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Abstract: It is always useful to have a confidence interval, along with a single 

estimate of the parameter of interest. We propose a new algorithm for kernel 

based interval estimation of a density, with an aim to minimize the coverage error. 

The bandwidth used in the estimator is chosen by minimizing a bootstrap estimate 

of the absolute value of the coverage error. The resulting confidence interval 

seems to perform well, in terms of coverage accuracy and length, especially for 

large sample size. We illustrate our methodology with data on the eruption 

durations for the Old Faithful geyser in USA. It seems to be the first bandwidth 

selector in the literature for kernel based interval estimation of a density. 
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1. Introduction 

We consider the problem of construction of a two sided confidence interval for 𝑓(𝑥0), 

where 𝑓 is the unknown density generating the given data and 𝑥0 is a given design point. A 

density function may be arbitrarily specified at a point 𝑥0. This technical difficulty is overcome 

by assuming that 𝑓 is a continuous function. In the sequel we assume that 𝑓 is continuous and 

𝑥0 is an interior point of the support of 𝑓.  

One of the most well known estimators of 𝑓 is a kernel density estimator (KDE) defined as 

follows. 

 Let 𝑋1 ,....,  𝑋𝑛 , be independent and identically distributed  random variables with an 

unknown density 𝑓(∙).  The kernel density estimator of 𝑓  based on the kernel 𝐾(∙)  and 

bandwidth ℎ ≡ ℎ𝑛, is defined as 

 

𝑓𝑛(𝑦) ≡ 𝑓(𝑦, ℎ) =
1

𝑛ℎ
∑ 𝐾 (

𝑦−𝑋𝑖

ℎ
)𝑛

𝑖=1                               (1.1) 

 

where ℎ  →  0 and nℎ  →  ∞  as n →  ∞ . The problem of data based selection of ℎ  for 

estimating 

𝑓(𝑥0) using 𝑓𝑛(𝑥0) has been well studied. See for instance, [1] and [3] among most recent. 

                                                           
 Corresponding author.  
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In contrast, far less seems to be known regarding the choice of ℎ  for constructing a 

confidence interval for 𝑓(𝑥0) using  𝑓𝑛(𝑥0).  For instance, in [1] the authors mention that there 

seems to be no automatic method for practical interval estimation for 𝑓(𝑥0) available in the 

literature.  From the simulation study in [6] we see that the bandwidth which is appropriate (in 

terms of coverage accuracy) for confidence interval construction is not easy to determine.  No 

data based method for selecting such a ℎ was suggested by the author. Chen proposed empirical 

likelihood confidence intervals for density estimation, but again no bandwidth selection method 

was provided (see [2]). Fiorio has discussed two programs, viz. “asciker” and “bsciker” in Stata, 

to compute asymptotic and bootstrap confidence intervals for kernel density estimation. 

However these programs assume that the search for the correct bandwidth has been performed 

beforehand (see page 173 in [8]). Therefore these algorithms cannot be used to determine the 

appropriate amount of smoothing for kernel based interval estimation. In this paper we propose 

an algorithm for data based choice of h with an aim to minimize the coverage error of the 

resulting confidence interval. 

A kernel based confidence interval for 𝑓(𝑥0)  crucially depends on the approximations of 

the quantiles of the sampling distribution of S= 𝑓𝑛(𝑥0) − E[ 𝑓𝑛(𝑥0) ])/ σ2  and the bias 

b=E[ 𝑓𝑛(𝑥0) − 𝑓(𝑥0), where σ2 is an estimated standard deviation of 𝑓𝑛(𝑥0). 

We use the following σ2 ≡ σ̂2(ℎ) proposed by Hall in [6]. 

 

σ̂2(ℎ) =
1

𝑛ℎ
[

1

𝑛ℎ
∑ 𝐾 (

𝑥0−𝑋𝑖

ℎ
)𝑛

𝑖=1 − ℎ𝑓𝑛(𝑥0)2]                       (1.2) 

 

The bias b is not negligible even for a bandwidth minimizing the mean squared error. There 

are two approaches to tackle the bias b, viz. either to estimate the bias explicitly, or to reduce it 

substantially by under smoothing (see [6]). In [6], the author showed that under smoothing 

method produces confidence intervals with greater coverage accuracy than those obtained by 

explicit bias correction. There are several other practical advantages of the under smoothing 

method. For instance, in the under smoothing approach no estimator of the bias is required. 

