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Summary: Longitudinal binary data often arise in clinical trials when
repeated measurements, positive or negative to certain tests, are
made on the same subject over time. To account for the serial corre-
lation within subjects, we propose a marginal logistic model which is
implemented using the Generalized Estimating Equation (GEE) ap-
proach with working correlation matrices adopting some widely used
forms. The aim of this paper is to seek some robust working correla-
tion matrices that give consistently good fit to the data. Model-fit is
assessed using the modified expected utility of Walker & Gutiérrez-
Peña (1999). To evaluate the effect of the length of time series and
the strength of serial correlation on the robustness of various working
correlation matrices, the models are demonstrated using three data
sets containing respectively all short time series, all long time series
and time series of varying length. We identify factors that affect the
choice of robust working correlation matrices and give suggestions
under different situations.

Key words: Longitudinal data; Serial correlation; Robustness; Gen-
eralized Estimating Equation approach

1. Introduction

In longitudinal studies, observations measured repeatedly from the same
subject over time are serially correlated. Time series with rather pronounced
serial correlation are common in clinical trials and stock markets. When
observations are measured on a continuous scale, the dependency structure
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between observations can be modelled in a covariance matrix with non-
constant variances and non-zero covariances. There are different types of
covariance matrices to model such dependency between observations from
the same subject.

On the other hand, when the outcomes are binary such as the positive
or negative results to certain tests, we usually consider a generalized lin-
ear model (GLM) within the exponential family of sampling distributions
with different link functions. In this paper, we propose a marginal logistic
model and the parameters are estimated using the first order Generalised
Estimating Equation (GEE) approach (Liang & Zeger 1986, Zeger et al.
1988 and Hardin & Hilbe 2003). Marginal model is easy to interpret and
forecast. While the dependency structure can be explicitly modelled by a
working correlation matrix adopting some popular and general correlation
structures, the dependency structure of a conditional model is often lim-
ited to an auto-regressive type only. Moreover marginal model allows the
study of population-averaged effects of covariates on the response variable.
Although random effects models allow within subject correlation, it fails to
account for the serial correlation over time.

Over the past two decades, GEE approach has been developed and ad-
vanced. For example, Zhao and Prentice (1990) and Lipsitz et al. (1991)
apply the GEE approach to analyse binary data, Kenward et al. (1994)
consider ordinal data, Lipsitz et al. (1994) use categorical data, Prentice
and Zhao (1991) focus on multivariate data, Park (1993) compares GEE ap-
proach to maximum likelihood approach and Miller et al. (1993) to weighted
least squares approach, etc. Despite the emergence of new techniques in
recent years, for example, the Bayesian and semi-parametric approaches,
GEE approach is still popular and often offers an easy alternative. See
Horton and Lipsitz (1999) for its implementation in various softwares and
the new geepack module in R. Recent literature on GEE approach includes
Ballinger (2004) for counts and continuous data and Copas and Seaman
(2010) on the asymptotic bias using GEE under the missing at random
(MAR) dropout environment. Although it has been known that parameter
estimates using the GEE approach are robust to misspecification of the true
correlation matrix, our experience with real data shows disagreement. In-
stead, we found that parameter estimates change considerably across models
adopting different correlation matrices. In this regard, sensitivity analyses
through simulation experiments are often performed to evaluate the per-
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formances of different models. However, it is difficult to simulate binary
data with a specific working correlation matrix when the actual correlation
structure is often unknown in practice. Hence we propose, in this paper,
to fit models adopting different working correlation matrices and assess the
model-fit using the modified expected utility (Walker & Gutiérrez-Peña,
1999). Working correlation matrix of the best model reveals valuable in-
formation regarding the actual dependency structure between observations.
Since the length of the time series may affect the choice of robust correla-
tion matrices, we investigate three data sets containing all short time series
(N=3), all long time series (N=14) and time series of varying length (N
ranges from 4 to 26).

