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Abstract: In this paper we endeavour to provide a largely non-technical 

description of the issues surrounding unbalanced factorial ANOVA and review 

the arguments made for and against the use of Type I, Type II and Type III sums 

of squares. Though the issue of which is the `best' approach has been debated in 

the literature for decades, to date confusion remains around how the procedures 

differ and which is most appropriate. We ultimately recommend use of the Type II 

sums of squares for analysis of main effects because when no interaction is 

present it tests meaningful hypotheses and is the most statistically powerful 

alternative. 
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1. Introduction 

The fixed effects analysis of variance (ANOVA) procedure has been a staple of 

introductory statistics courses in the behavioural sciences since it was introduced by R.A. 

Fisher.  Fisher developed factorial ANOVA for use with data sets with equal numbers of 

observations across the levels of each experimental factor, termed ‘balanced’ data.  It quickly 

became clear that troublesome results can follow when this condition is not met. In 1934 Yates 

published his landmark paper in which he proposed all the methods used today in the analysis 

of main effects with unbalanced designs. Three of Yates’ procedures, the unadjusted method of 

fitting constants, the adjusted method of fitting constants and the weighted squares of means, 

have become the most commonly employed methods for partitioning the sums of squares. 

Researchers in psychology are likely more familiar with the labelling introduced by the 

software package SAS as Type I, Type II and Type III sums of squares, respectively. 

Many introductory statistics texts avoid the types of sums of squares controversy by only 

presenting factorial ANOVA in the context of equal sample sizes.  Researchers are often made 

aware of the issue when they discover that different options are available for analysis of 

factorial designs in their statistical software. 

Though the issue of which is the ‘best’ approach has been debated in the literature for 

decades, the discussion can be quite difficult to follow as such a wide variety of terminology 
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has been introduced (a summary of the language employed has been assembled in Appendix A). 

Frustrated researchers continue to post questions to message boards with answers to these 

questions rarely providing any detailed recommendations.  The purpose of this paper is to 

provide researchers with a largely non-technical description of the issues surrounding 

unbalanced factorial ANOVA, review the arguments made for and against each of the standard 

methods, and provide simple recommendations. 

 

2.  Example 

To frame the discussion we will use an example inspired by the research design of Weiss 

and Loubier (2008), but using simulated data.  In this study a survey was conducted using 

random sampling in which respondents were asked about their gambling behaviours. The 

participants were categorized as being former athletes, current athletes, or non-athletes, with the 

working hypothesis that former athletes would demonstrate stronger gambling behaviours than 

current and non-athletes.  There was also a hypothesized gender effect.  The study is therefore a 

classical a 3 x 2 factorial ANOVA.  The data was simulated with some imbalance, as we might 

expect to see when random assignment to condition is not possible.  The fictitious data is 

presented in Table 1 and the cell means are plotted in Figure 1. The question of interest is 

whether there is an effect of the variables, athletic status or gender, on the gambling behaviour 

scores. 

To express the problem in the typical ANOVA language, we are looking for evidence of 

mean differences in the outcome (gambling) across the levels of athletic status and gender.  To 

assess this statistically, the ANOVA methodology involves breaking down the observed 

variance in gambling into parts: variance that is ‘explained’ by the two factors and their 

interaction, and ‘unexplained’ variance (otherwise referred to as ‘residual’ or ‘error’ variance).  

If the variation attributed to a factor is large relative the residual variance, then that variable is 

considered to have a significant effect on the dependent variable.  We then conclude that the 

means are not all equal across the levels of that factor. 

