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Abstract: Particulate matter smaller than 2.5 microns (PM2.5) is a com-
monly measured parameter in ground-based sampling networks designed to
assess short and long-term air quality. The measurement techniques for
ground based PM2.5 are relatively accurate and precise, but monitoring lo-
cations are spatially too sparse for many applications. Aerosol Optical Depth
(AOD) is a satellite based air quality measurement that can be computed
for more spatial locations, but measures light attenuation by particulates
throughout in entire air column, not just near the ground. The goal of
this paper is to better characterize the spatio-temporal relationship between
the two measurements. An informative relationship will aid in imputing
PM2.5 values for health studies in a way that accounts for the variability in
both sets of measurements, something physics based models cannot do. We
use a data set of Chicago air quality measurements taken during 2007 and
2008 to construct a weekly hierarchical model. We also demonstrate that
AOD measurements and a latent spatio-temporal process aggregated weekly
can be used to aid in the prediction of PM2.5measurements.
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1. Introduction

Particulate matter with aerodynamic diameter smaller than 2.5 microns (PM2.5)
has well known associations with many diseases. Accordingly, air quality studies
are increasingly prominent in the public health literature. Air quality has been
linked to various health outcomes, particularly cardiovascular and respiratory
diseases (Dominici et al., 2006, Pope III et al., 2002) but also to other diseases
as well (Pope et al., 2009). It is important to understand not only what the dis-
eases are and what causes them, but the spatial and temporal patterns as well.
Both spatial and temporal patterns of chronic diseases are informative to begin
inferring casual factors of acute diseases.
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Historically, studies have been time series studies which followed specific lo-
cations over a long period of time. See Dominici et al. (2002, 2003, 2000) for
thorough examples. More recent studies have also been focusing on spatial re-
lationships as well as temporal (Jerrett et al., 2005, Paciorek and Liu, 2009).
The majority of such studies account for spatial relationships by aggregating
across large geographic regions. Typically, the aggregation is necessary because
the PM2.5 measurements are ground-based and can only be obtained at a small
number of monitoring stations. Therefore, it is difficult to produce full spatio-
temporal models because the PM2.5 stations are so sparse.

Since observed values of PM2.5 at finer geographic scales are not readily avail-
able, some studies have examined the relationship between PM2.5 and aerosol
optical depth (AOD). Various sensors aboard many satellites orbiting earth have
daily global coverage, and capture the data at various spatial and spectral reso-
lutions. AOD is computed using a radiative transfer model (Remer et al., 2006)
and is used by researchers in climate change and weather prediction. Since the
Terra satellite has daily global coverage, AOD data recorded by MODerate Res-
olution Imaging Spectroradiometer (MODIS) aboard the satellite can be utilized
to develop daily air quality estimates. Specifically, AOD is the depletion of re-
flected solar irradiation, caused by the presence of solid and liquid aerosols in the
atmosphere, as measured by the satellites. The AOD value denotes the columnar
presence of solid and liquid aerosols.

Only a fraction of the AOD value captures the airborne particulate matter
(PM) near the earth surface (Kumar et al., 2011). Therefore, we expect AOD
and PM values are moderately, but not perfectly, correlated. It is this correlation
that is of particular interest in this paper. We know that the PM2.5 values can
be more finely estimated by using the information available within AOD (Pa-
ciorek et al., 2008). Our goal is to investigate the correlation over both space
and time between AOD and PM2.5 and determine how that correlation varies
across both space and time after accounting for important covariates. Paciorek
and Liu (2009) discuss the importance of comparing AOD and PM2.5 and also
the limitations. Given that we can’t control for all factors influencing the differ-
ences between PM2.5 and AOD (e.g., chemical composition, shape, mixing state,
relative humidity, and size distribution), quantifying the spatial and temporal
correlations between PM2.5 values after accounting for AOD and other covariates
would allow better predictions of PM2.5 values in new locations.

Increasingly, AOD values are being used as a proxy to improve PM2.5 predic-
tions since PM values are geographically sparse (Liu et al., 2007, McMillan et al.,
2009). In light of this research, a rigorous model of the spatial and temporal of
AOD and PM2.5 is desired. We describe the data being used in the analyses in
Section 2. A Bayesian hierarchical model is built in Section 3 to show how much
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of the spatio-temporal pattern in PM is actually being described by AOD and
other covariates. We close with a discussion in Section 4.