In section 2, we describe the marginal logistic model and introduce some
common working correlation matrices, namely, the completely independent
(CI), the equal correlation (EC), the first order autoregressive (AR1), and
the Toeplitz with 2 (TOEP2) and 3 (TOEP3) bands. We interpret these
matrices in terms of the relationship between observations. Estimation
procedures using the first order GEE approach are described in section 3. In
section 4, three data sets are analyzed: the blood glucose data consisting of
short time series (N=3), the plasma citrate concentration data consisting
of long time series (N=14) and the methadone clinic data consisting of
time series of varying length. The first two data sets are obtained from
dichotomizing some continuous variables so that the transformed data can
be fitted to a logistic regression model. Transformation of data is necessary
here to study the robustness of different correlation structures because of
the following reasons. Firstly, it has been increasingly popular to transform
data to fulfill certain model assumptions. Secondly, simulation studies to
evaluate the performance of marginal models adopting different correlation
matrices is impossible because it is infeasible to simulate binary data with
different working correlation structures. Furthermore, we resist the idea
of simulation because arbitrary setting true model parameter values in a
simulation experiment fails to reflect the complicated correlation structure
in real data. In section 5, results from model fitting using GEE approach
are analyzed and compared. Finally, in section 6, a conclusion is drawn on
the best correlation structures that give consistently the best fit regardless
of the length of time series and strength of autocorrelation.

2. Marginal logistic model
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Longitudinal binary data are common and logistic regression is often
used to model such data. Let Ymn denote the outcome of the n-th measure-
ment from subject m where m = 1, . . . ,M , n = 1, . . . , Nm, M is the number
of subjects and Nm is the number of observations for subject m. There are
two approaches to handle the serial correlation in Ymn. The first approach
uses a conditional AR1 model where the previous observation Ym,n−1 is en-
tered as a covariate in the mean model of Ymn. The conditional probabilities
Pc,mn = Pr(Ymn = 1|Ym,n−1) are modelled as logit-linear in some covariates,
that is,

logit(Pc,mn) = β0 + β1 Xmn1 + β2 Xmn2 + · · ·+ βp Xmnp + βρ Ym,n−1.

However such approach limits the dependency structure to be an autore-
gressive type and the model is incapable of predicting future events for a
given set of covariates. The second approach adopts a marginal model and
uses a GEE approach with a working correlation matrix Σ0 to describe the
dependency structure between observations.

Here the marginal probabilities Pmn = Pr(Ymn = 1) are modelled as
logit-linear in some covariates, that is,

logit(Pmn) = ηmn = β0 + β1 Xmn1 + β2 Xmn2 + · · ·+ βp Xmnp

where ηmn is a linear function of covariates such that Pmn =
eηmn

1 + eηmn
. The

association across time of the repeated outcomes for a subject is treated as
nuisance and is entered only in a working correlation matrix that appears
in the estimating equations. Although it is known that parameter estimates
are robust to misspecification of the true correlation matrix, our experience
with data fitting shows disagreement. Discrepancy between certain signif-
icant parameter estimates can be as large as 30% among models adopting
different working correlation matrices. See the parameter estimates with ‘*’
in Table 2. Moreover as the actual correlation structure is often unknown
in practice, we propose to adopt different working correlation matrices to
model the dependency structure between observations explicitly and com-
pare between results. The working correlation matrix of the best fitted
model reveals valuable information regarding the dependency between ob-
servations. For N = 4, the working correlation can be modelled by the
following J = 5 types:
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Structure Properties

Completely independent (CI)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 Zero correlation Corr(εi, εj) = 0
pρ = 0

Equal correlation (EC)


1 ρc ρc ρc
ρc 1 ρc ρc
ρc ρc 1 ρc
ρc ρc ρc 1

 Constant correlation Corr(εi, εj) = ρc
pρ = 1

First-order autoregressive (AR1)


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ
ρ3 ρ2 ρ 1

 Equal correlation for given time lag k
Corr(εi, εj) = ρk, abs(i− j) = k
pρ = 1

Toeplitz 2 bands (TOEP2)


1 ρ1 0 0
ρ1 1 ρ1 0
0 ρ1 1 ρ1
0 0 ρ1 1

 Equal correlation for given time lag=1
Corr(εi, εj) = ρ1, abs(i− j) = 1
pρ = 1

Toeplitz 3 bands (TOEP3)


