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Abstract: Polya tree, by embedding parametric families as a special case,
provides natural suit to test goodness of fit of a parametric null with non-
parametric alternatives. For this purpose, we present a new construction on
Polya tree for random probability measure, which aims to perform an easy
multiple χ2 test for goodness of fit. Examples of data analyses are provided
in simulation studies to highlight the performance of the proposed methods.
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1. Introduction

Polya tree (PT), as a random probability measure, has recently received more
and more attention due to its much greater tractability over tailfree processes as
well as its continuous or absolutely continuous probability measure over Dirichlet
processes (Ferguson, 1973, 1974). The basic idea for Polya trees arises from Fer-
guson (1974), Lavine (1992, 1994), and Mauldin, Sudderth, and Williams (1992).
Later on, more generalizations, such as the mixture of Polya trees (Hanson and
Johnson, 2002; Hanson, 2006), the multivariate Polya trees (Paddock et. al,
2003), and the optional Polya trees (Wong and Ma, 2010), are developed and
flourished in many areas, for example, the Polya trees for spatial frailty model-
ing (Zhao et. al 2009), the Polya tree sampler (Hanson et. al, 2011), the Polya
trees for multiple sample tests (Chen and Hanson, 2014), and the Polya trees for
truncated data (Chen and Hanson, 2014).

A Polya tree F is defined as F ∼ PT(Π,A) (Lavine, 1992, 1994). The pa-
rameter Π = ∪∞j=0Πj is a nested sequence of partitions with the jth partition

Πj = ∪∀εjBεj , where Bεj is the one of the 2j base sets of Πj with Bεj ∩Bε′j = ∅ if

εj 6= ε
′
j , and εj = {0, 1}j is defined as a j digits binary fold with ε0 = ∅. Specifi-

cally, Π0 = {Ω}, where Ω is a separable measurable space, and Bε0
def
= B∅ = Ω.
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Generally, by assuming a parametric distribution Fθ (also called centering dis-
tribution), the nested partitions are obtained in such a way that, at each par-
tition Πj for j ∈ {1, 2, . . . , J}, we obtain all 2j base sets with each base set
Bεj satisfying Fθ(Bεj ) = 1/2j . For example, at Π1,B0 = [F−1

θ 0, F−1
θ (1

2)] and

B1 = [F−1
θ (1

2), F−1
θ (1)]; at Π2, B00 = [F−1

θ (0), F−1
θ (1

4)], B01 = [F−1
θ (1

4), F−1
θ (1

2)],
B10 = [F−1

θ (1
2), F−1

θ (3
4)], and B11 = [F−1

θ (3
4), F−1

θ (1)]. The refinement of each
partition, say Πj+1, is obtained by firstly independently assigning Beta priors to
2j conditional probabilities. Specifically, for one of the 2j+1 base sets Bεj0, we
define Yεj0 = F (Bεj0|Bεj ) and assign a prior Yεj0 ∼ Beta(αεj0, αεj1). Note, Bεj
is one of the base sets of Πj and the parent of the two children of Bεj0 and Bεj1
with Bεj0 ∪ Bεj1 = Bεj and Bεj0 ∩ Bεj1 = ∅. Also, we have Yεj0 + Yεj1 = 1
with Yεj1 = F (Bεj1|Bεj ). The posterior of Yεj0 has a conjugate property, i.e.,
Yεj0|Data ∼ Beta(αεj0 + nεj0, αεj1 + nεj1), where nεj0 =

∑n
i=1 I(xi ∈ Bεj0) and

nεj1 =
∑n

i=1 I(xi ∈ Bεj1) with nεj0 + nεj1 = nεj =
∑n

i=1 I(xi ∈ Bεj ); I(x ∈ A) is
an indicator function and equals to 1 if x ∈ A and 0 otherwise. Note, nε0 ≡ n is
the size of the data set. The nonnegative parameter A is the set of the hyper-
parameter α(s) for Beta distributions. Keeping refinement for each base set at
each partition, asymptotically, the true density F will be obtained (Lavine, 1992,
1994).