In the under smoothing approach we essentially construct a confidence interval for 

E(𝑓𝑛(𝑥0)) using a small value of the bandwidth, such that the same interval can be used to 

perform inference on 𝑓(𝑥0)   Horowitz suggested to perform under smoothing  with n−𝑘, 
k>1/(2r+1), where r is the kernel order (see [7]). From [6] we see that the bandwidth which 

minimizes the asymptotic coverage error of a two sided under smoothed interval is of the form 

ℎ = 𝐻𝑛−1/(𝑟+1) , where H is a constant depending on 𝑓(𝑟) . However, Hall pointed out that 

substantial under smoothing is not a practical proposition. He suggested to use h=c1.05\γ̂𝑛−1/5 

for under smoothing  𝑓𝑛(𝑥0), where  0< c < 1. γ̂  is the sample standard deviation. The values of 

c which give good coverage accuracy for given 𝑥0, n and distribution are not easy to determine 

empirically (see numerical results in [6]). We provide a solution to this problem. 

Given  𝑋1 ,....,  𝑋𝑛  and a bandwidth h, a two sided under-smoothed  bootstrap  1−α 

confidence interval of 𝑓(𝑥0) is defined as 
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where  �̂�𝛼 is the αth  quantile of a bootstrap approximation of the sampling distribution of  S. It 

is in fact the αth quantile of the conditional distribution of S*= (𝑓∗
𝑛

(𝑥0, ℎ) − 𝑓𝑛(𝑥0, ℎ))/σ̂∗, 

given 𝑋1 ,....,  𝑋𝑛 .  𝑓∗
𝑛

(𝑥0),  σ̂∗  are the  versions of 𝑓𝑛(𝑥0), and σ̂ ,  obtained by replacing 

𝑋1,...., 𝑋𝑛 by Efron's (1979) classical  bootstrap re-sample  𝑋1
∗,....,𝑋𝑛

∗.  in (1.1) and (1.2). 

The (exact) coverage probability of I(1 - α) is defined as 

 
[6] suggested to select h with an aim to minimize the absolute value of the coverage error, viz. 

CE=|β(1− α)-(1− α)|. However β(1−α) is a function of the unknown 𝑓.  So for practical data 

based choice of h, CE has to be estimated based on 𝑋1,...., 𝑋𝑛. Using Efron's (1979) classical 

bootstrap method we propose an estimate of the CE and it is minimized (with respect to h) for 

data based choice of the bandwidth.  Let ℎ̂ denote the proposed data based bandwidth.  The 

details of our proposal are given in Section 2. 

 The exact coverage probability  𝛽(1− 𝛼)(ℎ̂), of the confidence interval using  ℎ̂,  is hard to 

compute. However for any given 𝑓,  we can approximate the coverage probability using Monte-

Carlo simulations.  In a simulation study, in Section 3, we compute the Monte-Carlo estimates 

of 𝛽(1− 𝛼)(ℎ̂) for different choices of 𝑓,  𝑥0 and n. We also report the average width and the 

variance of the widths of the confidence intervals. These results are compared with the findings 

in [6].  

 

2. Our proposal 

Given 𝑋1 ,....,  𝑋𝑛  and h, we propose a bootstrap estimate 𝛽∗ (1 − 𝛼 ) of the coverage 

probability 𝛽(1− 𝛼) as follows 

 
where 

 
Given 𝑋1,...., 𝑋𝑛, let  𝑋1

∗,....,𝑋𝑛
∗ be a simple random sample drawn with replacement (srswr) 

from the empirical distribution. As mentioned earlier 𝑓∗
𝑛

(𝑥0),  σ̂∗ are the bootstrap versions of  

𝑓𝑛(𝑥0) and σ̂.  P* denotes the conditional probability, given 𝑋1 ,...., 𝑋𝑛 .  �̂�𝛼
∗   is a bootstrap 

version of the statistic �̂�𝛼. In fact  �̂�𝛼
∗   is the αth quantile of the conditional distribution of S∗∗= 