2. Data

PM2.5 values are available using the Environmental Protection Agency (EPA)
Air Quality System (AQS). We have utilized only the more accurate 24 hour
measurements in our analysis, and have discarded the one hour measurements in
order to obtain a more consistent outcome measure. The network is available in
many urban areas and supplemental sites. In the Chicago area there are thirty-
five PM2.5 monitoring stations as shown in Figure 1. Data from this study are
obtained as part of a larger data assimilation study. The particular data we
analyze were collected between April 2007 and December 2008. In the larger
study, PM2.5 values are being predicted at 12 to 36 km horizontal resolution
over the United States and at a 4km resolution for the Chicago area. Given
the smaller scale being focused on in Chicago, the work in this paper focuses
on the relationship between PM2.5 and AOD and their spatio-temporal trends.
Although the current study focuses on Chicago, the method could be generalized
to any location with both particulate and AOD observations.

AOD data from MODIS onboard Terra satellite were used for these analyses.
The Terra and Aqua satellites cover the United States approximately twice per
day. The NASA aerosol land team developed an algorithm to extract aerosol over
land and ocean (Levy et al., 2007, Remer et al., 2006). The algorithm allows for
daily global AOD values at various spatial resolutions and are available through
Level 1 and Atmosphere Archive Distribution System (LAADS) (NASA, 2010).
MODIS data are useful due to their fine spatial resolutions (here we use a 1000m
resolution across 36 channels) and ensure robust retrieval of AOD at 10 km
(Kumar et al., 2011, Levy et al., 2007). As shown in Figure 1, measurements are
obtained for the entire Chicago area at least once during the study period.

Since one degree latitude is not equivalent in terms of distance to one degree
longitude at the latitude of Chicago, all latitude and longitude coordinates were
converted to Universal Transverse Mercator (UTM) coordinates, using a stan-
dard mathematical approximation by the United States Department of the Army
(1973). UTM coordinates are Eastings and Northings, and are measured in me-
ters. One Easting is equal in distance to one Northing anywhere on the globe.
In order to prepare the data for use, we selected a 6,000 meter distance window
for each location. We then averaged all of the PM2.5 and AOD data available
for this window within each calender week. This step is necessary because AOD
and PM2.5 are never measured at the same location at the same time point. The
distance of 6,000 meters and time of one week was selected in order to provide
an acceptable level of required imputation. After these procedures we proceeded
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with our data analysis.
Figure 2 contains some descriptive plots of the data. After a square root

transformation, PM2.5 and AOD the residuals of a linear regression given the
covariates of the joint model in Section 3.1 are normally distributed, as confirmed
by an Anderson-Darling normality test. We see that PM2.5

1/2 is linearly related
to AOD1/2. We also see from the graphs of PM2.5 and AOD over time by location
that a separable model is sufficient to fit these data. This makes sense a priori,
as the area considered is small enough that there is likely to be little interaction
between space and time, especially after we account for covariates.

3. The Hierarchical Model

The goal of this section is to construct a Bayesian hierarchical model to assess
the degree of large scale correlation between the two measurements after adjusting
for additional predictor variables. To that end, we will model the PM2.5 values
using AOD values as a predictor variable. Our primary goal is to develop a model
that will allow a response surface capable of predicting PM2.5 at locations where
there are no monitoring stations. We then use the latent spatio-temporal process
to increase the accuracy of our measurements.

A joint Bayesian hierarchical model was built to analyze the relationship
between AOD and PM2.5. We utilize Bayesian methodology, due to the natural
way latent spatial and temporal effects can be included in the model. These
effects can then be used to generate an explicit understanding of the amount of
spatial and temporal dependence through the magnitude of the latent random
effects and via the parameters in their priors. Our model is unique in that we
model AOD and PM2.5 jointly. We are unaware of any research in the literature
to perform this joint modeling.

For the sake of comparison, we also construct a vector autoregessive (VAR)
model for these data. Our goal in our joint model is to demonstrate that AOD val-
ues can be used to predict PM2.5 values at locations where there is no PM2.5 mon-
itoring station. However, AOD values are noisy, and so it is desirable to compare
the performance of the model in terms of predicting AOD and PM2.5 based on
both sets of data. A VAR model, which we perform using standard frequentist
analyses, helps to relieve the issue of predicting the more precise PM2.5 values
based on noisy AOD values.