We might begin to appreciate the difficulty in assessing mean differences with unbalanced 

factorial designs by considering that the mean gambling behaviour score for, say, the former 

athletes might be computed in any number of different ways. We could take the average of the 

mean gambling score for female former athletes (�̅� = 3.93) and male former athletes (�̅� = 4.97), 

arriving at a mean of means for former athletes [Y̅ =
1

2
 (3.93 + 4.97) = 4.45].  This is otherwise 

known as the equally weighted (or ‘unweighted’) mean and is implicit in the Type III method 

of sums of squares (SS).  Alternatively, we might disregard gender and compute a mean time 

over all the former athlete observations (�̅� = 4.62). This method is a form of weighted mean 

because this value is more heavily influenced by the cell with the largest sample, and is implicit 

in the first factor in a Type I SS analysis.  Other possibilities for mean weighting exist, for 

example the Type II Sums of Squares use yet another form of weighted means.  When there are 

an equal number of observations in each cell, the unweighted and weighted means will be 

equivalent, but when there are unequal frequencies they generally will not. 
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Table 1: Simulated gambling scores 

 
 

 

Figure 1:  Graph of the cell means for the example data 

 

Difficulties also arise in partitioning the explained variance with unbalanced data. To 

understand this more clearly it is important to understand that ANOVA is nothing more than a 

special case of linear regression (see Fox & Weisberg, 2011).  We can conduct ANOVA using 

least squares regression and this is precisely what your statistical software is doing ‘behind the 

scenes’. To fit this model using least squares linear regression, the categorical variables athletic 

status and gender should be coded using deviation or ‘sum-to-zero’ regressors.  This is similar 

to the more familiar ‘dummy coding’, but, as the name implies, these variables sum to zero. 

Sum to zero coding ensures that important constraints are always maintained. To represent all 

the levels of a factor, we require the number of levels less one deviation regressors. For the 

gender factor, which has only two levels, we require only one deviation regressor which we 

will call 𝐷𝐺𝑒𝑛 . The factor athletic status has three levels, and so we need two deviation 

regressors 𝐷1𝐴𝑡ℎ𝑆𝑡𝑎𝑡  and 𝐷2𝐴𝑡ℎ𝑆𝑡𝑎𝑡 . Since we rarely interpret (or even see!) the regression 

coefficients in ANOVA, the category set to -1 is completely arbitrary and will not impact our 

analysis. Applying this coding scheme to our data, we arrive at a data set as shown in Table 3 
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and we can fit a regression of the form Equation 1 where �̂� represents the predicted gambling 

score. 

 

�̂� = 𝑐0 + 𝑐1𝐷𝐺𝑒𝑛 + 𝑐2𝐷1𝐴𝑡ℎ𝑆𝑡𝑎𝑡 + 𝑐3𝐷2𝐴𝑡ℎ𝑆𝑡𝑎𝑡 + 𝑐4𝐷𝐺𝑒𝑛 × 𝐷1𝐴𝑡ℎ𝑆𝑡𝑎𝑡 + 𝑐5𝐷𝐺𝑒𝑛 × 𝐷2𝐴𝑡ℎ𝑆𝑡𝑎𝑡 

(1) 

 

 

Table 2: Sum-to-zero coded regressors representing Gender (𝐷𝐺𝑒𝑛) and Athletic Status 

(𝐷1𝐴𝑡ℎ𝑆𝑡𝑎𝑡 and 𝐷1𝐴𝑡ℎ𝑆𝑡𝑎𝑡) 

 
 

Table 3: Simulated data recoded with sum-to-zero deviation regressors 

 
 

We are not, for better or worse, particularly interested in the coefficients of this regression 

in the ANOVA framework. Instead, we are interested in the proportion of variability in the 

outcome gambling (Y) that can be accounted for by gender (𝐷𝐺𝑒𝑛), athletic status (𝐷1𝐴𝑡ℎ𝑆𝑡𝑎𝑡 

and 𝐷2𝐴𝑡ℎ𝑆𝑡𝑎𝑡  combined) and the interaction ( 𝐷𝐺𝑒𝑛 × 𝐷1𝐴𝑡ℎ𝑆𝑡𝑎𝑡  and 𝐷𝐺𝑒𝑛 × 𝐷2𝐴𝑡ℎ𝑆𝑡𝑎𝑡 

combined).  The total variability (𝑆𝑆𝑡𝑜𝑡𝑎𝑙) can always be partitioned into explained variance 

(the sum of squares of the regression, 𝑆𝑆𝑟𝑒𝑔, Equation 2) and unexplained variance (𝑆𝑆𝑒𝑟𝑟𝑜𝑟, 

Equation 3) as in Equation SSsum. What we would like to do is further decompose the 

explained variance (𝑆𝑆𝑟𝑒𝑔) into parts ‘due to’ the factors and interaction. 