(𝑓∗∗
𝑛

(𝑥0, ℎ) − 𝑓∗
𝑛

(𝑥0, ℎ)) / σ̂∗∗, given   𝑋1
∗,....,𝑋𝑛

∗  and h.  𝑓∗∗
𝑛

(𝑥0, ℎ) and σ̂∗∗ are obtained by 

replacing 𝑋1,...., 𝑋𝑛  in (1.1) and (1.2) by  𝑋1
∗∗,....,𝑋𝑛

∗∗ which is a second stage re-sample drawn 

with replacement from  𝑋1
∗,....,𝑋𝑛

∗. 

𝛽∗(1- 𝛼) is a function of the bandwidth h.  We define a bootstrap estimator CE of the 

coverage error as follows 

 
We minimize 𝐶�̂�  with respect to h for data based bandwidth selection. The resulting 

random  ℎ̂ is defined as follows 
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where 𝐽𝑛 is a compact interval with endpoints equal to scale invariant bandwidths, which are 

smaller than the bandwidth minimizing the MISE. As mentioned earlier, Hall suggested to use 

ℎ̂= 1.05cγ̂ 𝑛−1/5, 0< c ≤ 1, for under smoothing (see [6])}.  Motivated by this proposal we use 

 

J𝑛 = [𝑐11.05γ̂ 𝑛−1/5,   𝑐21.05γ̂ 𝑛−1/5], 0 < 𝑐1 < 𝑐2 ≤ 1 

 

Hall considered a wide range of values of c varying from 0.1 to 1, and showed that widely 

different values of c are appropriate under different circumstances (see Table 1 in page 687 in 

[6]). Motivated by this, we use 𝑐1=0.1 and 𝑐2=1. With these choices of 𝑐1, 𝑐2 , 𝐽𝑛 covers all the 

under smoothing bandwidths considered by Hall in the simulation study in [6]. 

 The proposed two sided under smoothed bootstrap 1− α  confidence interval of 𝑓(𝑥0) is 

defined as 

 
                                

2.1   Some computational details 

2.1.1 Computation of  �̂�𝜶
∗   

Given 𝑋1,...., 𝑋𝑛 and h, we compute �̂�𝛼 as follows. 

We draw B2 bootstrap re-samples. For each re-sample we compute 𝑆∗. There are B2 values 

of  𝑆∗ corresponding to the re-samples. Now �̂�𝛼 is the αth sample quantile based on these B2 

values. 

 

2.1.2 Computation of �̂�𝜶
∗  

 Let 𝑋1
∗ ,....,𝑋𝑛

∗  be a bootstrap re sample drawn from  𝑋1 ,....,  𝑋𝑛 .  Based on 𝑋1
∗ ,....,𝑋𝑛

∗ , we 

compute �̂�𝛼
∗  as follows. 

We generate B2 second stage re-samples from 𝑋1
∗, … . , 𝑋n

∗, and compute the values of 𝑆∗∗ 

based on the B2 second stage re-samples. The αth sample quantile of these B2 values of  𝑆∗∗  is 

a Monte Carlo approximation to �̂�𝛼
∗∗. 

 

2.1.3 Computation of 𝜷∗(1− 𝛂) (h) 

Given 𝑋1,...., 𝑋𝑛 and h the computation of 𝛽∗(1− α) (h) involves the following  steps. 

 

(i) Generate B1  re-samples, each of size 𝑛 , by simple random sampling with replacement 

(srswr) from 𝑋1,...., 𝑋𝑛, and compute 𝑓∗
𝑛

(𝑥0, ℎ), σ∗(ℎ) for each re-sample. 
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(ii) From each re-sample, we further generate B2 second stage re-samples by srswr. Using 

these second stage re-samples we compute  �̂�α/2
∗  and �̂�1−𝛼/2

∗  by the procedure mentioned 

above. 

