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Abstract: This article considers hypothesis testing using Bayes factor 

in the context of categorical data models represented in two-

dimensional contingency tables. The study includes multinomial 

model for a general I × J table data. Other data characteristics such 

as low as well as polarized cell counts and size of the tables are also 

considered. The objective is to investigate the sensitivity of Bayes 

factor taking these features into account so as to understand the 

performance of non-informative priors itself. Consistency has been 

studied based on different types of data and using Dirichlet prior with 

eight different choices for multinomial model followed by a 

bootstrap simulation. Study has emphasized the reasonable choice of 

values for the parameters that normally represents the underlying 

physical phenomena, though partially vague in nature. 
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1. Introduction 

Categorical data are generally presented in a contingency table of size 

I × J with I representing the number of rows and J as number of columns. 

In most of the survey sampling, cell counts in I × J table follow a 
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multinomial distribution and Chi square test of association is widely 

applied to understand the association between the variables. However, in 

practice, it is impossible to have an agreement about the appropriateness 

of the model to be used unless there is a well-established theoretical 

framework or a mechanism underlying the problem. Therefore, it is 

imperative to take into account uncertainties in the model-building process, 

and so to start with, a set of competing models has to be considered with 

each model viewed as a different state of a random variable.  

Marden (2000) has emphasized the need to expand the scope of 

hypotheses testing beyond p values and noted that Bayesian inference with 

automatic computing methods will be a promising approach. Statistical 

inference on parameter estimation based on Bayesian approach is 

conceptually straightforward in most of the problems. Once a prior 

distribution is defined and with a reasonable likelihood function, inference 

about parameters of interest is obtained from marginal posterior 

distributions and nuisance parameters are integrated. The role of 

probability in measuring the uncertainty at each stage of Bayesian 

estimation process is well established. In order to arrive at the posterior 

distribution of possible states of the model, prior distribution of each 

model is updated using the information contained in the data. Now, the 

inference is drawn from the entire posterior distribution of the most 

plausible model. 

Johnson (2005) proposed methods based on Bayes factors for 

modeling the sampling distributions of standard test statistics.  The study 

indicated the possible extensions to test statistics associated with 

categorical data. However, influence of priors and nature of subjectivity 

affects the sensitivity of results in a significant way. Vanpaemel (2010) 

has provided exhaustive list of studies that address the sensitivity of priors 

and has emphasized the importance of prior in sensitivity analysis. 

Particularly Hashemi (1997) and Nandram and Choi (2007) separated by 

a decade but similar in approach, have  provided motivation to investigate 

deeply the Bayes factor for categorical data under multinomial design, 

which is ubiquitous in many social science survey sampling designs and 

problems. 

The above studies provided varying recommendations in literature on 

the use of Bayes factors for contingency tables based on the study design 

and size of the table (Upton, 1982; 1992). Recently, Hitchcock (2009) 

emphasized that hypotheses testing problems related to I × J tables require 

elaborate studies in understanding the elegance of Yates correction. 
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Mirkin (2001) listed different ways to look at Chi square tests and 

observed that it is an appealing measure for studying the association.  The 

relevance of study design and analyses based on 2 × 2 tables too need more 

careful attention (Upton, 1982; Campbell, 2007). 

In this paper, algebraic form of Bayes factor, in the context of 

categorical data represented in two-dimensional contingency tables has 

been presented based on the underlying sampling design. The multinomial 

model for a general I × J table with two competing models of ‘no 

association’ and ‘association’ between categorical variables has been 

considered. The important aspects of this study relate to multinomial 

models on categorical data (i) to understand the sensitivity of priors and 

(ii) to incorporate the sparseness of data in the case of higher order I × J 

tables with zero and / or positive low counts, polarized cell counts and size 

of the tables.  The sensitivity of priors has witnessed an active discussion 

in Bayes factor applications in both designs and sparseness of data has 

been well incorporated for 2 × 2 tables (Subbiah and Srinivasan, 2008). 

In the following Section, a quick overview of Bayes factor in general 

and statistical details for categorical data is presented. In Section 3, 

comparative analysis based on data collected from  literature that 

exemplify the above listed features are presented followed by a study 

using bootstrap simulation based on the data extracted and Section 4 has 

concluding  remarks. 

