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Generating correlated random vector by Johnson system
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Abstract:

This paper aims to generate multivariate random vector with prescribed
correlation matrix by Johnson system. The probability weighted moment
(PWM) is employed to assess the parameters of Johnson system. By equat-
ing the first four PWMs of Johnson system with those of the target distri-
bution, a system of equations solved for the parameters is established. With
suitable initial values, solutions to the equations are obtained by the New-
ton iteration procedure. To allow for the generation of random vector with
prescribed correlation matrix, approaches to accommodate the dependency
are put forward. For the four transformation models of Johnson system,
nine cases are addressed. Analytical formulae are derived to determine the
equivalent correlation coefficient in the standard normal space for six cases,
the rest three ones are handled by an interpolation method. Finally, several
numerical examples are given out to check the proposed method.

Key words: correlation coefficient, Johnson system, normal transformation,
probability weighted moment.

1. Introduction

A general problem in stochastic simulation modeling entails representing data
with the underlying distribution unknown, and generating random vector with de-
sired correlation matrix and marginal distributions. To achieve this goal, several
empirical distributions have been proposed, such as the generalized lambda distri-
bution (GLD) (Ramberg & Schmeiser, 1974), the power transformation (Fleish-
man, 1978), and the Johnson system (Johnson, 1949). The related works have
been summarized by Tadikamalla (1980). Among these families of distributions,
the Johnson system stands out for its generality to simulate various probability
distributions and the potential ability to model the correlated random variables.
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The Johnson system comprises four models:

SN : z =
x− µz
σz

SL : z = γ + δ · ln (x− ξ) (ξ < x)

SU : z = γ + δ · sinh−1

(
x− ξ
λ

)
SB : z = γ + δ · ln

(
x− ξ

ξ + λ− x

)
(ξ < x < ξ + λ)

(1)

where z is a standard normal variable. γ and δ are parameters determined by
the skewness and kurtosis, ξ and λ are parameters determined by the mean and
the standard deviation respectively. SN is the normal distribution with mean µz
and standard deviation σz. SL represents the Lognormal family. SU denotes the
unbounded family, that is, the variation range of x is infinite. SB is the bounded
family, handling x with a boundary. These four models together cover all types
of unimodal probability distributions.

To utilize the Johnson system to fit data or simulate distribution, it is nec-
essary to select an appropriate model and to evaluate the parameters. Based on
the skewness and kurtosis, a suitable model for the target random variable can
be determined. The central problem is to estimate the parameters. The stan-
dardized central moment matching method (Hill et al., 1976) and the percentile
method (Slifker & Shapiro, 1980) are examples of various approaches developed
for this purpose. This paper focuses on the moment matching method.

Since the statistical information of a random variable is characterized by its
statistical moments, the underlying principle for the moment matching method is
to relate the moments of the corresponding transformation model to those of the
target random variable. The parameters of Johnson system would be obtained
by solving the system of nonlinear equations established. In general, the central
moment or raw moment is involved, leading to complicated equations. Recently,
L-moments have been widely used as good alternatives to conventional moments,
which are implemented to characterize the GLD (Karvanen & Nuutinen, 2008)
and the power transformation (Headrick, 2011), and much simpler procedure for
parameter estimation is achieved. Since L-moments are defined as linear combi-
nations of probability weighted moment (PWM) (Hosking, 1990), it is worthwhile
to attempt to perform the moment matching in terms of PWM directly, which
may further simplify the problem.

On the issue of simulating correlated random vector, relatively little research
has been conducted, which may be due to the tedious and difficult computations
for evaluating the correlation coefficient in the standard normal space. When
modeling correlated multivariate distributions with samples available, the John-
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son system is workable. By normalizing each sample value via the associated
model in Eq.(1), the correlation matrix in the standard normal space can be
calculated directly. However, random vectors with prescribed correlation matrix
cannot be generated in this way. To circumvent the computational complexity,
Stanfield et al. (1996) develop an alternative approach. Yet, inadequacies are
found both theoretically and practically. This method fails to match the kurtosis
for some distributions and is unfeasible for a near singular correlation matrix.

