and hence an indirect test of 0.FH   When interest is in establishing 

evidence for differences in treatments that may not be due to just a location shift, the 
2X  

goodness-of-fit test casts a wider net insofar as it provides a direct test of 
0H p

 – an hypothesis 

“closer” to the null hypothesis 0 ,FH  and as a consequence has sensitivity to alternatives to 

0FH  that are undetectable by Friedman’s test.  And as there are no rank-based tests that will 

detect a departure from 0FH  that is not also a departure from 
0 ,H p

 one cannot find a rank-based 

test that can detect a larger class of alternatives.  

While Friedman’s test clearly has superior power for detecting shifts in location between 

treatment distributions, the power of the goodness-of-fit test 
2X  is greater for detecting shifts in 

scale as well as combinations of location and scale shifts among treatments.   The 
2X  test does 

better when the number of treatments is small (e.g., 3t   or 4) – likely a more realistic situation 

in practice.  For example, in Scenario 4 for 3t   or 4, in the presence of scale shift in one 

treatment, 
2X  does much better than its competitors in detecting small to moderate location shift.  

The 
2X  test does tend to have less power for large t, at least over the range of values of b 

we studied here.  Wormleighton (1959) intimates that the sensitivity of 
2X  to a wider class of 

alternatives likely comes with it the need for larger sample sizes to detect those alternatives.  

Quade (1984) makes a similar conjecture.   As a practical matter, we suspect that in the case of 

small sample sizes, this is in part due to the sparsity of the m vector, and resultant coarseness of 

the small sample distribution of 
2.X   For t treatments and b blocks, under the null hypothesis 

0H p
, it can be shown that the probability that a given element of m is non-empty is 1

!
1 (1 ) .b

t
    

Consequently, the number of blocks needed for this probability to exceed 1
2

, say, quickly 

becomes prohibitively large: for 3t  , at least 4 blocks are needed; for 4,t   at least 17 blocks, 

while for 6,t   at least 499 blocks are required.  Again, suggesting that 
2X  would be best 

suited for use when 3t   or 4. 

Particularly surprising was the competitive, and sometimes modestly better, performance of 

the analysis of variance F test in detecting certain location and scale shifts (e.g., scenario 5) 

between treatments when the number of blocks is small, 5,b   for 3t  , 4 and 6.  

Stochastically Ordered Alternatives. Tamhane and Dunlop (2000, p. 584), and Lehmann 

(1975, p. 262) state the alternative to the Friedman null hypothesis (1), as a stochastic ordering 
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among two or more of the distribution functions 1, ,i itF F  in block i for all blocks.  With respect 

to the current study:  each of the alternatives considered in Scenario 1 is stochastically ordered; 

in Scenario 5 only the alternatives for 3 and 4     are stochastically ordered; and in the 

remaining scenarios none of the alternatives are stochastically ordered.  Developing a better 

understanding of the small-sample behavior of Friedman’s test and the 
2X test when the 

alternatives under consideration do, or do not, exhibit stochastic ordering is the subject of future 

work.  

Aligned Ranks Test.  The aligned ranks test proposed by Hodges & Lehmann (1962) and 

further developed by Sen (1968) is an alternative nonparametric test applicable in the randomized 

complete block setting that has good power relative to Friedman’s test for detecting location 

shifts (O’Gorman, 2001).  Comparing the 
2X test to the aligned ranks test in location and non-

location shift settings is an avenue for future study. 

In this study we considered only alternative distributions for the treatments that differed 

additively between blocks.  An interesting question beyond the scope of this study would be to 

consider alternatives that incorporated variable treatment effects. 

Alternative Approaches.  Within the context of a rank-based methodology, we have focused 

on one approach to testing 0FH  via a test of 
0H p

 in the multinomial setting using 
2.X   Here 

one could also consider the class of power-divergence statistics for evaluating departures from 

0H p
 based on ranks.  This class includes 

2X  and the likelihood ratio test statistic 
2G  as special 

cases (Cressie & Read 1984, Read & Cressie 1988).   

 

Appendices 

Appendices are included in the supplementary material available from 

<http://www.stat.colostate.edu/_pturk/AuxMaterial.pdf>. 
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