In Section 2, we introduce a new Polya tree construction similar to this scheme
except: At each partition Πj , the base sets are directly obtained from the previous
refined distribution Fj−1 at Πj−1 instead of from the common assumed Fθ. In
Section 3, a multiple χ2 test is constructed with adjusted Bonferroni corrections
(BC) to examine whether or not a nonparametric model is needed when the
centering parametric model Fθ is pre-specified. We conduct simulation studies in
Section 4.1 and Section 4.2 to examine the performance of the proposed methods
in Section 2 and Section 3 respectively. The Galaxy data set is studied in Section
5. Then we come up the conclusion in Section 6.

2. Construction

Let xi ∼ F for i = 1, 2, . . . , n and n is the sample size. F is an unknown
continuous probability distribution function with the support domain Ω and con-
structed as follows. Given the refined partition Πj and the associated refined

distribution Fj for j = 0, 1, 2, . . . with Π0 = {Ω} and F0
def
= Fθ, for each base set

Bεj ∈ Πj with Bε0 = B∅
def
= Ω ∈ Π0, define rεj0 = Fj+1(Bεj0|Bεj ). Similar to the

typical Polya trees construction, let rεj1 = Fj+1(Bεj1|Bεj ), we have rεj0 +rεj1 = 1
with Bεj0 and Bεj1 is the two children of Bεj satisfying Bεj0 ∪ Bεj1 = Bεj and
Bεj0 ∩Bεj1 = ∅. By independently assigning a Beta prior rεj0 ∼ Beta(αεj0, αεj1),
the conjugate posterior of rεj0 is then obtained by
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rεj0|Data ∼ Beta(αεj0 + nεj0, αεj1 + nεj1), (1)

where nεj0 and nεj1 are defined as the same with the typical Polya trees
illustrated in Section 1. Obviously, the posterior of rεj0 refines Fj on the base
set Bεj0 given Bεj . If we keep refining all base sets at Πj+1 in this way, Fj is
eventually refined at the level j + 1. We denote this refinement at Πj+1 as Fj+1.
However, unlike the typical Polya trees, the base set Bεj0 is obtained by

Bεj0 = {x : Fj(x) ≤ mεj0, for all x ∈ Bεj}, (2)

where

mεj0 =
minεj + maxεj

2
. (3)

Before illustrating the way to obtain minεj and maxεj , let firstly define the
nested partitioning m-matrix as

m =


m0 . . . . . . . . . . . . . . . . . . ; J = 1
m00 b0 m10 . . . . . . . . . . . . ; J = 2
m000 b00 m010 b0 m100 b10 m110; J = 3
. . . . . . . . . . . . . . . . . . . . . ; . . .

 (4)

and the nested refining b-matrix as

b =


b0 . . . . . . . . . . . . . . . . . . ; J = 1
b00 b0 b10 . . . . . . . . . . . . ; J = 2
b000 b00 b010 b0 b100 b10 b110; J = 3
. . . . . . . . . . . . . . . . . . . . . ; . . .

 (5)

with mεj0 obtained from Equation (3) and
bεj0 obtained from

bεj0 = minεj + rεj0(maxεj −minεj ), (6)

here rεj0 is the posterior obtained from (1). Now we define minεj = b[j, (kεj0 −
1)/2] if Bεj is not the most left children in Πj , otherwise minεj = 0; and maxεj =
b[j, (kεj0 + 1)/2] if Bεj is not the most right children in Πj , otherwise maxεj = 1.
kεj0 is the decimal expression of the binary fold εj0, for example, k00 = 1 and
k10 = 3; b[i, j] is the element of the b-matrix at the ith row and the jth column.
Then, for x ∈ Bεj ∈ Πj , the refined distribution function Fj+1(x) at Πj+1 can be
obtained from:

Fj+1(x) =

minεj +
bεj0−minεj
mεj0−minεj

[
Fj(x)−minεj

]
x ∈ Bεj0

bεj0 +
maxεj −bεj0
maxεj −mεj0

[
Fj(x)−mεj0

]
x ∈ Bεj1.