1 ρ1 ρ2 0
ρ1 1 ρ1 ρ2
ρ2 ρ1 1 ρ1
0 ρ2 ρ1 1

 Equal correlation for given time lag=1 & 2
Corr(εi, εj) = ρk, abs(i− j) = k, k = 1, 2
pρ = 2

where pρ is the number of correlation parameters which is fixed except
TOEP (pρ = N − 1) and the error εi = Yi − E(Yi) in general. For a larger
N , the J = 5 types of correlation matrices can be similarly defined. Some
of these correlation structures exhibit special properties. For example, EC
corresponds to a random intercept model and AR1 an exponential correlation
model. For equally spaced measurement times such that tn+1 − tn is a
constant for all n, σnn′ = σ2ρ|n−n

′| implies that the covariance between a pair
of measurements on the same subject decays to zero as the time separation
between the measurements increases. AR1, TOEP2 and TOEP3 assign
equal correlation to observations of equal time lag. Practically, correlation
between observations with large time lag is very low. Hence TOEP is usually
set to contain just a few bands and this will not eliminate some highly
possible correlation structures. For more details about the interpretation of
some of these correlation structures, see Diggle et al. (1996).

3. Estimation using GEE approach

Prentice (1988) proposed the GEE approach using a Taylor series ex-
pansion to approximate the likelihood function. The estimating equation



Generalized Estimating Equation Approach for Longitudinal Binary Data 298

is

U(β) =
M∑
m=1

∂P T
m

∂β
[Cov∗(Y m)]−1 (Y m − Pm) = 0 (1)

where
∂P T

m

∂β
= XT

m Diag(S2
m1, . . . , S

2
mNm), (2)

Xm is the Nm × (p + 1) design matrix for patient m with row vectors
(1, xmn1, . . . , xmnp), Pm = (Pm1, . . . , PmNm)T and Y m = (Ym1, . . . , YmNm)T .
We set the working covariance matrix of Y m to be

Cov∗(Y m) = V m = Diag(Sm1, . . . , SmNm) Σ0 Diag(Sm1, . . . , SmNm).

where Σ0 is the working correlation matrix and the variance estimates
S2
mn = Pmn(1 − Pmn) = eηmn/(1 + eηmn)2. We estimate different correla-

tion coefficients by

ρ̂c=
1

M∑
m=1

Nm(Nm − 1)/2

M∑
m=1

Nm∑
n=2

n−1∑
n′=1

(Ymn − Pmn)(Ymn′ − Pmn′)

[Pmn (1− Pmn) Pmn′ (1− Pmn′)]
1
2

for EC, (3)

ρ̂, ρ̂1 =
1

N −M

M∑
m=1

Nm−1∑
n=1

(Ymn − Pmn)(Ymn+1 − Pmn+1)

[Pmn (1− Pmn) Pmn+1 (1− Pmn+1)]
1
2

for AR1 & TOEP2,3, (4)

ρ̂2 =
1

N − 2M

M∑
m=1

Nm−2∑
n=1

(Ymn − Pmn)(Ymn+2 − Pmn+2)

[Pmn (1− Pmn) Pmn+2 (1− Pmn+2)]
1
2

for TOEP3. (5)

since ρc, ρ1, ρ2 are correlations between any pairs, only lag-1 pairs and only
lag-2 pairs of observations respectively and they are estimated by correla-
tions based on corresponding pairs in the sample. Note that ρ is correlation
between any pairs allowing for the number of lag and it is estimated by
sample correlation between successive (lag-1) pairs only. With estimates

ρ
(l)
c , ρ(l), ρ

(l)
1 , ρ

(l)
2 in iteration l, we can update β(l) to β(l+1) by solving (1)

using the Newton-Raphson method. Then ρ
(l)
c , ρ(l), ρ

(l)
1 , ρ

(l)
2 are subsequently

updated to ρ
(l+1)
c , ρ(l+1), ρ

(l+1)
1 , ρ

(l+1)
2 using β(l+1) in (3) to (5) and the cycle

repeats again until convergence is reached. Finally, the covariance matrix
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of the proposed estimator β̂ (Prentice, 1988) equals