3.1 The Hierarchical Data Model

The model we utilized can be written as
√
AOD = XAODβAOD + ω1(s) + τ1(t) + ε1(s, t)√
PM2.5 = XPMβPM + ω2(s) + τ2(t) + ε2(s, t).

(1)
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In the AOD portion of the joint model, XAOD is a matrix containing an
intercept, a factor variable with information on the season, and a factor variable
containing data on the land use at the location being analyzed. The season factor
variable consists of three indicators for Winter, Spring and Summer, with Autumn
serving as the baseline season. The land use factor consists of two indicators
for residential and industrial land use, with commercial land use serving as the
baseline land use. The remaining terms are all considered random as ω1(s) is a
latent spatial effect, τ1(t) is a latent temporal effect, and ε1(s, t) is a pure error
term. These errors are considered independent and identically distributed. An
overview of spatio-temporal methods can be found in Cressie and Wikle (2011).
Due to many factors, including exploratory plots of the data and a relatively
small scale both geographically and temporally, an additive model was deemed
reasonable.

In the PM2.5 portion of the joint model, XPM is a matrix containing an
intercept and a column corresponding to AOD1/2. Once again, ω2(s) is a latent
spatial effect, τ2(t) is a latent temporal effect, and ε2(s, t) is a pure error term.
Exploratory plots again yielded no evidence of spatio-temporal interaction which
is further supported by the results of the model.

This model directly allows large scale analysis of the correlation between
PM2.5 and AOD data by allowing correlations of the full AOD data and full
PM2.5 data to be computed. It also quantifies how much of the relationship
can be modeled with latent spatial and temporal terms. For our particular data
set, weekly averages of PM2.5 are easily calculated from the daily PM2.5 values.
The vast majority of air quality measurements are at weekly averaging times or
shorter.

3.2 Hierarchical Model Priors

In a Bayesian hierarchical model, care must be taken in selecting appropriate
prior distributions for the model parameters. Conjugate priors were selected be-
cause of natural interpretations and they make computations more efficient. The
beta coefficients were assigned normal priors such that βAOD ∼ N(0, σ2

βAOD
I6)

and βPM ∼ N(0, σ2
βPM

I2). The corresponding variance parameters were assigned

conjugate inverse gamma priors, σ2
βAOD

∼ IG(1, 1) and σ2
βPM

∼ IG(1, 1). While
these inverse gamma priors are informative, they are diffuse enough that the
mean of the distribution is undefined.

A graph of PM2.5 with respect to AOD by location yielded evidence that
a separable covariance structure was sufficient for these data. The latent spa-
tial effects, ω1(s), should capture any spatial correlation remaining in AOD1/2

after accounting for the covariates in XAOD. The correlation between AOD ob-
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servations should decay with increasing separation so we chose an exponential
decay spatial prior of the form N(0, σ2

ω1
[exp(−ρ1dij ])). The variance σ2

ω1
con-

trols the amount of spatial variability and ρ1 is the decay parameter. For the
remaining parameters, σ2

ω1
was assigned an IG(1, 1) prior, and ρ1 a Unif(0, 1)

prior. This uniform prior allows for extreme spatial dependence, or near spatial
independence, with the latter occurring due to the distances between monitoring
stations all being greater than 500 meters, and typically several thousand me-
ters. When ρ is large, these distances overwhelm the correlation structure and
are able to produce nearly independent measurements. In general, 95% of the
spatial autocorrelation has decayed at a distance of d∗ = − log(0.05)/ρ.

Similarly, ω2(s) was assigned an exponential decay spatial prior, with variance
σ2
ω2

and decay parameter ρ3 with σ2
ω1

being assigned an IG(1, 1) prior and ρ3 ∼
Unif(0, 1). Thus, these parameters quantify the amount of spatial correlation
remaining in PM2.5

1/2 after adjusting for AOD and other important covariates.