 

2. Bayes Factor 

 

If there are several competing hypotheses or models about a system, 

then the set of models can be considered as mutually exclusive and 

exhaustive. A prior probability p(Hi) (i=1,2,…,N) can be assigned to each 

hypothesis such that Σp(Hi) = 1, with  N denoting the number of 

hypotheses. After observing data y, the posterior probability of hypothesis 

Hi is 
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where p(y|Hi) is the marginal density which is the expected value of all 

possible likelihoods. 



 

 

342                  Bayes factor for sparse multinomial data 

Then hypothesis i relative to j is of the form 
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It could be observed that the posterior odds ratio is the product of the 

prior odds ratio and ratio of the marginal probabilities under each of the 

hypotheses. Then Bayes factor Bij is defined as 
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Bij is not affected by prior specifications and Bij > 1 can be interpreted as 

the hypothesis Hi to be more plausible than Hj in the light of y.  However, 

the above interpretation holds only when both Hi and Hj are simple 

hypotheses. Berger and Delampady (1987), Kass (1993), Bernardo and 

Smith (1994), Kass and Raftery (1995), Goodman (1999), Delampady and 

Berger (1990), Lavine and Schervish (1999), Ghosh et al (2006) provide 

a better insight into the concept of Bayes factor. The explicit forms of 

Bayes factor for multinomial model is derived in the following sub section. 

 

2.1 Bayes Factors for I × J multinomial model 

 

In the case of general I × J tables, if xij (i=1,2,…I; j=1,2,…,J) denotes 

the observed cell counts, with ri = 
j

ijx is the row total cj = 
i

ijx  is the 

column total and n =  ijx  is the grand total then the Multinomial 

likelihood is 
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Also, the conjugate prior (Gelman et al, 2002) for the proportion 

parameter vector θ = (θij) could be a multivariate generalization of Beta 

distribution known as Dirichlet (αij) with αij > 0 and density function is  
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The pervasive inferential problem related to a categorical data 

summarized in contingency tables is testing the statistical independence 

of two categories of the categorical data. Model H0 corresponds to the null 

hypothesis that there is no association between the two categories whereas 

Model H1 takes that there is an association between the categories 

constituting I x J contingency table.  

Then under H0, the prior distribution π0(θ) for the parameter θ = (θij) 

is based on the law of independence jiij   where  

 

                                                                                                                                                                                                                

 

Also for the prior π1(θ) for model H1 is θ = (πij) ~ Dirichlet (αij).  Hence 

the marginal likelihood under the model Mt (t = 0, 1) is 

 dθ ( πθ)|f(X)H|p(X tt θ) . 

After suitable integration,
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where iΣγ γ  ; jΣδδ  . 

Hence, the Bayes factor for comparing these two models is 
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      However computing B01 on log scale will alleviate the problem of 

overflow that may occur if it is computed directly. Kass and Raftery (1995) 

have provided appropriate guidelines for interpreting B01 and log(B01) as 

the degree of evidence for H0 and is as follows; 

 

 1 < B01 < 3 indicates ‘H0 is not worth more than a bare mention’ 

 3 < B01 < 20 indicates ‘H0 is positive’ 

 20 < B01 < 150 indicates ‘strong evidence for H0’ 

 150 < B01 indicates ‘very strong evidence for H0’ 

 

 

 

3. Comparative Data Analysis  

 

Statistical literature on theory and applications of inferential procedures 

associated with contingency tables of two-dimensional categorical data provide 

a few essential characteristics necessary for comparative studies. These include 

order of tables (k=IJ), sample size (n), zero counts, notable polarized cell counts 

and positive low counts (cell counts not more than 6).  

All I × J data sets are extracted from Agresti (2002), a classical book for 

social sciences that illustrate most of the issues in categorical data. In line with 

the above features, tables vary in sizes from 3 × 3 to 6 × 4 rectangular tables; 5 

% to 43 % of the cells have low counts; grand total spans over a range of 96 to 

3600; cell counts vary from 14 to 711. Also, to quantify the polarized cell counts 

a metric v = range/k has been used to indicate the nature of distribution of values. 