𝑆𝑆𝑟𝑒𝑔 = ∑(�̂�𝑖 − �̅�)
2
                                                       (2) 
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𝑆𝑆𝑒𝑟𝑟𝑜𝑟 = ∑(𝑌𝑖 − �̂�𝑖)
2
                                                    (3) 

 

𝑆𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑆𝑟𝑒𝑔 + 𝑆𝑆𝑒𝑟𝑟𝑜𝑟 = ∑(𝑌𝑖 − �̅�)
2
                             (4) 

In balanced designs the correlations between regressors associated with separate factors are 

zero (Table 4). When this is true, 𝑆𝑆𝑟𝑒𝑔 can be separated into unique portions associated with 

the factors and the interaction, as per the top left Venn diagram in Figure 2a.  Furthermore, the 

sums of squares associated with each of the factors and the interaction can be simplified and we 

can compute the sums of squares directly using equations commonly presented in introductory 

statistics texts.  As outlined earlier, with balanced data it makes no difference which method is 

used to compute the sums of squares, Type I, II and III will all yield identical results. 

 

Table 4: If the data were balanced the regressors associated with one factor would be uncorrelated with 

the regressors of the other 
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Figure 2: Venn Diagrams 

 

  Table 5: Correlated regressors with unbalanced data 

 
The unequal frequencies in our simulated study produce an unfortunate side-effect, as 

correlations are induced between our regressors 𝐷𝐺𝑒𝑛, 𝐷1𝐴𝑡ℎ𝑆𝑡𝑎𝑡, 𝐷2𝐴𝑡ℎ𝑆𝑡𝑎𝑡, 𝐷𝐺𝑒𝑛 × 𝐷1𝐴𝑡ℎ𝑆𝑡𝑎𝑡 

and 𝐷𝐺𝑒𝑛 × 𝐷2𝐴𝑡ℎ𝑆𝑡𝑎𝑡 (Table 5). In multiple regression terminology, this is known as 

collinearity. Said differently, our ‘predictors’ are correlated, since there is a small relationship 

between Gender and Athletic Status. As a consequence of this collinearity, the sums of squares 

associated with the factors and interaction overlap or underlap to the extent that they are 

correlated (Figure 2 b, c and d). The Venn diagram analogy is not perfect, since ‘underlapping’ 

variance cannot be appropriately represented in this format, but it does make clear that we now 
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have a problem in how to divvy up the shared variation, and it is precisely this that is handled 

differently in the Type I, Type II and Type III methods.  

There is not a general set of equations to compute the sums of squares under these 

conditions, instead the process of arriving at the Type I, Type II and Type III methods of sums 

of squares is one of computing differences between regression sums of squares of appropriate 

nested sub-models. This idea will be explored in more detail in following sections, but the 

regression sums of squares required for these computations are summarized in Table 6. 

 

3.  Error and Interaction 

The sums of squares for two entries in the ANOVA table will be the same regardless of the 

method selected to compute the sums of squares: the error or ‘residual’ SS and the interaction 

sum of squares. 

The error term is simply the residual variability having fit the full model (i.e. all factors and 

interactions included) as per Equation 3. Since we are interested in computing the proportion of 

variability explained by the factors in the model, we will compute F-ratios whereby the 

denominator is the mean square error (𝑀𝑆𝑒𝑟𝑟𝑜𝑟 =  𝑆𝑆𝑒𝑟𝑟𝑜𝑟/𝑑𝑓𝑒𝑟𝑟𝑜𝑟). 

The interaction term in a 2-factor ANOVA is also computed in the same way in the Type I, 

II and III methods of sums of squares. To arrive at 𝑆𝑆𝐺𝑒𝑛×𝐴𝑡ℎ𝑆𝑡𝑎𝑡 we must subtract regression 

sum of squares for the model including gender and athletic status (Table 6 model 2) from 𝑆𝑆𝑟𝑒𝑔 

for the full model (Table 6 model 1). The computation of the incremental sum of squares by 

comparing nested sub-models is depicted in Figure 3. We then say that the interaction term 

𝑆𝑆𝐺𝑒𝑛×𝐴𝑡ℎ𝑆𝑡𝑎𝑡 is the effect of the gender x athletic status interaction ‘controlling’ for the main 

effects of gender and athletic status, for which we will use the shorthand SS(Gender ×  

AthleticStatus|Gender, AthleticStatus). 