In this model, the latent temporal effects, τ1(t), t = 1, . . . , 93, capture the
temporal correlation in AOD1/2 not accounted for in XAOD. We assigned an
autoregressive prior of order one (AR(1)). Because there is no previous temporal
data, the latent temporal effect for the first week, τ1(1), was assigned a N(0, σ2

τ1)
prior. Then, the remaining weeks in the AR(1) model, t = 2, . . . , 93, are written
as

τ1(t) = ρ2τ1(t− 1) + ε(t)

for t = 2, . . . , 93. Note that the correlation parameter ρ3 captures the dependence
between successive weeks. Also, ε(t) ∼ N(0, σ2

τ1) and the variance parameter was
further assigned the inverse gamma prior, σ2

τ1 ∼ IG(1, 1). Finally, we assigned
ρ2 a Unif(−1, 1) prior.

Similarly, τ2(t), t = 2, ..., 93, was assigned an AR(1) prior, with variance σ2
τ2

and correlation parameter ρ4. Consequently, σ2
τ2 was assigned an IG(1,1) prior,

and ρ4 a Unif(-1,1) prior. Again, the latent temporal effect for the first week was
assigned a Normal(0,σ2

τ2) prior.

3.3 Posterior Computation

We note the similarity of our model with that of Oleson and He (2004). Our
model uses a bivariate normal outcome, rather than a binomial outcome, but is
similar in structure to their model. Additionally, Oleson and He (2004) notes
that this prior gives a closed form for the inverse of the covariance matrix. We
denote this matrix by A, and note that it is of the form σ2

ω2
/(1− ρ2

2)Σ where Σ
is tridiagonal. The diagonal elements are (1, 1+ρ2

2,..., 1+ρ2
2, 1) and the elements

immediately above an below the diagonal are −ρ2. This form makes the matrix
convenient in a Gibbs step. We assume that, given the fixed effects, all random
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effects have mean zero. More details on these distributions can be found in
Appendix A. For distributions which do not have a closed form, slice sampling
was used in order to draw from the full conditional distribution of the parameter.

Imputation of missing PM2.5 values and AOD values was performed via
Metropolis sampling. Imputation was performed as part of the MCMC chain,
and both AOD and PM2.5 values were imputed based on the current state of the
model at each iteration. Only nine of the thirty-five locations have both AOD
and PM2.5 values within 6,000 meters of each other during a week within the
study period. The data are broken into 93 measurements, each corresponding to
a calender week, at each of 9 monitoring stations. We model AOD using weekly
averages. This requires imputation of 29.2% of the values.

Because we are modeling these measures jointly, it is convenient to propose
new values for AOD and PM2.5 measurements using a Gaussian proposal, and
then to compute the joint likelihood in order to determine acceptance or rejection.
The acceptance rate for AOD and PM2.5 imputations were tuned to be near 40%.

3.4 Model Results

Three MCMC chains were run, and 400,000 iterations were collected after a
burn-in period of 100,000 iterations for each chain. Convergence was assessed
based on the Gelman-Rubin diagnostic (Gelman and Rubin, 1992). The full
results for the AOD parameters can be found in Table 1, and the full results from
the PM2.5 parameters can be found in Table 2.

The model predicting AOD shows some evidence of seasonality, with the ma-
jority of the posterior masses of the spring and summer parameters being positive,
but there is little evidence for the importance of land use in the AOD model. Ad-
ditionally, the latent spatio-temporal process places considerably more mass on
a positively autocorrelated model than a negatively autocorrelated model. This
indicates potential positive temporal association in predicting AOD, but also
demonstrates that the temporal latent process is noisy. The model also puts
more mass on spatial decay parameters that suggest a latent spatial effect. This
would suggest that, at any given time point, prediction of AOD values can be
improved by accounting for the spatial structure in the data.

The model predicting PM2.5 shows evidence of a relationship between AOD
and PM2.5 at all temporal aggregation levels. Figure 3 shows four realizations
of the model predictions of PM2.5

1/2 graphed with respect to the true values of
PM2.5

1/2. We see a strong linear trend in these data. The posterior root mean
squared error for these data is 0.197, which is low compared to magnitude of
PM2.5

1/2 (the mean being 3.30), especially considering that the model is trying
to predict a quantity as variable as PM2.5. Plotting four sets of model-based
predictions for PM2.5

1/2 by the true PM2.5
1/2 values, as was done in Figure 3,
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shows that our model accurately recovers the true values. This is promising,
because it implies that future air quality studies that collect sparse air quality
data can use weekly aggregation and still adequately predict PM2.5 values based
on AOD.