In this paper, PWM is employed to characterize the Johnson system. By
setting the first four PWMs of Johnson system equal to those of the simulated
random variable, the system of equations solved for the parameters is estab-
lished. With suitable initial values, the solutions are obtained by Newton itera-
tion method. Furthermore, approaches to accommodate the dependency are also
put forward. For cases related to SN , SL, SU and case of SN − SB, six analyti-
cal formulae are derived to evaluate the equivalent correlation coefficient in the
standard normal space. The other three cases involving SL − SB, SU − SB and
SB − SB are handled by an interpolation method.

2. Model selection

With the Lognormal distribution being the boundary, the skewness and kur-
tosis of a random variable are used for the model selection. Let κ3, κ4 denote
the skewness and kurtosis respectively. For normal distribution SN , it follows
that κ3 = 0 and κ4 = 3. In the case of Lognormal distribution, the following
relationships are satisfied (Johnson, 1949):

κ2
3 = (ω − 1)(ω + 2)2 (2)

κ4 = ω4 + 2ω3 + 3ω2 − 3 (ω = eσ
2
) (3)

Suppose x is a non-normal random variable, solving the equation in Eq.(2)
for ω > 0, the model is chosen as follows:

SL : κ4 = ω4 + 2ω3 + 3ω2 − 3

SU : κ4 > ω4 + 2ω3 + 3ω2 − 3

SB : κ4 < ω4 + 2ω3 + 3ω2 − 3

(4)

Since the SL family is actually the Lognormal distribution, the parameters of SL



220 Generating correlated random vector by Johnson system

model can be easily obtained.

δ = (lnω)−
1
2

γ =
1

2
δ · ln

(
ω2 − ω
σ2

)
ξ = µ− exp

(
1− 2δγ

2δ2

) (5)

where µ is the mean of x, σ is the standard deviation of x.

3. Evaluating the parameters of SU and SB models

3.1 Probability weighted moment

The PWM of a random variable x is defined as (Greenwood et al., 1979):

Mp,r,s = E{xp · [F (x)]r · [1− F (x)]s} (6)

where F (·) is the cumulative distribution function (CDF) of x. A particular type
of PWM, βr = M1,r,0, is considered:

βr =

∫ +∞

−∞
x · F r(x) · f(x)dx (7)

where f(·) is the probability density function (PDF) of x.
For the sake of computational convenience, Johnson system is rewritten in an

inverse form:

SN : x = µz + σzz

SL : x = ξ + exp

(
z − γ
δ

)
(ξ < x)

SU : x = ξ + λsinh

(
z − γ
δ

)
SB : x = ξ + λ− λ

1 + exp
( z−γ

δ

) (ξ < x < ξ + λ)

(8)

where µz and σz are the mean and the standard deviation of the normal variable
respectively. This paper pays attention to evaluate the parameters of SU and SB
models.

3.2 SU model
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The βr of the SU model is:

βr =

∫ +∞

−∞

[
ξ + λsinh

(
z − γ
δ

)]
· Φr(z) · ϕ(z)dz

=
ξ

1 + r
+ λ

∫ +∞

−∞
sinh

(
z − γ
δ

)
· Φr(z) · ϕ(z)dz

(9)

where Φ(·) is the CDF of the standard normal random variable, ϕ(·) is the PDF.

Equating the first four PWMs with those of the target random variable x, four
equations with four unknowns (ξ, λ, γ, δ) are established. Denote the equations
as follows:

Gr(ξ, λ, γ, δ)− βr = 0 (r = 0, 1, 2, 3) (10)

where

Gr(ξ, λ, γ, δ) =
ξ

1 + r
+ λ

∫ +∞

−∞
sinh

(
z − γ
δ

)
· Φr(z) · ϕ(z)dz (11)

Solving the system of equations yields the parameters of the SU model. With
proper initial values, the solutions can be found by the Newton’s iteration method.
The Jacobian matrix is:

J =
∂(G0, G1, G2, G3)