 

(iii) Using 𝑓∗
𝑛

(𝑥0, ℎ),  σ∗(ℎ),  �̂�α/2
∗  and  �̂�1−𝛼/2

∗ , we compute 𝐼∗(1 − 𝛼) for each (1st stage) 

re-sample. There are B1 such intervals corresponding to the B1 first stage re-samples. 

 

(iv) The Monte-Carlo estimate of 𝛽∗(1− α) (h) is equal to the number of the intervals (obtained 

in step (iii)) containing 𝑓𝑛(𝑥0, ℎ) divided by B1. 

 

Remark 1. 

1. As mentioned earlier  𝐼∗(1 − 𝛼) is a two sided confidence interval for E(𝑓𝑛(𝑥0)). The 

above mentioned algorithm essentially imitates the Mone-Carlo (MC) method of approximating 

the exact coverage probability of  𝛽(1 − α)(ℎ), for any given 𝑓 and h. In the MC method we 

draw random samples from a given distribution, and for each sample we compute I(1 − 𝛼) by 

the re-sampling method described earlier.  The MC estimate of 𝛽(1 − α)(ℎ) is the number of 

the intervals containing E(𝑓𝑛(𝑥0))  divided by the number of random samples drawn. We 

imitate this procedure, replacing the actual distribution by the empirical distribution. 

We note that 𝑓𝑛(𝑥0)= 𝐸∗ ( 𝑓𝑛
∗(𝑥0)), where 𝐸∗ denotes the expectation with respect to the 

empirical distribution. So the bootstrap version of I(1 − 𝛼) is a confidence interval for 𝑓𝑛(𝑥0), 

given 𝑋1,...., 𝑋𝑛.  In our method the 1st stage re-samples, drawn from the empirical distribution, 

mimic the role played by the random samples drawn from the actual distribution in the MC 

method. 

  2.  We use the same 1st stage re-samples and 2nd stage re-samples (obtained by re-

sampling each 1st stage re-sample in step [ii] of the above algorithm) to compute 𝛽∗(1− α) (h) 

for different values of h, as required in a numerical minimization algorithm. This feature 

reduces the computational burden. 

  3.  Given a confidence interval, Monte-Carlo approximation of its coverage probability 

essentially involves estimating an average of a random function using Monte-Carlo simulations.  

From [5] we see that much larger number of Monte-Carlo re-samples are required for 

approximating a bootstrap quantile estimator accurately, than the same required for 

approximating a bootstrap estimator of the expectation of some random function. Therefore we 

use different number of re-samples, viz.  B2 and B1, to approximate the bootstrap estimators of 

the quantiles and the coverage probability by Monte-Carlo method. 

 

2.2 Monte Carlo sample size for bootstrap-resampling 

From [10] we see that the selection of appropriate B1 and B2 are not easy problems. As a 

rule of thumb, [5] suggested that for Monete-Carlo approximation of bootstrap moment 
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estimators the number of bootstrap re-samples should be 50 to 200.For approximating  

bootstrap quantile estimators the number of bootstrap re-samples should be at least 1000 (see 

[5] ) . We use this rule of thumb, and use B1=200, B2=1000. 

 

3.  Simulation 

Hall conducted simulations to study the effect of the choice of h on the cover-age 

probability of an under smoothed bootstrap confidence interval 𝐼(1 –  α)(ℎ)was examined for 

six combinations of 𝑓 and 𝑥0 (see [6]). The author used h = c1.05γ̂n−1/5, where 0 < c ≤ 1, for 

under smoothing the density estimator. In his simulations 𝑓 equals to the N(0, 1) density and the 

(1/2)N(0, 1)+(1/2)N(3, 1) density, and 𝑥0 equal to 0, 0.75 and 1.5. The notation pN(µ1, 𝜎1
2) + (1 

− p)N(µ2,σ2
2) represents a two component mixed normal distribution, where µ𝑖, σ𝑖

2  are the mean 

and variance of the ith mixing component. For both these test den-sities, 𝑥0  = 0 is the peak of 

the density. Hall reported the Monte Carlo estimates of the exact coverage probability 𝛽(1 −

α)(ℎ), along with the average and stan-dard deviation of the interval length. It was observed 

that the coverage accuracy of the confidence interval for f at the peak was less than the same at 

other point. 