The model has failed to detect any meaningful latent temporal trend in
PM2.5 after accounting for AOD, with the autocorrelation varying throughout
the entire domain of its prior. This would argue that the temporal process is
too noisy at a given location to detect any meaningful structure. However, the
model predicts a latent spatial process in the PM2.5 values even after accounting
for AOD. Spatial correlation matrices can be found in Appendix B. These results
yield evidence that a spatial model is useful in kriging PM2.5 values, and that
the spatial process of AOD is not the only spatial process important in model-
ing PM2.5. A plot of the posterior densities for the spatio-temporal dependency
parameters can be found in Figure 4. It is worth noting, for clarity, that values
of ρ1 and ρ3 nearer to zero are more significant than larger values, based on the
parameterization of the model.

4. The VAR Model

We perform a VAR analysis for comparison. The general model we utilize is:

√
AODi,t = β0i +

9∑
j=1

3∑
l=1

{β1ijl

√
AODj,t−l}+

9∑
j=1

3∑
l=1

{β2ijl

√
PM2.5i,j,t−l}+ ε1it

√
PM2.5i,t = β3i +

9∑
j=1

3∑
l=1

{β4ijl

√
AODj,t−l}+

9∑
j=1

3∑
l=1

{β5ijl

√
PM2.5i,j,t−l}+ ε2it,

for i = 1, ...9, t = 2, ..., 93. All terms in this model are scalars. This model
represents an alternative joint model for PM2.5 and AOD. Notably, it does not
contain any terms inducing concurrent spatial dependence, instead relying on
the model to evolve temporally. We have performed the standard imputation of
replacing any missing values with the mean value of the outcome. Additionally,
we have not included land use in predicting AOD, as it was used only in predicting
the imputed values of AOD. We assume that the random errors ε1i. ∼ N(0, σ2

1i)
and that ε2i. ∼ N(0, σ2

2i). This model was estimated using the fastVAR package
in the R programming language (Wong, 2012).

Due to the large number of parameters to be estimated, we suppress the full
set of estimates and confidence intervals, and instead focus on model fit. The se-
lection of an order three VAR model was performed by comparing all computable
order and utilizing the Bayesian Information Criterion (BIC) (Schwarz, 1978) as
a model selection criterion. BIC itself was chosen as a suitable model selection



A. T. Porter, J. J. Oleson ,and C. O. Stanier 263

criterion because the previous model was performed in the Bayesian framework.
The RMSE of this model was estimated to be 0.422, which is much larger than
our hierarchical model. Our explanation for this difference is that weekly aggre-
gation is coarse for air quality data, and the simultaneous spatial structure in our
hierarchical model is advantageous. The VAR model may be a reasonable model
when time is more finely partitioned.

5. Discussion

Our weekly model detected a strong latent spatial process in PM2.5 even after
accounting for AOD, indicating systematic spatial variability of PM2.5 around a
mean structure containing only AOD. This latent structure is helpful in kriging
PM2.5 values when AOD is aggregated weekly. Further refinement of the model
utilizing additional covariates in the PM2.5 model may allow for improved kriging,
but we have shown that AOD is not sufficient to explain the spatial pattern in
PM2.5 for this particular data set.

The advantage of using statistical models is that they are able to directly
incorporate variance components to model the uncertainty in the physical process.
This ability is lacking in physics based models. Due to the high variance of
these measurements, some researchers may choose statistical methods rather than
physics based models. Since daily PM2.5 predictions based on AOD are feasible,
these predictions would be helpful in future air quality studies.

Our particular model is suitable for small areas over long time frames. The
model of Paciorek and Liu (2009) is potentially better suited to larger areas. Its
general additive structure allows complex splines to be fit over large areas and
this gives the model additional flexibility, but these tend to hide the generating
mechanism of the data. Our model utilizes less complex spatial smoothing, but
is easily interpretable and informative with regards to the underlying spatio-
temporal process of the data. We do admit that our structure may not scale
up to large areas. For instance, the model would not be suitable for the entire
United States, due to the separability we have utilized. However, our model is
general enough that it may be applicable to small geographical scales in many
location other than the Chicago area.
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7. Appendix A: Full Conditional Distributions