(7)
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Here, F0 (i.e. Fθ) can be arbitrarily chosen from any continuous parametric
family as long as ΩF ⊆ ΩFθ is satisfied, where ΩF and ΩFθ are the support
domains of the true distribution F and the centering distribution Fθ respectively,
to guarantee a convergence to the true distribution F (Theorem 1 in Lavine,
1994). Note, through the construction we have Fj(Bεj0|Bεj ) = 1

2 , by letting
αεj0 = αεj1 for ∀εj and j = 0, 1, . . . , if F = Fθ, then we have E(F1) = Fθ, E(F2) =
F1, . . . , E(Fj→∞) = Fj−1 .

Illustratively, starting from the first partition level j = 1, since min∅ = 0 and
max∅ = 1, the partition point m0 = 0+1

2 = 0.5 and thus B0 = {x : Fθ(x) ≤
m0, for all x ∈ Ω} and B1 = Ω−B0. From Equation (6), the refined b0 equals to
the posterior of r0, i.e. F1(B0|Ω). The refined distribution at j = 1 and x ∈ Ω,
corresponding to Equation (7), then can be written as:

F1(x) = { b0
m0

Fθ(x)I(x ∈ B0)}+ {b0 +
1− b0
1−m0

(Fθ(x)−m0)I(x ∈ B1)}. (8)

Continuously refining the base set B0 at j = 2, we get B00 = {x : F1(x) ≤
m00, for all x ∈ B0}, where m00 = 0+b0

2 . Thus we have:

F2(x) =

{
b00
m00

[F1(x)] x ∈ B00

b00 + b0−b00
b0−m00

[F1(x)−m00] x ∈ B01,
(9)

here b00 is obtained by Equation (6). Recursively, for each base set at each
partition level, the corresponding elements in the m-matrix and in the b-matrix
are refined nestedly in order. And as long as ΩF ⊆ ΩFθ , the above refinement
process has full support in the set of all continuous probability measures as j →∞
(Theorem 1 in Lavine, 1994). However, it’s not necessary to fit an infinite Polya
tree due to the robust Bayesian consideration since at the bottom of the tree,
it’s much possible that the refinement of the partitions only depends on the prior
(Lavine, 1994). Thus the Polya tree can be updated to a predetermined level as
long as α’s increase rapidly toward the bottom of the tree to guarantee to give
a probability one to the set of absolutely continuous distributions. Throughout
the paper, we cap j at J = dlog4(n)e and find it works well in the simulation
studies.

There are many ways to choose the hyper-parameters αs. One typical choice
is to let αεj = cj2, which makes F is absolutely continuous with respect to 1
(Ferguson, 1974); or let αεj = c/2j to make F to be a Dirichlet Process (Blackwell,
1973; Blackwell and MacQueen, 1973). The parameter c here can be considered
as a precision parameter (Ferguson, 1973, 1974; Lavine, 1992, 1994) and c > 0.
When c → ∞, F → Fθ; and when c → 0, an empirical distribution will be
obtained. Usually, one can let c = 1 or assign a prior as c ∼ Γ(5, 1) (Hanson,
2006).
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For inference purpose, the quantile function F−1
J (q) of a finite Polya tree,

where 0 ≤ q ≤ 1, can be easily calculated from a grid searching algorithm by
starting from an arbitrarily chosen x∗, and then increasing x∗ by a small value δ
if FJ(x∗) < q or decreasing x∗ by δ if FJ(x∗) > q.