Cov(β̂) = [
M∑
m=1

(∂P
T
m

∂β
V −1m

∂Pm

∂βT
)]
−1

[
M∑
m=1

(∂P
T
m

∂β
V −1m Ĉov(Y m)V −1m

∂Pm

∂βT
)]

[
M∑
m=1

(∂P
T
m

∂β
V −1m

∂Pm

∂βT
)]
−1

(6)

where Ĉov(Y m) is given by (Y m − P̂m)(Y m − P̂m)T .
4. Empirical studies

4.1 Blood glucose data

Data of inter and intra individual variation of blood glucose levels (An-
drews and Herzberg 1985, P.211) obtained from registrants for pre-natal
care at Boston City Hospital, USA, are used to estimate the variation of
blood sugars on pregnant and non-pregnant women. There are 53 non-
pregnant women, each receiving annual glucose tolerance test over a period
of six years of which six fasting blood glucose tests were conducted and their
one hour post blood glucose concentrations were measured. There are also
52 pregnant women, each having three fasting blood glucose tests and their
one hour post blood glucose concentrations measurements. Measurements
are in mg/100 ml. The variables in the data set are

Dependent variable:
Y : the indicator of whether the fasting glucose level X1 is less than the 1-hour

post blood glucose level Y1 by more than 10 mg/100 ml, i.e. I(X1 − Y1 < 10)
Independent variables:
X1: the fasting blood glucose level,
X2: the indicator of pregnancy.

This data set is used in the analysis of short time series and it contains
K = 315 (3× (53 + 52)) observations coming from M = 105 subjects each
repeatedly measured N = 3 times. For the 53 non-pregnant women, only
the first three fasting and one hour post blood glucose levels are used in the
analysis. The counts of M and K and the means of Y1, X1 and Y across
the non-pregnant and pregnant groups of women are presented in Table 1.
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Table 1: Summary of the three data sets
Blood glucose data Plasma citrate con. data Methadone data

Var. Non-preg. Pregnant Total Non-meal Meal Total Non-drop Drop Total
M 53 52 105 - - 10 85 51 136
K 159 156 315 110 30 140 2210 652 2872
Y1 87.95 107.82 97.79 115.10 120.51 119.35 - - -
X1 79.21 72.88 76.08 - - - 64.1 65.3 64.4
Y 43% 84% 63% 37% 47% 45% 13% 26% 16%

Note: ‘-’ refers to information either not available or not necessary to report.

The marginal probabilities Pmn = Pr(Ymn = 1) are modelled as logit-linear in the
covariates, that is,

logit(Pmn) = β0 + β1Xmn1 + β2Xmn2

where (β0, β1, β2) are the parameters for the intercept, X1 and X2 respectively. For
model comparison, the conditional AR1 model (CAR1)

logit(Pc,mn) = β0 + β1Xmn1 + β2Xmn2 + βρYmn−1,

where the conditional probabilities Pc,mn = Pr(Ymn = 1|Ym,n−1) and Ym,0 = 0, is
also considered together with the marginal models with 5 different working correlation
matrices. Table 2 shows that all parameters are significant and that a decrease in fasting
blood glucose level and the state of pregnancy are significantly associated with a higher
probability of increasing the one-hour post blood glucose level by more than 10 mg/100
ml.
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Table 2: Parameter estimates with SE in italic for the three data sets
β0 β1 β2 ρ or βρ U

Blood glucose data (N = 3)
CAR1 1.9004 1.0310 -0.0285 0.0131 1.7001 0.2885 0.2830 0.2804 -0.55521
CI 1.7774 1.0744 -0.0259 0.0136 1.7821 0.2993 - -0.55682
EC 2.4270 1.1060 -0.0341 0.0141 1.7444 0.3020 0.1388 -0.55747
AR1 2.1176 1.0802 -0.0301 0.0137 1.7595 0.3009 0.0986 -0.55700
TOEP2 2.1027 1.0794 -0.0299 0.0137 1.7602 0.3009 0.0983 -0.55699
TOEP3 2.4388 1.1235 -0.0343 0.0143 1.7467 0.3022 0.1040 0.2149 -0.55751