We introduce the following notation: Xs is a matrix indexing spatial locations,
and Xt is a matrix indexing temporal periods. The correlation matrix will be
denoted by Φ when there is no need to refer to the individual elements. We
provide only the posterior distributions of the model component related to AOD
due to the similarity with the posteriors of the model component related to PM2.5.
Each distribution listed is conditioned on the data and other parameters.

i. ω1(s) ∼ NI(µ, (
1
σ2
ε
X ′sXs + 1

σ2
ω1

Φ−1))−1)

where µ = ( 1
σ2
ε
X ′sXs + 1

σ2
ω1

Φ−1)−1 1
σ2
ε
X ′s(AOD −XAODβAOD −Xtτ1)

ii. τ1(t) ∼ NJ(µ, ( 1
σ2
ε
X ′tXt +

1−ρ22
σ2
τ1

A−1))−1 1
σ2
ε
(AOD −XAODβAOD −Xsω1)

where µ = (( 1
σ2
ε
X ′tXt +

1−ρ22
σ2
τ1

A−1))−1σ2
εX
′
t(AOD −XAODβAOD −Xsω1)

iii. σ2 ∼ IG( IJ2 + a0,
1
2

∑I
i=1

∑J
j=1(AODij − ωi − τj)2 + b0)

iv. σ2
ω1
∼ IG( I2 + a1,

1
2ω
′Φω + b1)

v. σ2
τ1 ∼ IG(J2 + a1

1
2τ
′A′Ω−1Aτ + b2)

vi. ρ1 ∝ |Φ|
1
2

σIω1
exp(− 1

2δ1
ω′Φω)

vii. ρ2 ∝ exp
(

1
2 log(1− ρ2

2)− 1
2σ2
τ1

{∑J
j=1 τ

2
j − 2ρ32

∑
j = 2Jτj−1τj + ρ2

2

∑J−1
j=2 θ

2
j

})
viii. βAOD ∼ N6(µ, ( 1

σ2
ε
X ′X + 1

σ2
beta

I6)−1)

where µ = ( 1
σ2
ε
X ′AODXAOD + 1

σ2
beta

I6)−1 1
σε2
X ′(AOD −Xsω −Xtτ)

ix. σ2
β ∼ IG(6

2 + a0,
1
2(AOD −Xsω −Xtτ)′(AOD −Xsω −Xtτ) + b0)

8. Appendix B: Correlation Matrices

In this section we present data-based and model based spatial correlation
matrices for the square root of AOD and the square root of PM2.5 for exploratory
purposes and for model comparison. It is worth noting that the data-based spatial
correlation matrices only utilize the 37 time points where every location had a
measured AOD and PM2.5 values. Still, they offer some information as to the
general appropriateness of the model and the importance of the model-based
estimation. Model-based estimates are based on the posterior median of the
spatial correlation parameters for AOD and PM2.5 in order to provide a single
measure of the correlation, but the model utilizes the entire posterior of these
parameters.

The data-based correlation matrix for the square root of AOD is
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1.00 0.86 0.57 0.86 0.75 0.65 0.65 0.64 0.68
1.00 0.51 0.79 0.87 0.74 0.71 0.73 0.75

1.00 0.47 0.67 0.33 0.46 0.53 0.54
1.00 0.71 0.68 0.62 0.73 0.69

1.00 0.64 0.65 0.74 0.77
1.00 0.65 0.65 0.64

1.00 0.67 0.62
1.00 0.90

1.00


.

The model-based correlation matrix for the square root of AOD is

1.00 0.83 0.84 0.88 0.84 0.71 0.76 0.79 0.78
1.00 0.87 0.92 0.97 0.85 0.91 0.94 0.91

1.00 0.85 0.91 0.78 0.84 0.89 0.89
1.00 0.91 0.79 0.83 0.86 0.84

1.00 0.84 0.90 0.95 0.92
1.00 0.93 0.88 0.89

1.00 0.95 0.95
1.00 0.97

1.00


.

We note two aspects regarding the previous set of matrices. First of all, the
entire data-based correlation matrix is positive. Therefore, positive spatial au-
tocorrelation matrices, such as the exponential model we have selected, are a
reasonable choice in modeling this correlation. Secondly, the data-based correla-
tion does not account for covariates or missing data, which is a strength of the
model-based correlation matrix. Even so, both correlation matrices demonstrate
a strong spatial process that underlies the AOD values.