Table 6: Regression sums of squares and associated deviation regressors for the full regression model and 

nested sub-models 
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Figure 3: Computing the sum of squares for the gender x athletic status interaction by incremental 

regression sum of squares 

We can now begin to fill in the standard ANOVA table (Table 7). The interaction effect is 

non-significant at α =0.05, with 𝐹2,18 = 2.906 and p = 0.081. We strongly recommend that 

researchers supplement the standard hypothesis test with visual inspection of the data and 

measures of effect size such as η2 (Equation 5) or ω2 (Equation 6). For the example at hand, we 

saw little evidence of an interaction in the profile plot of the means (Figure 1), and the effect of 

the interaction is negligible with η2 = 0.0024 and ω2 = 0.0016. 

 

Table 7: The ANOVA summary table entries for the interaction and error terms will be the same 

regardless of the method of SS employed 

 
Since both the interaction sum of squares and the error term are the same regardless of the 

method (Type I, II, III) selected for analysis, the test of statistical significance (F-ratio and p-

value) and effect sizes for the interaction term of gender x athletic status will be equivalent 

across all methods.  In our example, there is little evidence of an interaction, thus we can 

proceed with analysis of the main effects. 

Had the interaction term been significant, this would indicate that the effect of one factor is 

not consistent across the levels of the other. Main effects in this situation are generally not 

meaningful, so in the presence of a significant interaction the method of sums of squares 

becomes irrelevant. Rather, we would proceed by interpreting the interaction directly using an 

appropriate follow-up analysis, such as interaction contrasts. Interaction contrasts break down 

larger interactions into all potential 2x2 combinations, which facilitates an understanding of the 

root of the interaction (Abelson & Prentice, 1997). Interaction contrasts are generally preferred 
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over simple effects tests because they provide a statistical test of the component interactions, 

rather than simply providing separate statistical tests at each level of one predictor (which often 

provides unclear or even confusing interpretations of the interaction). 

In general this statement holds for the highest-order interaction term. That is to say, in a 3-

factor ANOVA the 3-way interaction term is the same regardless of the method of analysis 

selected, but the 2-way interactions will differ. 

 

4. Main Effects 

The issues pertaining to analysis of main effects are split, roughly, into three domains: 

underlying regression models, the null hypotheses associated with the methods, and finally 

statistical power. The reader should keep in mind that these topics are intertwined, and dividing 

the arguments presented in the literature along these lines is rather artificial. We will generally 

discuss the methods in reverse order, starting with the Type III procedure, for ease of 

discussion. 

 

4.1 Regression Models  

4.1.1 Type III Sum of Squares  

The main effect for gender by the Type III method can be interpreted as the main effect of 

gender controlling or adjusting for athletic status and the interaction gender x athletic status 

(SS[Gender|AthleticStatus, Gender×AthleticStatus]). A major criticism of the Type III 

methodology is that the model does not respect marginality, that it is generally wrong to 

interpret main effects in the presence of an interaction (Cramer & Appelbaum, 1980; 

Nelder1994; Nelder & Lane, 1995; Langsrud, 2003). If a significant interaction is detected, this 

result should be pursued. If it is not, and we haven’t a particularly strong reason to believe in 

it’s existence, it should be removed from the model so that main effects can be interpreted alone.  

The Type III sum of squares for the main effect of gender is computed by subtracting the 

regression sum of squares for a model with athletic status and gender x athletic status (Table 6 

model 4) from the full model (Table 6 model 1) as shown in Figure 4. Notice that this involves 

performing a very unusual regression including a single main effect and an interaction term. 

The main effect of athletic status is computed in an analogous way, taking the difference in 

𝑆𝑆𝑟𝑒𝑔 between models 1 and 3. The results for the example are summarized inTable 8.  
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Figure 4: Computing the Type III sum of squares for gender by incremental regression sum of squares. 