The summary of the selected characteristics for the data sets are presented in 

Table 1. 
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Table 1: Details of the eight data sets considered for the comparative study 

of Bayes factor associated with two dimensional contingency tables 

Data Size Study Variables 
Page 

No 
n v % of zero counts 

% of 

low 

counts 

I 3 x 3 
Education and religious 

belief 
80 2726 60.00 0.00 0.00 

II 4 x 4 
Income and job 

Satisfaction 
57 96 0.86 6.25 43.75 

III 4 x 4 

Opinions about 

premarital sex and 

teenage birth control 

368 926 9.19 0.00 0.00 

IV 5 x 5 
First and second 

Purchase 
446 521 6.200 4.00 20.00 

V 3 x 3 

Psychiatric thought and 

ascribed origin of 

Schizophrenia 

83 282 9.89 0.00 11.11 

VI 6 x 4 
Mental health status and  

socio economic status 
381 1660 5.00 0.00 0.00 

VII 5 x 5 
Father’s and son’s 

occupational status 
447 3600 28.40 0.00 4.00 

VIII 6 x 2 

Daily average number 

of cigarettes and disease 

group 

64 2714 46.92 0.00 0.00 

v = range/k; n = sum of cell counts 

 

     It is necessary to consider three cases of Dirichlet parameters as 

prior distributions for multinomial model; αij for model H1 and γi’s and 

δj’s for model H0. In all the cases, an equal value for these parameters 

has been considered with eight choices (0.5 to 2.5) that include either 

side of Uniform distribution (αij = 1 in π(θ)) and  Table 2 presents the 

log Bayes factor in favor of H0. 

     It can be noted that Bayes factors have shown a consistent pattern 

except in one case (VI data set) within these two groups of choice of 

Dirichlet parameters. These data sets are of reasonable size with no 

zeros and the total is of moderately high value (1660) with reasonably 

non-polarized counts. This may be a significant observation that choice 

of Dirichlet parameter (the only prior parameters) for a well-behaved 

data set is more critical. However, sparseness or polarized count 

compel to select values either less than 1 or greater than1 for all the 

Dirichlet distribution parameters so that Bayes factors are not much 

sensitive for making conclusions based on the usual recommendations. 
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Table 2: Bayes factors (in natural log scale) for the evidence of null 

hypothesis (no association) in I × J data sets under multinomial 

sampling model. 

Data 

No 

Choices for Dirichlet Parameters  

0.5 0.75 0.9 1 1.5 1.75 2 2.5 

I -23.734 -24.412 -24.654 -24.774 -25.074 -25.109 -25.096 -24.972 

II 5.738 5.159 5.045 5.021 5.186 5.346 5.519 5.865 

III -45.260 -46.703 -47.199 -47.437 -47.963 -47.974 -47.885 -47.506 

IV 

-

120.03

7 

-

119.88

5 

-

119.26

5 

-

118.72

9 

-

115.26

8 

-

113.29

7 

-

111.262 

-

107.13

2 

V -4.808 -4.761 -4.596 -4.455 -3.558 -3.053 -2.535 -1.492 

VI 9.373 6.050 4.680 3.925 1.287 0.458 0.297 1.335 

VII 

-

306.44

1 

-

306.50

9 

-

305.90

6 

-

305.34

4 

-

301.42

0 

-

299.05

1 

- 

296.529 

-

291.20

2 

VIII -59.768 -59.739 -59.521 -59.326 -58.003 -57.215 -56.378 -54.616 

 

     Further, a simulation study has been carried out to supplement the 

findings. Since the study is focused to consider identified 

characteristics of I × J tables, bootstrap simulation are used for the 

computation of Bayes factor and testing the sensitivity of prior 

parameters. Based on each of the data sets, 1000 bootstrap samples are 

generated so that the noted features are expected to be consistently 

present in the samples. Estimates comprising mean together with its 

standard error (SE) and 95% limits for confidence interval as 2.5 and 

97.5 percentiles are presented in Table 3. Also, Figures 1 and 2 depict 

the box plots to show the distribution of estimated Bayes factor from 

bootstrap samples based on data sets I–IV and V–VIII, respectively. 
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Table 3: Bootstrap estimates for the log Bayes factor in favor of null hypothesis of 

independence using eight distinct prior choices for Dirichlet parameters.  