∂(ξ, λ, γ, δ)
=


1 ∂G0

∂λ
∂G0
∂γ

∂G0
∂δ

1
2

∂G1
∂λ

∂G1
∂γ

∂G1
∂δ

1
3

∂G2
∂λ

∂G2
∂γ

∂G2
∂δ

1
4

∂G3
∂λ

∂G3
∂γ

∂G3
∂δ

 (12)

where

∂Gr
∂λ

=

∫ +∞

−∞
sinh

(
z − γ
δ

)
· Φr(z) · ϕ(z)dz

∂Gr
∂γ

= −λ
δ
·
∫ +∞

−∞
cosh

(
z − γ
δ

)
· Φr(z) · ϕ(z)dz

∂Gr
∂δ

= − λ
δ2
·
∫ +∞

−∞
(z − γ)cosh

(
z − γ
δ

)
· Φr(z) · ϕ(z)dz

(13)

At each iteration, the integrals involved can be evaluated by the Gauss-Hermite
quadrature in Appendix.
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The initial values of δ0 and γ0 are evaluated as follows:

φ =
κ2

3

κ4 − 3

δ0 =

[
1

2
ln

(√
2κ4 − 2.8κ2

3 − 2− 1

)]− 1
2

γ0 =

{
δ0

(
0.7739φ0.5473

)
φ ≤ 0.1

δ0

[
0.1456 + 0.4436ln

(
0.545

0.545−φ

)]
0.1 < φ ≤ 0.52

(14)

δ0 is given by Hill et al. (1976), γ0 is given byDraper (1952). If φ > 0.52, the SL
model is more appropriate.

Once δ0 and γ0 are determined, the initial values ξ0 and λ0 are easily calcu-
lated by solving the following system of linear equations:

ξ0 + λ0

∫ +∞

−∞
sinh

(
z − γ0

δ0

)
· ϕ(z)dz = β0

1

2
ξ0 + λ0

∫ +∞

−∞
sinh

(
z − γ0

δ0

)
· Φ(z) · ϕ(z)dz = β1

(15)

3.3 SB model

The parameters of the SB model are obtained in a similar way as the SU case.
βr is:

βr =
ξ + λ

1 + r
− λ

∫ +∞

−∞

1

1 + exp
( z−γ

δ

) · Φr(z) · ϕ(z)dz (16)

The entries in the Jacobian matrix are:

∂Gr
∂λ

=
1

1 + r
−
∫ +∞

−∞

1

1 + exp
( z−γ

δ

) · Φr(z) · ϕ(z)dz

∂Gr
∂γ

= −λ
δ

∫ +∞

−∞

exp
( z−γ

δ

)[
1 + exp

( z−γ
δ

)]2 · Φr(z) · ϕ(z)dz

∂Gr
∂δ

= − λ
δ2

∫ +∞

−∞

(z − γ)exp
( z−γ

δ

)[
1 + exp

( z−γ
δ

)]2 · Φr(z) · ϕ(z)dz

(17)

Notice that the random variable x generated by the SB model is located in
the interval [ξ, ξ + λ], the initial values of ξ and λ can be determined by the
variation range of x.

ξ0 = F−1(α)

λ0 = F−1(1− α)− F−1(α)
(18)
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where α represents a small percentage value, F−1(·) is the inverse CDF of x.
As long as ξ0 and λ0 are known, ξ0 and λ0 are calculated as follows (Johnson

& Kitchen, 1971):

µ∗ =
µ− ξ0

λ0

σ∗ =
σ

λ0

δ0 =
µ∗(1− µ∗)

σ∗
+
σ∗

4

[
1

µ∗(1− µ∗)
− 8

]
γ0 = δ0 · ln

(
1− µ∗

µ∗

)
+

1

δ0

(
1

2
− µ∗

)
(19)

4. Accommodating the dependency
Suppose x1 and x2 are two correlated random variables with the correlation coef-
ficient ρx. Through the transformation model in Eq.(1), two correlated standard
normal variables, z1 and z2, are obtained. Let ρz denote the correlation coefficient
between z1 and z2. This section is devoted to evaluate ρz for a given value of ρx.
For the four models of Johnson system, there are ten combinations: SN − SN ,
SN − SL, SN − SU , SN − SB, SL − SL, SL − SU , SL − SB, SU − SU , SU − SB,
SB−SB. Since SN −SN can be easily handled, the other nine cases are discussed
in this

4.1 SN − SL

For two correlated standard normal variables, the following properties hold
(Pearson & Young, 1918):

E
(
z1z

2m
2

)
= 0

E
(
z1z

2m+1
2

)
= ρz

(2m+ 1)!