 

Table 8: ANOVA summary table using Type III SS 

 
 

4.1.2 Type II Sum of Squares  

Using the Type II Method, the sums of squares for main effects are computed adjusting for 

other main effects in the model, but omitting higher-order terms. The main effect for gender 

(SS[Gender|AthleticStatus]) is therefore computed by taking the regression sum of squares for a 

two-factor model (without interaction) and subtracting the sum of squares for a model with 

athletic status alone (Figure 5). Referring back to Table 6, this is the difference between models 

2 and 6. The incremental sum of squares for athletic status is computed by taking the difference 

between models 2 and 5. The results of the Type II method are summarized in Table 9. 

 

 
Figure 5: Computing the Type II sum of squares for Shape by incremental regression sum of squares. 
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Table 9: ANOVA summary table using Type II SS 

 
 

Unlike the Type III method, the Type II Sums of Squares for main effects do not violate 

marginality and is therefore logically sound in terms of model specification. The main effects 

are adjusted for each other, but not for potential higher-order interaction terms. Cramer1980 

argue that the ANOVA method should be viewed as a logical sequence of model comparisons, 

beginning with interaction terms and proceeding to analysis of main effects. In regression 

analysis this is common practice, models are tested and reduced seeking the most parsimonious 

model.  

 

4.1.3 Type I Sum of Squares  

The Type I Sums of Squares are known as ’sequential’ sums of squares, because effects are 

adjusted only for the terms that appear ’above’ them in the ANOVA table. That is to say, the 

first factor entered into the analysis is not controlled or adjusted for any other variables, so 

SS(Gender) is simply equal to the 𝑆𝑆𝑟𝑒𝑔 for a model including only the variable gender (though 

the statistical test is computed using the error term for the full model). The second factor, 

athletic status, is computed adjusting for the first (SS[Athletic|Gender]), which is equivalent to 

the Type II Sum of Squares for this factor. The interaction term remains the same, gender x 

athletic status adjusted for the two main effects. Thus the sum of squares for gender is equal to 

𝑆𝑆𝑟𝑒𝑔 for Table 6 model 5, and SS(AthleticStatus|Gender) is the difference in 𝑆𝑆𝑟𝑒𝑔 between 

models 2 and 5. The results for the example data are summarized in Table 10. 

Table 10: ANOVA summary table using Type I SS 

 
Unlike the other two, the Type I method will produce different values for the sums of 

squares if we swap the ordering of the factors and compute athletic status before gender. This 

property of the Type I method is generally unappealing and many authors recommend that the 

Type I method be used with caution and in the unlikely scenario that a researcher has a valid a 

priori reason for the ordering (Langsrud, 2003; Hector, von Felten, & Schmid, 2010). By 

rotating the order in which factors are entered into the model one can compute all the sums of 

squares associated with the Type II and Type III methods. If the design involves only a few 
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variables, Hector et al. (2010) suggest that this additional effort may be worthwhile since 

exploring the relationships between factors in this way may provide a better feel for the data. 

Furthermore, the Type I method does conform to marginality, and is therefore considered a 

viable option by those authors who consider adherence to marginality constraints to be 

necessary (Appelbaum & Cramer, 1974; Cramer & Appelbaum, 1980; Nelder, 1994; Nelder & 

Lane, 1995; Langsrud, 2003). 

The Type I method yields sums of squares for the factors, interactions and error that add to 

the sums of squares total (See Figure 2b), while both the Type II and Type III methods typically 

result in double-counted or missed variance. This quality of the Type I method is not a 

particularly good reason to choose it over either of the other two, but it is mentioned in passing 

for the interested reader.  

 

4.2 Null Hypotheses 

4.2.1 Type III 

In its favour, the null hypotheses associated with the Type III method can be interpreted as 

equivalence of unweighted means (Table 11) without making further assumptions regarding the 

presence of interactions (which we will see is not the case for the Type II method). The Type 

III method is the most common default method for factorial ANOVA in statistical software 

(Table 12) and this reasoning is frequently cited in help files (SAS 9.2, SPSS 19 and Statistica). 