In [1], the authors considered the problem of interval estimation of 𝑓(0), where 𝑓  is a 

standard normal density. From their simulations (page 513, in [1] we see that neither the 

coverage error nor the length of their 95 percent interval seem to decrease as n is increased more 

than two times. This is perhaps due to the fact that random bandwidth proposed by Chan Lee 

and Peng is suitable for point estimation of 𝑓  at 𝑥0 . In [7], the author pointed out that 

nonparametric point estimation and interval estimation are different tasks that require different 

degrees of smoothing.  

In this section we study effect of the proposed random bandwidth ℎ̂ on the coverage 

probability and the average length of I(1 − α), for different choices of 𝑓 and 𝑥0 and α =0.05. We 

consider the above mentioned choices of 𝑓 and 𝑥0 as in [6]. Both these densities are unimodal, 

with peak at  𝑥0 = 0. In addition we consider two more test densities, viz. 𝑓  equal to the 

(1/2)N(−1, 1/2)+(1/2)N(1, 1/2) density and the gamma(2,1) density. For the (1/2)N(−1, 1/2) + 

(1/2)N(1, 1/2) density there are two peaks of same height at −1 and 1, and a trough at 0. We 

estimate this density at 𝑥0 equal to 0 and 1. For the gamma density peak occurs at 1. We 

estimate the height of the gamma density and 𝑥0  equal to 1 and 4.474, which is the 95th 

percentile. To compute the Monte-Carlo estimate of the coverage probability of a confidence 

interval we draw m random samples of a specific size from a test distribution, and compute the 

confidence interval for each sample. So there are m such intervals. The Monte-Carlo estimate of 

the coverage probability is equal to number of intervals containing 𝑓(0), divided by m. In Table 

1 we use 𝑐1 =0.1 and c2 = 1.  

In Table 2 we report the Monte-Carlo estimates of the coverage probability, average length 

and variance of the confidence intervals using ℎ =  𝑐1.05γ̂n−1/5 , for different choices of c and 

𝑓 equal to the (1/2)N(−1, 1/2) + (1/2)N(1, 1/2) density and the gamma(2,1) density. If the mean 

or the variance of the length of the confidence interval exceeds 100, we write “large”.  
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In Table 1 we report the Monte-Carlo estimate of the coverage probability, average length 

and variance of the proposed confidence interval I(1 − α)(ℎ̂), in (2.2), for 10 combinations of 𝑓 

and  𝑥0. We compute each estimate for n = 50 and n = 100. To compute Monte-Carlo estimate 

we draw m = 300 samples from each test density. We have the following observations.  

Table 1: Monte Carlo estimates of 𝛽(1 − α)(ℎ̂) for h eaual to ℎ̂  and α = 0.05 

 
 

(i) The confidence interval I(1 − α)(ℎ̂), using the proposed random bandwidth ℎ̂ in (2.1), 

seems to perform consistently. The coverage error, the mean and the variance of the 

interval length seem to reduce as sample size is increased for all choices of 𝑓 and 𝑥0.  

 

(ii) From the simulation study in [6] and our Table 2, we see that the coverage probability 

and length of the confidence intervals using ℎ =  𝑐1.05γ̂n−1/5,\  0 < c ≤ 1, can vary 

widely depending on estimation point 𝑥0 and c. 

 

(iii) In contrast, the simulations in Table 1 indicate that  for a given distribution the 

coverage accuracy of the  confidence interval using  ℎ̂  does not seem to vary 

drastically with the change in  𝑥0, especially for n=100. This is due to the fact that 

proposed bandwidth selector is a function of the estimation point 𝑥0 , and so the 

resulting bandwidth  ℎ̂ automatically adjusts the amount of smoothing depending on 

𝑥0. 
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(iv) From the simulations in [6] we see that for 𝑓 equal to the (1/2)N(0, 1) + (1/2)N(3, 1) 

density and  𝑥0 equal to the peak, the coverage probability of the under smoothed 

confidence interval is poor especially for c > 0.5 in ℎ =  𝑐1.05γ̂n−1/5.  From our 