Data 
Bootstrap 

Estimates 

Different choices for Dirichlet prior used in Bootstrap estimation 

0.5 0.75 0.9 1 1.5 1.75 2 2.5 

I 

Mean 
-

194.04

1 

-
203.7

76 

-

190.426 

-

194.009 

-

188.858 

-

188.901 
-217.623 

-

209.207 

SE(Mean) 9.125 8.906 9.645 9.437 9.441 9.672 9.892 9.427 

2.5 
percentile 

-

499.27

5 

-

472.0

66 

-
570.677 

-
507.803 

-
492.420 

-
490.135 

-544.224 
-

522.162 

97.5 

percentile 
-10.706 

-
25.45

4 

-9.209 -2.497 -9.606 -9.631 -28.158 -9.658 

II 

Mean -8.308 -9.226 -8.976 -9.154 -9.002 -8.458 -8.085 -7.542 

SE(Mean) 0.425 0.407 0.382 0.419 0.380 0.385 0.351 0.340 

2.5 

percentile 
-20.891 

-

20.12
4 

-20.297 -23.819 -19.703 -18.573 -17.715 -17.399 

97.5 

percentile 
3.778 1.315 1.399 1.640 2.818 2.838 0.527 0.594 

III 

Mean -96.277 
-

88.92

7 

-91.993 -95.107 -86.625 -93.235 -98.776 -89.338 

SE(Mean) 3.476 3.693 3.976 4.149 3.942 3.867 3.792 3.514 

2.5 

percentile 

-
200.41

8 

-
219.1

08 

-

223.156 

-

216.315 

-

232.821 

-

218.204 
-228.757 

-

199.759 

97.5 

percentile 
-17.078 

-
16.26

2 

-10.716 -14.755 -2.873 -11.668 -20.318 -12.512 

IV 

Mean -72.783 
-

71.17

9 

-79.538 -78.764 -76.203 -75.599 -70.285 -79.941 

SE(Mean) 4.365 5.035 5.235 5.042 4.824 5.262 4.303 4.998 

2.5 

percentile 

-
243.83

0 

-
279.5

48 

-

293.427 

-

260.655 

-

267.460 

-

277.431 
-230.561 

-

258.191 

97.5 

percentile 
0.246 0.097 -0.663 -1.030 -4.325 -1.107 -1.193 -1.536 

V 

Mean -45.527 

-

40.44

5 

-47.852 -43.044 -47.209 -43.046 -40.528 -40.252 

SE(Mean) 2.472 2.296 2.237 2.489 2.631 2.482 2.377 2.426 

2.5 

percentile 

-

124.08
8 

-

117.0
47 

-

114.346 

-

126.839 

-

129.514 

-

123.095 
-128.226 

-

115.307 

97.5 

percentile 
0.425 0.798 -0.721 2.359 -1.508 6.101 0.452 3.384 
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VI 

Mean -35.074 

-

38.77

5 

-38.567 -39.616 -42.416 -48.099 -45.291 -41.941 

SE(Mean) 1.884 1.957 2.064 1.789 1.756 1.950 1.678 1.732 

2.5 

percentile 
-97.896 

-
99.58

1 

-

104.364 
-91.259 -98.098 

-

122.688 
-98.845 -93.290 

97.5 

percentile 
9.634 6.231 6.642 5.515 -1.254 -6.333 -5.021 -1.962 

VII 

Mean 

-

1034.2

96 

-

1049.