2m ·m!

(20)

where m is a nonnegative integer.
Let c denote a constant. Using the formulae in Eq.(20), the derivation below

is carried out:

E[z1exp(cz2)] =
∞∑
i=0

E

[
z1 ·

(cz2)i

i!

]
=
∞∑
j=0

ρz ·
c2j+1

2j · j!
= ρz · c · exp

(
c2

2

)
(21)

Let x1, x2 denote the random variable obtained by SN and SL models in
Eq.(8) respectively. The correlation coefficient ρx is calculated as:

ρx =
E[x1x2]− µzµ2

σzσ2
(22)
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Substitute the expression of x1 and x2 into Eq.(22), using the formula in Eq.(21)
yields:

ρz =
δ2 · σ2

µ2 − ξ2
· ρx (23)

4.2 SN − SU

To handle the case of SN − SU conveniently, the following derivation is per-
formed.

Suppose x, y are two random variables. Let y = y1 + y2.

ρxy =
E [(x− µx)(y − µy)]

ρxρy

=
E [(x− µx)(y1 − µy1)] + E [(x− µx)(y2 − µy2)]

ρxρy

=
σy1
σy
· ρxy1 +

σy2
σy
· ρxy2

(24)

Let x2 denote the random variable resulted from SU model.

x2 = ξ2 + λ2sinh

(
z2 − γ2

δ2

)
= x21 + x22

x21 =
ξ2

2
+
λ2

2
· exp

(
z2 − γ2

δ2

)
x22 =

ξ2

2
− λ2

2
· exp

(
−z2 − γ2

δ2

) (25)

Using the formula in Eq.(24), the problem associated with SN − SU can be
transformed into SN −SL. ρz for ρx between x1(SN ) and x2(SU ) is evaluated as:

ρz =

2δ2·σ2
λ2
· exp

(
− 1

2δ22

)
exp

(
γ2
δ2

)
+ exp

(
−γ2
δ2

) · ρx (26)

4.3 SN − SB

ρx and ρz are related by the following equation:

ρxσ1σ2 + µ1µ2 = E(x1x2) =

∫ +∞

−∞

∫ +∞

−∞
x1x2ϕ(z1, z2, ρz)dz1dz2 (27)

where ϕ(z1, z2, ρz) is the bivariate standard normal PDF.
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Substitute the expression of x1(SN ) and x2(SB) into Eq.(27), the following
formula is obtained after some manipulations:

ρx =
−λ2√
2πσ2

∫ +∞

−∞

t

1 + exp
(
t−γ2
δ2

) · exp(− t2
2

)
dt · ρz (28)

The integral on the right side can be evaluated by the Gauss-Hermite quadrature.

4.4 SL − SL

As for the case of SL−SL, x1 and x2 both follow the Lognormal distribution.
The function relationship between ρz and ρx is as follows (Mostafa & Mahmoud,
1964):

ρx =
exp

(
ρz
δ1δ2

)
− 1√[

exp
(

1
δ21

)
− 1
]
·
[
exp

(
1
δ22

)
− 1
] (29)

4.5 SL − SU

The problem is converted into SL − SL using the formula in Eq.(24). ρx
between x1(SL) and x2(SU ) is estimated by the following equation:

ρx=

λ2
2 exp

(
1

2δ22

)
σ2 ·

√
exp

(
1
δ21

)
− 1

[
exp

(
ρz
δ1δ2
− γ2

δ2

)
−exp

(
− ρz
δ1δ2

+
γ2

δ2

)
+exp

(
γ2

δ2

)
−exp

(
−γ2

δ2

)]
(30)

For a given value of ρx, solve the equation for ρz, the valid solution is restricted
by the following conditions:

|ρz| ≤ 1 and ρxρz ≥ 0 (31)

4.6 SU − SU

Transform the problem into SL − SU , the equation solved for ρz is:

ρxσ1σ2 + (µ1 − ξ1)(µ2 − ξ2) =
λ1λ2

4
· exp

(
1

2δ2
1

+
1

2δ2
2

){[
exp

(
γ1

δ1
+
γ2

δ2

)
+

exp

(
−γ1

δ1
− γ2

δ2

)]
exp

(
ρz
δ1δ2

)
−

[
exp

(
γ1

δ1
− γ2

δ2

)
+ exp

(
−γ1

δ1
+
γ2

δ2

)]
exp

(
− ρz
δ1δ2

)}
(32)
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4.7 SL/SU/SB − SB

For the cases of SL − SB, SU − SB and SB − SB, analytical expressions
are unobtainable, other approaches should be tried. Suppose x2 represents the
random variable generated by SB model. Substituting the expression of x1 into
Eq.(27) yields:
SL − SB

ρx = −(µ1 − ξ1)(µ2 − ξ2 − λ2)

σ1σ2
− λ2(µ1 − ξ1)√

2πσ1σ2

·∫ +∞

−∞

1

1 + exp
(
t
δ2

+ ρz
δ1δ2
− γ2

δ2

)exp(− t2
2

)
dt

(33)

SU − SB

ρx = −(µ1 − ξ1)(µ2 − ξ2 − λ2)

σ1σ2
−
λ1λ2exp

(
1

2δ21

)
2
√

2πσ1σ2

·

∫ +∞

−∞

[
exp

(
−γ1
δ1

)
1 + exp

(
t
δ2

+ ρz
δ1δ2
− γ2

δ2

) − exp
(
γ1
δ1

)
1 + exp

(
t
δ2
− ρz

δ1δ2
− γ2

δ2

)]exp(− t2
2

)
dt

(34)

SB − SB

ρx = −(µ1 − ξ1 − λ1)(µ2 − ξ2 − λ2)

σ1σ2
+

λ1λ2

2πσ1σ2
·
∫ +∞

−∞

∫ +∞

−∞

1

1 + exp
(
v−γ2
δ2

) ·
1

1 + exp

(√
1−ρ2zu
δ1

+ ρzv−γ1
δ1

)exp(−v2

2

)
exp

(
−u

2

2

)
dudv

(35)

For the three equations above, it is obvious that ρx is a continuous func-
tion with respect to ρz, which is located in the interval [−1, 1]. According to
Weierstrass approximation theorem (Saxe, 2001), ρx can be approximated to any
required accuracy by a polynomial of ρz.

Choose several values of ρz over the interval [−1, 1], calculate the integral
by Gauss-Hermite quadrature, evaluate the value of ρx. Then, a polynomial is
established by an interpolation method.

ρx = anρ
n
z + · · ·+ a1ρz + a0 (36)
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For a specified ρx, ρz can be determined by solving the polynomial equation
above, the valid solution is also restricted by conditions in Eq.(31). In general, a
satisfactory result would be obtained by a polynomial of degree less than 10.

From numerical investigations where |κ3| ≤ 20 and |κ4| ≤ 120, it is found
that the integral with |δ| > 0.5 can be accurately evaluated by a 9-point Gauss-
Hermite quadrature. If |δ| < 0.5, more quadrature nodes are required.

4.8 Generating multivariate random vector

Suppose X = (x1, . . . , xi, . . . , xm)T is an m-dimensional random vector with
correlation matrix Rx, the steps for generating X are as follows:

1. Choose a suitable transformation model for each variable xi of X and de-
termine the parameters.

2. Calculate ρz(i, j) (i 6= j) for each entry ρx(i, j) in the matrix Rx, obtain
the equivalent correlation matrix Rz in the standard normal space.

3. Generate m-dimensional vector of independent standard normal variables,
U = (u1, . . . , ui, . . . , um)T , transform U into correlated standard normal
vector Z = (z1, . . . , zi, . . . , zm)T by performing Z = LU . L is the lower
triangular matrix resulted from Cholesky decomposition of Rz, that is,
Rz = LLT .

4. Convert each element zi into xi by the corresponding model. The random
vector X with the prescribed marginal distributions and correlation matrix
Rx could be obtained.