Table 2 we see that a similar observation is also true for 𝑥0 equal the trough between 

the two peaks of the (1/2)N(-1, 1/2) + (1/2)N(1, 1/2) density.  Hall pointed out that the 

coverage error of confidence interval for estimation 𝑓 at the peak is in general higher 

than the same at other points, as the bias in a kernel density estimator is more 

pronounced at a peak. We observe that the same argument is also true for 𝑥0 equal to a 

trough. Moreover from Table 2 we see that while estimating the gamma density at the 

peak the under smoothed confidence interval using  ℎ =  𝑐1.05γ̂n−1/5  performs 

poorly for every choice c. 

However, simulations in Table 1 suggest that the proposed confidence interval I(1 − 

α)(ℎ̂)performs  well in estimating 𝑓 at  the peak as well as the trough, in terms of the 

coverage accuracy, especially for n=100 and irrespective of 𝑓. 

 

(v) From the simulations in [6] and our Tables 1 and 2, we see that the mean and the 

variance of the length proposed confidence interval compares well with the lengths of 

the corresponding confidence intervals using ℎ =  𝑐1.05γ̂n−1/5 in [6]. 

 

3.1 Faithful data analysis  

A well known data set in the context of density estimation is the data on the durations (in 

minutes) of eruptions for the Old Faithful geyser in Yellowstone National Park, Wyoming, USA. 

It is available in the R software (see data set ``faithful" in R). The histogram based on the 

frequency density of the raw data is plotted in Figure 1.  We construct the 95 percent confidence 

intervals at 30 equidistant grid points using the proposed method. These upper and lower limits 

of the confidence intervals are marked as red and blue ``bubbles" in Figure 1. We also plot the 

kernel density estimates using the plug-in bandwidths proposed by Sheather and Jones (see [9])  

and the least square cross validation bandwidth. The cross validation and plug-in density 

estimates are numbered as 1 and 2 in Figure 1.  We observe the following. 

The data is strongly bi-modal. The upper limits of the 95 percent confidence intervals seem 

to close to the frequency density of the raw data at the grid points (see the red "bubbles" in 

Figure 1"). The left-peak in the cross validation based curve is taller than the same in the plug-in 

curve.  Both the density estimates are within the 95 percent confidence interval near the two 

peaks. It seems that the left peak of the underlying density can be taller than the same in the 

plug-in based curve. The cross validation based density estimate seems to be reasonable near the 

left-peak. The cross validation curve is always within the confidence intervals at the grid points. 

The plug-in curve seems to lie outside confidence interval at the grid points in the left tail region. 

So for this data set the cross validation density estimate seems to be a more reasonable fit. 
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Clearly the confidence intervals, along with the point estimates of the density, enable a more 

detailed analysis of the data than that based on a single density estimate. 

 
Figure 1: Fig 1: the 95 percent confidence bands and the density estimates using plug-in bandwidth (the 

red curve) and the least square cross validation bandwidth (the blue curve) based on the eruption 

durations data.   

 

Final Remarks 

From the above simulation study it appears that the confidence interval I(1 − α)(ℎ̂) in (2.2) 

performs well for all the test densities, especially for n=100.  Simulations in our Table 2 suggest 

that if 𝑓 is a density with positive support and 𝑥0 is the peak, the under smoothed confidence 

interval for 𝑓(𝑥0) using  ℎ =  𝑐1.05γ̂n−1/5  performs poorly for all the different choices of c 

mentioned in [6].  In contrast, the coverage error or the average length of I(1 − α)(ℎ̂) does not 

seem to vary  drastically for different choices of 𝑥0.  So the proposed bandwidth selector can be 

recommended safely for interval estimation of 𝑓(𝑥0 ), especially for large sample size. We 

observe that using a confidence band in conjunction with the usual global density estimates 
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more detailed information can be extracted from the faithful eruption duration data, than that 

obtained using a single density estimate. 

 

Table 2: Monte Carlo estimates of 𝛽(1 − α)(ℎ̂) for ℎ =  𝑐1.05γ̂n−1/5 for different values c 
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