Plasma citrate concentration data (N = 14)
CAR1 -0.3413 0.5101 -0.1176 0.0554 -0.5981 0.5344 2.6297 0.4311 -0.50189
CI 0.6953 0.6216 -0.0999 0.0603 -0.7274 0.2902 - -0.66648
EC 0.6700 0.6370 -0.1000 0.0624 -0.7286∗ 0.2960 0.4324 -0.66656
AR1 0.4359 0.5624 -0.0719 0.0581 -0.5555∗ 0.2774 0.5967 -0.66803
TOEP3 0.4511 0.6872 -0.0902 0.0858 -0.2419 0.2776 0.6046 0.4909 -0.67134

Methadone clinic data (4 ≤ Nm ≤ 26)
CAR1 -0.8423 0.2189 -0.0088 0.00282 -0.4049 0.0628 2.3960 0.1196 -0.73692
CI -0.1332 0.4011 -0.0113 0.00620 -0.3710 0.0765 - -0.78251
EC -0.1892 0.3795 -0.0118 0.00517 -0.2911 0.0771 0.2360 -0.67457
AR1 -0.2197 0.3768 -0.0108 0.00569 -0.3434 0.0736 0.4310 -0.74800
TOEP2 -0.2614 0.4017 -0.0107 0.00605 -0.3282 0.0745 0.4424 -0.72970
TOEP3 -0.1900 0.3636 -0.0104 0.00549 -0.3683 0.0752 0.4422 0.3533 -0.77870
Note: The larger parameter estimate β2 with ‘*’ is 30% more than the smaller

parameter estimate for the plasma citrate concentration data. ‘-’ refers to
parameter not existing in the model.

4.2 Plasma Citrate Concentration data

An experiment involving 10 subjects (Andrews and Herzberg, 1985, P.237) was car-
ried out to study the variation of plasma citrate concentration during a day. For each
subject, the concentration of citrate in plasma (in µmol per litre) was measured hourly
at 14 time points from 8am to 9pm during a day, with a total of K = 140 observations.
Meals were given at 8am, at noon and at 5pm. The binary outcome of the logistic model
is Y , an indicator of whether the plasma citrate concentration (Y1) is more than 120
µmol per litre. Covariates include the time of the day (X1) taking values from 1 to 14
and an indicator of meal time (X2). A summary for the counts M and K and the means
of Y1 and Y across observations taken at non-meal and meal times are reported in Table
1. Model parameters are (β0, β1, β2) for the intercept and the 2 covariates.

Again the CAR1 model with an autoregressive parameter βρ for the previous outcome
Ymn−1 and the marginal models with 5 different working correlation matrices are fitted
to the data. However model with TOEP2 does not have stable parameter estimates.
Table 2 shows that for all except the CAR1 models, only the indicator of meal time (X2)
is significantly associated with a higher probability of having the concentration of citrate
in plasma in excess of 120 µmol per litre.
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4.3 Methadone clinic data

The methadone clinic data set consists of records of drug users under methadone
maintenance treatment program at a clinic in Western Sydney in 1986. Outcomes Y are
the weekly urine test results which are positive or negative for morphine, a biological
marker for heroin use. Methadone dose d in mg (X1) at the time of urine test is included
as a predictor variable, as is the log of treatment duration ln t in weeks (X2) because
previous research revealed that the methadone dosage and the duration of treatment are
significant treatment factors. There were M = 136 heroin users, submitting a total of
K = 2872 urine screens and each urine screen result serves as the unit of analysis. The
average number of treatment weeks per heroin user is 21.1 with each user submitting 4
to 26 weekly outcomes (4 ≤ Nm ≤ 26). 51 of them dropped out prematurely and the
rest having 26 outcomes are regarded as having completed the program. Table 1 displays
the counts of M and K and the means of Y and X1 across the non-dropout and dropout
heroin user groups. For more detailed description of the data set, see Chan et al. (1998).