3. Goodness-of-Fit Test

Polya trees are naturally suited to a goodness-of-fit test as they can embed
continuous parametric families as a special case (Berger and Guglielmi, 2001).
Along this line, we will propose a new approach in this section to answer the
question whether or not it is necessary to fit a nonparametric model when the
centering parametric model Fθ is pre-specified. By the construction in Section
2, the answer of this question is naturally the answer for a multiple comparisons
test. Let define this multiple comparisons test as the following:

H0 :Fθ = F1︸ ︷︷ ︸
Test 1

; F1 = F2︸ ︷︷ ︸
Test 2

; . . . ; FJ−1 = FJ︸ ︷︷ ︸
Test J

H1 :at least one is not equal (10)

A multiple χ2 test, a natural approach to answer such a goodness of fit
test question, is then constructed by comparing the currently refined frequen-
cies of the base sets to the previous ones for each partition. But how to obtain
the χ2 test statistics at each partition level? One might have already noticed,
by the construction, for example, at the partition Π2, before the refinement,
we have F1(B00|B0) = m00, F1(B01|B0) = b0 − m00, F1(B10|B1) = m10 − b0,
and F1(B11|B1) = 1 − m10. However, after the refinement, F2(B00|B0) = b00,
F2(B01|B0) = b0 − b00, F2(B10|B1) = b10 − b0, and F2(B11|B1) = 1 − b10. Con-
sequently, the frequencies of the base sets in Π2, for the before and the after
refinements, is nothing but the inverse of those probabilities. Thus, we could
define the test statistics for the jth individual hypothesis test as

STj =

2j∑
k=1

[Ok − Ek]2 /Ek, for j ∈ {1, 2, . . . , J}, (11)

where Ok = 1/(b[j, k] − b[j, k − 1]) and Ek = 1/(m[j, k] − m[j, k − 1]) for
k ∈ {2, . . . , 2j − 1}, Ok = 1/b[j, k] and Ek = 1/m[j, k] for k = 1, and Ok =
1/(1 − b[j, k − 1]) and Ek = 1/(1 −m[j, k − 1]) for k = 2j . If the jth equality
holds, i.e. Fj−1 = Fj , then STj follows a χ2 distribution with the degree of
freedom 2j − 1, denoted as STj ∼ χ2

2j−1
. Simultaneously, if we can show all

the J equalities holds in (10), then we can conclude that there is no need to
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fit a nonparametric model since the parametric one, i.e. Fθ, has already well
interpreted the data.

Maintaining the familywise error rate (FWER) in multiple dependent or in-
dependent hypotheses test is another critical concern. An easy and often used
approach is Bonferroni correction which corrects each individual hypothesis at
a statistical significance level of α/J , here J is the number of hypotheses test
under the null. The proof for Bonferroni correction follows from Boole’s inequal-
ity: FWER = Pr{∪j(pj ≤ α

J )} ≤
∑

j Pr(pj ≤
α
J ) ≤ J αJ = α. However, based

on our construction, giving each individual hypothesis the same correction might
not be appropriate. Since as j increases, a prior driven pattern is more likely to
be obtained. Thus we might need to adjust Bonferroni correction by assigning
a small correction αj for a large j for compensation of more likely witnessing a
prior driven pattern at this large j. Let define a weight wj as

wj =
1/2j∑J
k=1 1/2k

, for j ∈ {1, 2, . . . , J}. (12)

Clearly, if j > j
′
, then wj < wj′ . The adjusted Bonferroni correction for the

jth individual hypothesis test thus can be defined as αj = wjα. And if pj < αj ,
where pj is the p-value of the jth individual hypothesis test and obtained from
the jth χ2 test, then we can conclude there exists a significant difference between
Fj−1 and Fj ; otherwise, the equality Fj−1 = Fj holds.

4. Simulation Study

4.1 Model Fit

In this section, we will examine the performance of our proposed PT con-
struction in Section 2. Data is generated from the following simulation cases
with different sample sizes n = 100, n = 200, n = 500 and n = 1000. However,
to make the paper concise, here we only report the results from n = 500 and
n = 1000. The results from n = 100 and n = 200 behaviors quite similar except
that the variance is larger than the one fitted from a larger sample size. Under
each simulation case, we consider two different centering distribution Fθ. The J
is capped at dlog4(n)e and c = 1. 100 fitted distribution function FJs are plotted
in each Figure 1 to Figure 12.