The data-based correlation matrix for the square root of PM2.5 is

1.00 0.66 0.79 0.81 0.62 0.59 0.73 0.67 0.80
1.00 0.58 0.69 0.75 0.64 0.72 0.62 0.73

1.00 0.73 0.74 0.53 0.69 0.71 0.80
1.00 0.68 0.59 0.81 0.75 0.82

1.00 0.61 0.72 0.67 0.78
1.00 0.75 0.64 0.66

1.00 0.75 0.75
1.00 0.77

1.00


.

The model-based correlation matrix for the square root of PM2.5 after remov-



266 On the Spatio-Temporal Relationship Between MODIS AOD and PM2.5

ing AOD is

1.00 0.03 0.04 0.10 0.04 0.01 0.01 0.02 0.01
1.00 0.10 0.20 0.55 0.05 0.17 0.33 0.19

1.00 0.05 0.16 0.01 0.04 0.11 0.11
1.00 0.16 0.01 0.04 0.07 0.04

1.00 0.04 0.14 0.37 0.23
1.00 0.27 0.10 0.11

1.00 0.37 0.37
1.00 0.57

1.00


.

The previous two correlation matrices are not directly comparable, as there is
no data-based correlation matrix that can account for PM2.5 . However, it is clear
that there is a strong spatial process in PM2.5 , and that some of this process
can be modeled by a using AOD as a fixed effect. However, the model-based
PM2.5 correlation matrix still yields certain location pairs with noticeable latent
correlation (such as locations 8 and 9). This provides evidence for the importance
of including a latent spatial process at this model stage.
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Table 1: 95% Credible Intervals for the AOD Parameters
Parameters Posterior Median 95% Credible Interval

Intercept (β0AOD) 0.171 (-0.339, 0.806)
Winter Season (β1AOD) 0.161 (-0.125, 0.397)
Spring Season (β2AOD) 0.209 (0.005, 0.380)
Summer Season (β3AOD) 0.176 (-0.058, 0.329)
Landuse Industrial (β4AOD) 0.059 (-0.290, 0.501)
Landuse Residential (β5AOD) -0.035 (-0.336, 0.394)
Spatial Variance (σ2

ω1
) 0.237 (0.104, 0.738)

Temporal Variance (σ2
τ1) 0.037 (0.027, 0.054)

Pure Error Variance (σ2
1) 0.012 (0.011, 0.014)

Spatial Decay (ρ1) 0.003 (0.001, 0.812)
Temporal Autocorrelation (ρ2) 0.245 (-0.207, 0.833)

Table 2: 95% Credible Intervals for PM2.5 Parameters

Parameters Posterior Median 95% Credible Interval

Intercept (β0PM ) 1.355 (0.973, 1.742)
sqrt(AOD) (β1PM ) 2.381 (0.941, 2.976)
Spatial Variance (σ2

ω2
) 0.208 (0.093, 0.924)

Temporal Variance (σ2
τ2) 0.525 (0.329, 0.995)

Pure Error Variance (σ2
2) 0.173 (0.154, 0.197)

Spatial Decay (ρ3) 0.094 (0.001, 0.954)
Temporal Autocorrelation (ρ4) 0.006 (-0.948, 0.951)

FIGURES INCLUDED BELOW
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Figure 1: Geographic locations of the 35 PM2.5 monitor sites. Black points
represent the monitor sites, and the gray points represent a random sample of
10% of the locations where AOD measurements were observed.
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Figure 2: Descriptive Plots for AOD and PM2.5 . Left to right, top to bottom,
the images are: 1 A histogram of the square root of PM2.5 . 2 A histogram
of the square root of AOD. 3 A plot of the square root of AOD by location,
demonstrating separability. 4 A plot of the square root of PM2.5 by location
over time demonstrating separability. 5 Plots of the square root of PM2.5 by the
square root of AOD stratified over location, with different symbols used for each
location. 6 Plots of the square root of PM2.5 by the square root of AOD stratified
over 20 randomly selected times, with different symbols used for each time point.
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Figure 3: Four realizations of PM2.5 predicted by our model plotted by the true
PM2.5 values.
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Figure 4: Spatio-temporal Dependency Parameters
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