As long as the correlation matrix Rx is a positive definite symmetric matrix
(Cario & Nelson, 1997), and the marginal distribution of xi can be well simulated
by Johnson system, the correlated random vector X can be generated by the
proposed method.

5. Numerical example

Four numerical examples are performed in Matlab to demonstrate the pro-
posed approach. The integrals involved are all evaluated by a 21-point Gauss-
Hermite quadrature. The Newton’s iteration method is required to get five digits
of accuracy.

Consider the T-distribution with 4 degrees of freedom (T (4)), the first four
standardized central moments are: µ = 0, σ = 1.4142, κ3 = 0, κ4 = +∞. Solving
the equation in Eq.(2) yields ω = 1. According to Eq.(4), the SU model is chosen.
To enable the calculation of the initial values, κ4 is set to be 1016. The initial
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values are: ξ0 = 0, λ0 = 0.0806, δ0 = 0.4617, γ0 = 0. The solutions of the system
of equations are: ξ = 0, λ = 1.4399, δ = 1.3760, γ = 0. The graphs of PDF are
depicted in Fig.1.
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Figure 1: The PDF of T-distribution with 4 degrees of freedom T (4)

For a given percentage p, evaluate the associated percentile tp from T (4) and
the percentile xp given by the SU model in Eq.(8), the relative error between tp
and xp is calculated:

ε =

∣∣∣∣∣xp − tptp

∣∣∣∣∣× 100[%] tp = T−1(p) xp = ξ + λsinh

(
Φ−1(p)− γ

δ

)
(37)

where T−1(·) is the inverse CDF of T (4), Φ−1(·) is the inverse CDF of the standard
normal variable.

10000 values of p are chosen evenly within the interval [0.01, 0.99]. Evaluating
ε for each percentage p as stated in Eq.(38), the average value is 1.55%, the
maximum value is 4.63%, the minimum value is 0.0002%. The Johnson system
offers satisfactory accuracy for simulating T (4).

Another example is given related to the Gamma distribution Γ(10, 1). The
first four standardized central moments are: µ = 10.0000, σ = 3.1623, κ3 =
0.6325, κ4 = 3.6000. The SB model is preferable. Setting α = 0.01, the initial
values are obtained: ξ0 = 4.1302, λ0 = 14.6529, δ0 = 0.9057, γ0 = 0.4748. The
results are: ξ = −1.8372, λ = 72.2970, δ = 3.1212, γ = 5.1961. The graphs of
PDF are shown in Fig.2.
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Figure 2: The PDF of Gamma distribution Γ(10, 1)

10000 values of p are chosen evenly within the interval [0.01, 0.99]. Evaluating
ε for each percentage p as the former case:

ε =

∣∣∣∣∣xp − tptp

∣∣∣∣∣× 100[%] tp = G−1(p) xp = ξ + λ− λ

1 + exp
(

Φ−1(p)−γ
δ

)
(38)

where G−1(·) is the inverse CDF of Γ(10, 1).
The average value of ε is 2.52 × 10−5%, the maximum value is 1.81%, the

minimum value is 0.18%.
Suppose x1 and x2 both follow the Gamma distribution Γ(10, 1). Select four

values of ρz that are evenly spaced over the interval [−1, 1], evaluate the double
integral in Eq.(35), obtain the associated ρx, the polynomial is established by
Newton’s interpolation method.

ρx = 4.1721× 10−5ρ3
z + 0.0215ρ2

z + 0.9780ρz − 0.0025 (39)

201 values of ρz are chosen from −1 to 1 in steps of 0.01. For each value of ρz,
106 bivariate Gamma random vectors are generated by the procedures in Section
4.8, and ρx is calculated by evaluating the correlation coefficient of bivariate
Gamma random samples. Along with the ρx evaluated by the polynomial in
Eq.(39), the function curves are plotted in Fig. 3.
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Figure 3: The function curve between ρz and ρx

Several pairs of (ρz, ρx) values are presented in Table 1.