616 

-

1106.65

9 

-

1085.00

7 

-

1070.28

2 

-

1103.87

3 

-

1044.88

7 

-
982.051 

SE(Mean) 27.509 
32.97

4 
32.583 27.412 30.265 30.007 30.327 30.290 

2.5 

percentile 

-

1911.8
89 

-

2029.
766 

-

2249.89
8 

-

1915.65
5 

-

2048.57
3 

-

2145.18
1 

-

2099.72
9 

-

1991.05
4 

97.5 

percentile 

-

430.79
8 

-

343.3
33 

-

410.322 

-

396.549 

-

363.783 

-

375.844 
-382.425 

-

370.977 

VIII 

Mean 

-

470.47

0 

-

475.6

80 

-
493.897 

-
493.070 

-
457.516 

-
452.399 

-476.388 
-

470.086 

SE(Mean) 16.361 
17.10

8 
17.099 17.385 17.202 17.132 17.341 16.166 

2.5 

percentile 

-

977.97
4 

-

1023.
763 

-

1028.48
2 

-

1063.45
7 

-

985.272 

-

989.072 
-919.026 

-

937.623 

97.5 

percentile 
-74.202 

-

60.18
8 

-

109.046 
-73.681 -51.111 -73.047 -57.593 -84.118 
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I     II 

 

III     IV 

 

Figure 1: Box plots for estimated Bayes factors from the bootstrap 

samples based on data sets I – IV. Each plot corresponds to eight 

different choices of prior parameters. 
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V     VI 

 

 

VII     VIII 

 

Figure 2: Box plots for estimated Bayes factors from the bootstrap 

samples based on data sets V – VIII. Each plot corresponds to eight 

different choices of prior parameters 
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evident in the numerical summaries which indicate the changes in 

terms of positive and negative estimated values. 

     Interestingly, such changes are evident when prior values are near 

to 1 and this tends to provide a method on choice of prior parameters 

based on the study which deals with rare or non-rare phenomena. 

Further, among other data sets with moderately polarized and notable 

low counts such as data set VI, such directional changes in the 

estimated values are visible from Table 3 but may not be fully captured 

by box plots. All other tables with sufficiently large cell counts do not 

yield any such feature irrespective of polarized cell counts. 

     However, if a point estimate like mean value is compared for a data 

set over different choices of priors then no directional changes can be 

observed. Such a pattern prevails among all the data sets of distinct 

characteristics. This is consistent with the values of corresponding 

standard errors too and hence reporting point estimate may not be fully 

sufficient to study the sensitivity of estimates over various choices of 

parametric values. The entire comparison is to demonstrate the 

sensitivity of priors in the values of Bayes factors attributed to data 

characteristics, especially when they are sparse in nature. Hence, sparse 

data occurrence could be reckoned by the researcher as a priori based 

on the problem under consideration and the way respondents might 

behave to the choices of variables. This partially elicited information 

will help to set the range for the prior parameters to estimate as well as 

consider the sensitivity analysis. 

 

4. Conclusion 

 

Two contrasting recommendations regarding Bayes factors for I × 

J tables and a 2 × 2 table provide ample scope to investigate the  data 

model, sparseness and pattern of cell counts as it could affect the 

estimates and thereby the conclusions. Sensitivity of priors on Bayes 

factor has been accepted in principle; yet understanding the nature of 

data representing the physical phenomena is important. In such cases, 

even a controlled vague prior would reflect partial information which 

tends to reduce the extreme sensitivity as exhibited in Nandram and 

Choi (2007). Three examples considered in Nandram and Choi (2007) 

have ignored the distinct features of I × J tables as listed in the present 

study and could be well influenced by the specific choice of Dirichlet 

parameters. 
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Subsequently, Nandram et al (2013) have provided a test of 

independence related to data from a two-stage cluster sampling design; 

simulation study has revealed the fact that Bayes factor will not be 

sensitive to small changes in the uniform prior. This finding has been 

attributed to the nature of cell counts that are expected to be larger than 

zero but one or two cells can have zero counts. 

The main objective of the paper is to carry out the 

inevitable sensitivity analysis for Bayes factor but with reasonable 

parameter choice related to the problem of interest as observed in 

Vanpaemel (2010). The present work considered the problem on sparse 

multinomial tables not only limited to zero counts but also low and / or 

polarized counts as polarized counts tend to affect estimation of 

multinomial probabilities in the sense of aberrations (May and Johnson, 

2000). 

Also, to substantiate the findings, Bootstrap samples have been 

used to study the sensitivity mainly to preserve the expected features 

of data / underlying phenomena.  Computational tool has been 

provided for a variety of Dirichlet parameters beyond the usual uniform 

distribution. The procedure envisages a more flexible approach to 

handle priors for null hypothesis and replication of these procedures 

can be done through R codes presented in the Appendix. 