The marginal logistic regression model is:

logit(Pmn) = β0 + βd dmn + βt lnn

where dmn is the dosage administered to patient m at time n. Table 2 gives the results
for the CAR1 model and 5 marginal models. In general, the dose effect is only marginally
significant. The conclusion is qualitatively the same as other researches conducted on
this data (Chan et al., 1998), namely, increase in methadone dose is associated with
reduced heroin use and heroin use is also reduced over time. Moreover the significant
autoregressive parameter βρ in the CAR1 model indicates that a strong and positive
association between the present Yit and previous Yi t−1 outcomes, suggesting that some
patients in treatment tend to use heroin continuously while others do not.

5. Results

In order to compare the performance of marginal logistic models with different cor-
relation matrices, the posterior expected utility

U =
1

K

M∑
m=1

Nm∑
n=1

ln P̂mn (7)

where P̂mn = eη̂mn

1+eη̂mn
and

η̂mn =

{
β̂o + β̂1 Xmn1 + β̂2 Xmn2 for marginal models,

β̂o + β̂1 Xmn1 + β̂2 Xmn2 + β̂ρ Ymn−1 for CAR1 model,

proposed by Walker and Gutiérrez-Peña (1999) is evaluated for each model.

The U is the average of the natural logarithm of the probability densities of data. Obvi-
ously, a less negative U indicates a higher likelihood of the model given the data. Note
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that the nuisance parameters in the working correlation matrix of the marginal mod-
els do not enter explicitly into the calculation of P̂mn. However, as they appear in the
estimating equations, they affect the parameter estimates (β̂0, β̂1, β̂2).

For the blood glucose data, Table 2 shows that the estimates of ρ are very small
for all marginal models and the autoregressive parameter βρ in the CAR1 model is also
insignificant. This shows that the strength of serial correlation is weak possibly because
a short time series cannot adequately reveal the dependency structure for binary data.
Hence the U values are similar across conditional and marginal models. Marginal model
adopting a CI correlation matrix has the least negative U value showing that observations
within patients are essentially independent.

For the plasma citrate concentration data, the ρ(s) are much larger for all marginal
models and the autoregressive parameter βρ in the CAR1 model is strongly significant.
This shows that the strength of serial correlation is much stronger. Clearly the ρc in
the correlation matrix of EC type is generally smaller than the ρ in the AR1 matrix
or the ρ1 in the TOEP2 and TOEP3 matrices because EC assumes equal correlation
independent of the time-lag between any two observations. Moreover, ρ1 in the TOEP3
matrix which describes the correlation between observations of 1 time-lag is generally
larger than ρ2 which reveals the correlation between observations of 2 time-lag. Since
the CAR1 model gives the least negative U value, it again confirms the strong serial
correlation between observations within patients. However, across marginal models, the
U value is least negative for model with CI correlation matrix but this value is very close
to that of model with EC matrix. For this data, we believe that the EC matrix is the
best correlation matrix to describe the dependency structure between observations from
the same subject.

Lastly, for the methadone clinic data, Table 2 shows that the ρ(s) are moderate
for all marginal models and the autoregressive parameter βρ in the CAR1 model is
also significant. The U values differ substantially across models possibly because of the
generally longer time series and their specific dependency structures. The marginal model
adopting an EC correlation matrix gives the least negative U value again confirming the
strong serial correlation between observations within patients but such serial correlation
does not decrease as the time-lag between observations increases. Again the EC matrix
is the best correlation matrix for this data to describe the dependency structure between
observations from the same patient.

6. Conclusion

Although the GEE approach has been proposed for more than twenty years, few
studies investigate choices of working correlation matrices for data with different correla-
tion structures, possibly because parameter estimates for marginal models using a GEE
approach are known to be robust against misspecification of working correlation matrix.
However our experience with real data analyses shows the contrary: parameter estimates
(β0, β1, β2) as well as the model fit measure U differ substantially across models adopting
different working correlation matrices. Results from three real data analyses suggest that
the EC matrix is an appropriate choice of working correlation matrix if the time series is
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short or the serial correlation does not decrease sharply with time. This is perhaps due
to the limited information in binary data that favors simple correlation structures. If
computationally feasible, fitting models with all the five working correlation matrices and
choosing one with the least negative posterior expected utility U is also a good practice.
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