Table 1: The values of (ρz, ρx)

ρz ρx(Sample) ρx(Polynomial) ρz ρx(Sample) ρx(Polynomial)

−0.9 −0.863 −0.865 0.1 0.098 0.096

−0.7 −0.674 −0.677 0.3 0.296 0.293

−0.5 −0.484 −0.486 0.5 0.494 0.492

−0.3 −0.292 −0.294 0.7 0.695 0.693

−0.1 −0.097 −0.100 0.9 0.898 0.895

Inspection of Fig.3 and Table 1 indicates that the polynomial in Eq.(39)
suffices for a good approximation of the functional relationship between ρz and
ρx.

Finally, an example for generating multivariate random vector with specified
marginal distributions and correlation matrix is worked. Consider the random
vector X = (x1, x2, x3, x4)T , x1 follows the standard normal distribution, x2,
Lognormal distribution lnN(0 1), x3, T-distribution with 4 degrees of freedom,
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x4, Gamma distribution Γ(10, 1). The desired correlation matrix Rx is:

Rx =


1 0.7 0.4 0.5

0.7 1 0.3 0.6
0.4 0.3 1 0.2
0.5 0.6 0.2 1

 (40)

The equivalent correlation matrix Rz evaluated by the proposed method is:

Rz =


1 0.918 0.406 0.507

0.918 1 0.402 0.737
0.406 0.402 1 0.209
0.507 0.737 0.209 1

 (41)

5 × 106 random vectors X = (x1, x2, x3, x4)T are generated, the correlation
matrix of the samples is:

R∗
x =


1 0.698 0.397 0.502

0.698 1 0.303 0.598
0.397 0.303 1 0.202
0.502 0.598 0.202 1

 (42)

Comparing R∗
x with Rx indicates that the correlation matrix of samples is in

close agreement to the desired one.

6. Conclusion

Through the transformation models of Johnson system, a variety of distribu-
tions can be simulated by the standard normal distribution. Random numbers
with a specified distribution can be efficiently generated by an elementary trans-
formation of standard normal deviates. In the context of probability weighted
moments, this paper develops a simpler approach to evaluate the parameters of
Johnson system. To allow for the generation of multivariate non-normal distri-
butions with desired correlation matrix, formulae are derived to calculate the
equivalent correlation coefficient in the standard normal space. Extension of
Johnson system to the multivariate data generation makes it more applicable to
stochastic modeling and simulation study.

Appendix

The univariate integrals of the form
∫ +∞
−∞ e−t

2
f(t)dt may be approximated

with a Gaussian-type formula (Naylor & Smith, 1982).∫ +∞

−∞
e−t

2
g(t)dt =

n∑
k=1

ωkg(tk) (43)
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where n is the number of the quadrature nodes. tk is the kth zero of the Hermite
polynomial Hn(t).

Hn(t) = (−1)net
2 dn

dtn
e−t

2
(44)

The associated weights ωk are given by:

ωk =
2n−1n!

√
π

n2[Hn−1(tk)]2
(45)

Using Eq.(43), the following formula can be easily derived:∫ +∞

−∞
g(t) · 1√

2π
e−

t2

2 dt =
n∑
k=1

ωk√
π
g(
√

2tk) (46)

Extension of Gauss-Hermite quadrature to double integral is as follows:∫ +∞

−∞

∫ +∞

−∞
g(t1, t2) · 1

2π
e−

t21
2 · e−

t22
2 dt1dt2 =

1

π

n∑
k=1

n∑
l=1

ωkωlg(
√

2tk,
√

2tl) (47)

The nodes t and weights ω of the 21-point Gauss-Hermite are presented in
Table 2.

Table 2: Nodes t and weights ω for the 21-point Gauss−Hermite formula

t ω

0 0.6774 4181 7650 738
±0.6780 4569 2440 645 0.6792 5764 5819 217
±1.3597 6582 3211 230 0.6848 3436 1406 712
±2.0491 0246 8257 180 0.6945 8757 5425 530
±2.7505 9298 1052 280 0.7093 1584 3106 891
±3.4698 4669 0475 750 0.7304 1501 1188 135
±4.2143 4398 1687 360 0.7603 4305 2415 214
±4.9949 6394 4784 140 0.8037 1612 0812 564
±5.8293 8200 7301 600 0.8703 3646 0017 752
±6.7514 4471 8719 760 0.9861 0234 0998 038
±7.8493 8289 5113 030 1.2593 6799 7734 310
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