Kruschke (2010) has pointed out the need to attempt mildly 

informed or consensually informed prior distributions rather than 

objective priors. The present study has made an attempt to divide the 

parameter space appropriately for choosing prior distributions in 

obtaining Bayes factor to test the independence related to data from a I 

x J contingency table. Such recommendations are suitable for a more 

realistic sensitivity analysis for Bayes factor computed for various 

choices of prior values. Hence the researchers are encouraged to adopt 

Bayes Factor with plausible priors that may be partially informative as 

a result of theoretical background of the problem. However, a more 

concrete way to define the distance between the cell counts could be 

attempted to study the effect on Bayes factors and redefine the 

recommendations in the analysis of contingency tables. 

 

Acknowledgment 

The authors would like to thank the referees and editor for the valuable 

comments and suggestions which helped to improve the article. 

 



 

 

U. Sangeetha, M. Subbiah, M.R. Srinivasan and B. Nandram       353 

References 

Agresti, A. (2002). Categorical Data Analysis 2/e. New Jersey: John 

Wiley & Sons, Inc.Berger,J.O. and Delampady, M. (1987). 

Bayesian testing of precise hypotheses (with discussion). Statistical 

science, 2, 317-348. 

Bernardo, J.M. and Smith, A.F.M. (1994). Bayesian Theory.  New 

York: John Wiley & Sons. 

Campbell, I.  (2007). Chi-squared and Fisher–Irwin tests of two-by-

two tables with small sample recommendations. Statistics in 

Medicine, 26, 3661-3675. 

Delampady, M. and Berger, J.O. (1990). Lower bounds on Bayes 

factors for multinomial   distributions with application to chi-

squared tests of fit. The Annals of Staitstics, 18, 1295-1316. 

Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. (2002). Bayesian 

Data Analysis.  London,      UK: Chapman & Hall. 

Ghosh, J.K., Delampady, M. and Samanta, T. (2006). An Introduction 

to Bayesian Analysis, New      York: Springer-Verlag. 

Goodman, S.N. (1999). Toward Evidence – Based Medical Statistics. 

2: The Bayes Factor. Annals of Internal Medicine, 130, 1005-1013. 

Hashemi, L., Nandram, B. and Goldberg, R. (1997). Bayesian analysis 

for a single 2 × 2 table. Statistics in Medicine, 16, 1311 – 1328. 

Hitchcock, D.B. (2009). Yates and Contingency Tables:75 Years Later. 

Statistics Electronic Journal for History of Probability and 

Statistics, 5, 1-14. 

Johnson, V.E. (2005).  Bayes factors based on test statistics. Journal of 

the Royal Statistical Society. B, 67, 687-701. 
Kass, R.E. (1993). Bayes Factors in Practice. The Statistician, 42, 551-

560. 

Kass, R.E. and Raftery, A.E. (1995). Bayes Factors. Journal of the 

American Statistical Association, 90, 773-795. 

Kruschke, J.K. (2010). What to believe: Bayesian methods for data 

analysis, Trends in Cognitive Sciences 14, 293–300. 

Lavine, M. and Schervish, M.J. (1999). Bayes factor: What they are 

and what they are not. The American Statistician, 53, 119-122. 



 

 

354                  Bayes factor for sparse multinomial data 

Marden, J.I. (2000). Hypothesis Testing: from p values to Bayes 

factors. Journal of the American Statistical Association, 95, 1316-

1320. 

May, W.L. and Johnson W.D. (2000). Constructing two-sided 

simultaneous confidence intervals for multinomial proportions for 

small counts in a large number of cells. Journal of statistical 

software, 5(6). 

Mirkin. B. (2001).  Eleven Ways to Look at the Chi-Squared 

Coefficient for Contingency Tables. The American Statistician, 55, 

111-120. 

Nandram, B. and  Choi, J.W. (2007).  Alternative Tests of 

Independence in Two-Way Categorical Tables. Journal of Data 

Science, 5, 217-237. 