1. x ∼ Γ(2, 5)

• a: Fθ = T(d.f. = 2)

• b: Fθ = Exp(scale = 1)
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2. x ∼ Beta(2, 1)

• a: Fθ = Γ(shape = 1, scale = 0.5)

• b: Fθ = N(mean = 0, sd = 1)

3. x ∼ N(mean = 0, sd = 1)

• a: Fθ = T(d.f. = 1)

• b: Fθ = Γ(shape = 1, scale = 2)

Figure 1: simulation case 1(a) with
n = 500

Figure 2: simulation case 1(b) with
n = 500

From the simulation study, see Figure 1 – Figure 9 and Figure 11, we find,
as long as ΩF ⊆ ΩFθ is satisfied, the fitted distribution FJ approaches the true
distribution F very well and the deviation between the F and FJ decreases as
the sample size increases. However, when ΩF ⊃ ΩFθ , see Figure 10 and Figure
12, FJ fails to approach the true distribution F due to the reason that FΓ(x)
is undefined when x ≤ 0, see the simulation case 3(b). Solving this problem to
get a robust FJ is actually very simple: one, for example, can always choose a
centering distribution with ΩFθ ≡ R to guarantee ΩF ⊆ ΩFθ ; or one can conduct
a pilot study, which not only can help to find an appropriate support domain,
but also can help the convergence rate. Here, we refer to a good convergence rate
as the rate at which FJ can approach F with a small sample size.

To further illustrate the help of the pilot study, we conduct another simu-
lation study. Let x ∼ T(d.f. = 30) and n = 50. By applying the R built-
in function qqnorm, we found the data is approximately normal distributed;
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Figure 3: simulation case 1(a) with
n = 1000

Figure 4: simulation case 1(b) with
n = 1000

Figure 5: simulation case 2(a) with
n = 500

Figure 6: simulation case 2(b) with
n = 500

and by calculating the sample mean and the sample variance, we found choos-
ing a standard normal distribution as Fθ might be appropriate. We then set
F 1
θ = N(mean = 0, sd = 1). For comparison purpose, we choose another center-

ing distribution F 2
θ = T(d.f. = 1). Obviously, by centering at F 1

θ (see Figure 13),
the 100 fitted distribution FJs well approach the true distribution F compared
to the ones (see Figure 14) which are centered at F 2

θ . Conclusively, a good cen-
tering distribution can be a help for improving the convergence rate when other
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Figure 7: simulation case 2(a) with
n = 1000

Figure 8: simulation case 2(b) with
n = 1000

Figure 9: simulation case 3(a) with
n = 500

Figure 10: simulation case 3(b) with
n = 500

conditions, such as the sample size, are the same.

4.2 Goodness-of-Fit Test

In this section, we will study the performance of the proposed method for
a goodness-of-fit test introduced in Section 3. The data is generated from the
followings with different sample sizes n = 100, n = 200, and n = 500. For each
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Figure 11: simulation case 3(a) with
n = 1000

Figure 12: simulation case 3(b) with
n = 1000

generated data, we consider different centering distributions, see below:

• (i) x ∼ N(0, 1)

– a: Fθ = N(0, 1)

– b: Fθ = N(1, 1)

– c: Fθ = N(0, 2)

• (ii) x ∼ T(1)

– a: Fθ = T(1)

– b: Fθ = N(0, 1)

• (iii) x ∼ SN(location = 0, scale = 1, shape = 2), (Azzalini, 1985)

– a: Fθ = SN(location = 0, scale = 1, shape = 2)

– b: Fθ = N(0, 1)

– c: Fθ = T(5)

For each (a) scenario, the centering distribution Fθ will be chosen to be exactly
equal to the true distribution F . But for others, Fθ is chosen from a set of com-
petitive distributions. For example, in case (i)(a), the centering distribution Fθ
equals to the true distribution N(0, 1); other two competitive centering distribu-
tions are a mean shift normal distribution, see case (i)(b), and a variance shift
normal distribution, see case (i)(c).
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Figure 13: F 1
θ and n = 50 Figure 14: F 2

θ and n = 50

We simulate MC = 1000 datasets for each scenario and then calculate the
proportion of detecting the significant difference between F and Fθ, i.e. Power =∑MC

i=1 I(Significant)/MC. Obviously, for each (a) scenario, this should be the
Type I Error since this calculates the Pr(Reject H0|H0); and for other scenarios,
this is the power since it calculates Pr(Reject H0|H1). The simulation results is
listed in Table 1.