Many authors have also recommended the Type III method because of the form of the null 

hypotheses (Carlson & Timm, 1974; Blair & Higgins, 1978; Kutner, 1974, 1975; Howell & 

Mcconaughy, 1982; Searle, 1995) 

Table 11: Null hypotheses associated with Type III SS (Speed, 1978). 
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Table 12: Default and available methods in popular statistical software 

 
4.2.2 Type II 

One of the arguments commonly levied against the use of the SAS Type II method is that 

the null hypotheses for the full model (including interactions) are not easily interpretable (Table 

13, left). It is for this reason that some authors roundly reject the Type II method (Carlson & 

Timm, 1974; Howell & Mcconaughy, 1982), and others gently recommend against it in favour 

of Type III (Overall & Spiegel, 1969; Searle, 1995; Shaw & Mitchell-Olds, 1993). However, 

the Type II hypotheses simplify to the test equality of equally weighted means if the interaction 

term is assumed to be zero (Speed, Hocking, & Hackney, 1978) (Table 13, right). In other 

words, if we are willing to assume that there is no interaction, the hypotheses for the Type II 

method become equivalent to those associated with Type III. 

Table 13: Null hypotheses associated with Type II SS (Speed, 1978). If no inter-action is assumed, the 

null hypotheses for the main effects simplify to equality of equally weighted means (right) which are 

equivalent to the Type III null hypotheses. 

 

Howell and Mcconaughy (1982) argue that researchers are rarely in a position to make such 

a strong claim about the absence of an interaction in the population, and making this decision 

on the basis of a non-significant test amounts to ‘proving the null hypothesis’. For this reason, 

they say that the Type III method is a ‘safer’ alternative to the Type II because if an interaction 

exists (whether the test has the power to show it or not) then the tests for main effects are made 

against ‘meaningful’ hypotheses.  

While it must be conceded that we can never speak with certainty as to the true nature of 

the interaction in the population, Cramer and Appelbaum (1980) argue that we must be willing 

to allow our statistical tests to guide our model selection process. As Nelder and Lane (1995) 
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and Cramer and Appelbaum point out, if an interaction is present, no form of mean weighting 

(including the equally weighted Type III mean) is particularly meaningful or interesting. If we 

have decided to proceed with the interpretation of main effects, we must then be willing to 

assume no interaction exists and that we are testing the meaningful Type II hypotheses (Table 

13, right). 

 

4.2.3 Type I Sum of Squares 

The Type I method tests for equivalence of fully weighted means for the first variable 

entered into the model, and the null hypothesis for the second factor is the same as the Type II 

method (Table 14, left). The same criticisms that are levied against the Type II method are 

often raised with regards to the Type I method, that the null hypotheses are a function of the 

sample size. If the interaction is assumed to be zero, the second null hypothesis simplifies to an 

acceptable form. The first hypothesis, however, is only really appropriate if the frequencies are 

related to population frequencies and one wished to make conclusions respecting the 

demographics (Carlson & Timm, 1974; Hector et al., 2010). Further, it is generally not 

desirable to have different forms of null hypotheses for each main effect.  

Table 14: Null hypotheses associated with Type I SS (Speed, 1978). If no interaction is assumed, the null 

hypotheses for the main effects simplify to equality of equally weighted means (right) which are 

equivalent to the Type III null hypotheses. 

 
4.3 Statistical Power  

The last consideration is statistical power. It can be shown analytically that if there is no 

interaction present in the population, the Type II method will necessarily be maximally 

powerful (Monette & Fox, 2009). In other words, when no interactions exist the Type II method 

is always more powerful than the Type III method for unbalanced ANOVA. A discussion of 

power for Type I sums of squares is complicated by the fact that calculations depend on the 

order of entry of the variables. For the first variable entered using Type I sums of squares is 

equivalent to a one-way ANOVA, and hence direct comparisons to Type II and Type III sums 

of squares are not meaningful. For the second variable entered using Type I sums of squares the 

computations are equivalent to the Type II method, and hence power will be the same. 

Otherwise, the power depends on the structure of the imbalance, and it cannot be 

guaranteed that Type II is the most powerful in all cases (Shaw & Mitchell-Olds, 1993). 