Nandram, B.,  Bhatta, D.,  Sedransk, J. and Bhadra, D. (2013).  A 

Bayesian test of independence in a two-way contingency table using 

surrogate sampling Journal of Statistical Planning and Inference, 

143, 1392–1408. 

Subbiah, M. and Srinivasan, M.R. (2008). Classification of 2 × 2 

sparse data with zero cells. Statistics & Probability Letters, 78, 3212 

– 3215. 

Upton, G.J.G. (1982). A comparison of alternative tests for the 2 × 2 

comparative trial. Journal of the Royal Statistical Society. A, 145, 

86 – 105. 

Upton, G.J.G. (1992).  Fisher's Exact Test. Journal of the Royal 

Statistical Society. A, 155, 395 – 402. 

Vanpaeml, W. (2010). Prior sensitivity in theory testing: An apologia 

for the Bayes factor.  Journal of Mathematical Psychology 54, 491–

498. 

 

 
Received June 25, 2013; accepted September 28, 2013. 

 
U. Sangeetha 

Department of Management Studies,  

SSN College of Engineering, Chennai. 

 

M. Subbiah 

Department of Mathematics, 

L. N. Government College, Ponneri. 

 



 

 

U. Sangeetha, M. Subbiah, M.R. Srinivasan and B. Nandram       355 

M.R. Srinivasan 

Department of Statistics,  

University of Madras, Chennai. 

 

B.  Nandram 

Department of Mathematical Sciences,  

Worcester Polytechnic Institute, 100 Institute Road,  

Worcester, MA 01609, United States. 



 

 

356                  Bayes factor for sparse multinomial data 

 

Appendix 

     R code for obtaining Bayes factor for the evidence of null or 

alternative hypothesis related to test of independence for contingency 

tables is presented in this Appendix. Input together with the respective 

symbols used in the code include number of rows(r) and columns (c) 

of the given contingency table, cell counts as a row vector (ns), and the 

prior parameters for no association (alp) and association (gam and del) 

models.  Bayes factors in log scale favoring both statements together 

with the interpretation criterion will be provided; exponentiated version 

is also given as output. 

 

#####Input the size of the contingency table 

r=4      #no of rows 

c=4      #no of coulmns 

#####Input the original cell counts as a row vector 

ns=c(1,3,10,6,2,3,10,7,1,6,14,12,0,1,9,11)  #Cell counts row wise 

data=matrix(ns,r,c,byrow=TRUE) 

rt=0       #Calculating row totals 

for (i in 1:r) 

{ 

rt[i]=sum(data[i,]) 

} 

ct=0       #Calculating column 

totals 

for (j in 1:c) 

{ 

ct[j]=sum(data[,j]) 

} 

n=sum(ns)     #Grand Total 

alp = 0 

k=r*c 

for (k1 in 1:k)     #Prior for Dirichlet 

parameters-Independent Model 

{ 

alp[k1]=0.5 

} 

a=sum(alp)   
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#####Prior for Dirichlet parameters-Association Model-Row 

gam = 0 

for (k2 in 1:r)     

{ 

gam[k2]=0.5 

} 

g=sum(gam) 

#####Prior for Dirichlet parameters-Association Model-Col 

del = 0 

for (k3 in 1:c)  

{ 

del[k3]=0.5 

} 

d=sum(del) 

#########Terms for Log Bayes Factor Formula 

t1=ns+alp 

t2=n+g 

t3=n+d 

t4=n+a 

t5=rt+gam 

t6=ct+del 

#########Numerator and Denominator of Log Bayes Factor Formula 

nr=sum(lgamma(t1))+lgamma(a)+sum(lgamma(gam))+sum(lgamma(

del))+lgamma(t2)+lgamma(t3) 

dr=sum(lgamma(alp))+lgamma(g)+lgamma(d)+sum(lgamma(t4))+su

m(lgamma(t5))+sum(lgamma(t6)) 

lbf=nr-dr      #Log Bayes Factor B10 

lbf 

lbf1=-lbf      #Log Bayes Factor B01 

lbf1 

exp(lbf)       #Bayes Factor B10 

exp(lbf1)       #Bayes Factor B01 
 

 

 

 

 

 

 

 