Table 1: Powers for different simulation scenarios.
n = 100 n = 200 n = 500

(i)(a). 0.021 0.008 0.003

(i)(b). 0.838 0.905 0.983

(i)(c). 0.832 0.967 1.000

(ii)(a). 0.015 0.007 0.004

(ii)(b). 0.162 0.199 0.531

(iii)(a). 0.012 0.004 0.000

(iii)(b). 0.956 0.994 1.000

(iii)(c). 0.967 0.996 1.000

Overall, this proposed method works well for the above simulated scenarios.
For example, in each (a) scenario, the Type I Error has a value less than the
significant level 0.05 and decreases as the sample size increases as well. It might
suggest, for a large sample size n, a different criteria for the truncated J should be
used to increase the test power. We therefore applied J = dlog3(n)e for n = 500,
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it turns out this criteria works well. As for other scenarios, power increases as
the sample size n goes up and quickly approaches to 1 except for the scenario
(ii)(b). We further investigate this case and find the reason behind it is that only
a little information could be used on the tails. Thus if we want more power, we
have to increase the sample size to help the update of the tree on the tails.

5. Galaxy Data

In this section, we study the Galaxy data set reported by Roeder (1990) using
the proposed methods. The data set can be found in DPpackage (Jara et. al,
2011) in R and only contains the physical information on velocities (km/second)
for 82 galaxies, denoted as x∗1, x

∗
2, . . . , x

∗
n with n = 82. The transformed data,

xi = log(x∗i /1000) for i = 1, 2, . . . , n, is adopted for fitting the model. A pilot
study shows it might be appropriate to consider Fθ = SN(location = 3, scale =
0.25, shape = −1). Let J = dlog4(n)e = 4 and c = 1. The median speed
is obtained by a grid searching algorithm introduced in Section 2. Repeating
the fitting process for re-sampled galaxy data with replacement 1000 times and
computing the median speed each time, we then obtain a sample of the median
speed. The 95% confidence intervals then can be easily obtained from this sample,
see Table 2 for the results.

Table 2: Median Speed and 95%CIs for the Galaxy Data

Speed (km/second) Median LCL UCL

Transformed scale 3.03 3.01 3.05

Original scale 20697 20287 21115

Meanwhile, for each re-sampled galaxy data, we also conducted the goodness-
of-fit test introduced in Section 3 and then calculated the proportion of rejecting
H0. We obtained this proportion is 980 out of 1000. Thus, we conclude: A non-
parametric model is needed if the above skew normal distribution is specified as
the centering distribution. This conclusion coincides to the one from a goodness-
of-fit test for the family of skew-normal models (function ks.sn in package GOFSN
in R (Romero, 2012)) since it has a p-value less than 0.001.

6. Conclusion

In Section 2, we proposed a new construction on Polya trees for random
probability measures. Then, we constructed a multiple χ2 test in Section 3 to
examine whether or not a nonparametric model is needed when the parametric
centering distribution is pre-specified. However, we found the capped level J
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chosen for fitting a finite Polya tree is a critical concern since the fitting and the
testing results depend on this choice. Usually, with a too small J , the model
might be underfitted, however, with a too large J , the model might be prior
driven and thus overfitted. Practically, we capped J at J = dlog4(n)e, where n is
the sample size. In simulation studies, we found this value works well for a small
or a moderate large sample. But when the n is extremely large, the null might be
incorrectly rejected. The reason behind this is that any tiny difference between
the b-matrix and the m-matrix at the bottom of the tree would result in obtaining
a very large test statistics and thus the null could be rejected incorrectly even if
the null is held. Therefore, for an extremely large sample, one might consider to
assign J a relative small value, or apply other criteria instead of J = dlog4(n)e,
or use different weighted Bonferroni corrections.
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