Lewsey and Gardiner (2001) conducted some limited simulations comparing the behaviour of 

Type II and Type III methods when small, non-significant interactions exist in a 2×3 factorial 
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design. Their main finding was that, while the Type II method was on average more powerful 

for most unbalanced structures investigated, it was also more strongly influenced by cell 

patterning. They were therefore unable to provide strong conclusions as to which particular 

patterns of imbalance result in a power advantage for the Type II sums of squares. 

Research from pharmaceutical statistics offers one specific scenario in which the Type II 

method has substantially higher power than Type III. Consider a clinical trial conducted at 

several medical facilities of differing capacity. In the analysis one would like to assess the 

effectiveness of the medication while controlling for location. Gallo (2000) demonstrates that, 

provided the within-centre treatment allocation is well balanced, that the SAS Type II method 

maintains high power. Power for detecting treatment effects deteriorates rapidly using the Type 

III method when center sample sizes vary. Gallo presents an example in which one medical 

center is 1/3 as large as the other three in a hypothetical study. For this case the Type III 

method had higher power if the small center was omitted rather than kept in the analysis, 

clearly signalling a problem with the Type III method.  

 

5. Conclusions and Recommendations  

The purpose of this paper was to explore the different methods available for computing 

sums of squares in unbalanced factorial ANOVA. It is clear from the above discussion that the 

crux of the issue is whether or not there is an interaction effect. When interactions are 

hypothesized, it is of the utmost importance that studies have adequate power to detect them, 

which requires careful consideration of sample size requirements. If a significant interaction is 

detected, then the analysis should proceed directly to appropriate follow up tests (e.g., 

interaction contrasts), and the issue of which method of sums of squares to employ is not 

relevant. If a non-significant interaction is obtained, but the effect size (e.g., ω2 , η2) is not-

negligible, say exceeding Cohen’s (1998) recommendation of 0.01 for a small effect and 

certainly 0.06 for a medium effect, researchers should strongly consider collecting more data in 

order to improve statistical power for detecting the interaction. Since an interaction is suggested 

it may be preferable to proceed with interaction contrasts rather than interpreting main effects 

that are possibly contaminated by the interaction.  

If there is no evidence of an interaction, either by way of significant hypothesis tests or 

effect sizes, we agree with the assessment of Cramer and Appelbaum (1980) that one of three 

eventualities has unfolded: (1) no interaction was detected because none exists in the 

population in question. In this circumstance the Type II method is definitively more powerful 

and we will necessarily lose power by electing to use the Type III method instead. (2) A very 

small interaction exists in the population, in which case it is not definitive which method will 

provide for the best statistical power for main effects. (3) A large interaction exists in the 

population but we have been extremely unfortunate in selecting a sample that does not evidence 

it. In this case the Type III method may hold better statistical power, but in this unfortunate 

situation the main effects will be of dubious value anyway. As Stewart-Oaten (1995, p.2007) 

quipped “the Type III SS is ‘obviously’ best for main effects only when it makes little sense to 

test main effects at all”. Further, we do not recommend the Type I sums of square since we 
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believe it will be rare to find a situation when researchers would be interested in testing distinct 

hypotheses for the two predictors and that the cell sizes represent the population proportions.  

Since the likelihood of a large interaction being present in the population but not detected 

in the sample is small (case 3), it is recommended that the decision between Type II and Type 

III SS be based on case 1 and case 2. For case 1 Type II sums of squares will always be more 

powerful (Monette & Fox, 2009), whereas for case 2 the Type II method is likely more 

powerful particularly for light cell imbalance (Lewsey & Gardiner, 2001). Therefore, since it is 

rare to find cases in which we would recommend Type I or TYPE III sums of squares, we 

suggest that researchers routinely use the Type II sum of squares to analyze between group 

factorial ANOVA designs. Currently, this method is the default for only the” Anova” function 

(from the ’car’ package) in R, but hopefully this paper will help convince other software 

developers to make Type II sums of squares the default for their programs. 

 

Appendix A: Summary of terminology employed in the literature 

Table 15 
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