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Abstract:In medical literature, researchers suggested various statistical procedures to 

estimate the parameters in claim count or frequency model. In the recent years, the 

Poisson regression model has been widely used particularly. However, it is also 

recognized that the count or frequency data in medical practice often display 

over-dispersion, i.e., a situation where the variance of the response variable exceeds the 

mean. Inappropriate imposition of the Poisson may underestimate the standart errors 

and overstate the significance of the regression parameters, and consequently, giving 

misleading inference about the regression parameters. This article suggests the Negative 

Binomial (NB) and Conway-Maxwell-Poisson (COM-Poisson) regression models as an 

alternatives for handling overdispersion. All mentioned regression models are applied to 

simulation data and dataset of hospitalization number of people with schizophrenia, the 

results are compared. 
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1 Introduction 

Schizophrenia, is one of the most disabling and emotionally devastating illnesses known to man. 

However, because they have been misunderstood for so long, they have received relatively little 

attention and have adversely affected victims. Schizophrenia is not a split personality, a rare and very 

different disorder. Like cancer and diabetes, schizophrenia has a biological basis; it is not caused by 

personal weakness or bad parenting. Although there is no known treatment for schizophrenia, it is a 

very treatable disease. Most schizophrenia patients respond to drug treatment and many can continue to 

be productive and satisfying (http://www.schizophrenia.com/family/schizintro.html).Schizophrenia is, 

in fact, a relatively common disease, there are at least 500,000 schizophrenia patients in Turkey, one of 

the country’s leading medical associations has announced on World Mental Health Day. 
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Most people with schizophrenia (or another serious psychiatric disorder) will likely have to be 

hospitalized for at least a short time. The hospitalization may be voluntary (requested by the patient 

himself) or may be involuntary, meaning it is up to the discretion of the treating psychiatrist, 

emergency room staff, or a courtroom. At the point of hospitalization, a person may be in very bad 

patterns-the patient feels frightened, out of control and abandoned. The benefits of hospitalization 

could be summarized as follows; to keep the patients from harming themselves or others, monitored by 

trained professionals for symptoms and medication reactions, providing a safe place for patients to 

concentrate on concentrating and recovering themselves and making long-term treatment 

plans(http://www.schizophrenia.com/family-/schizintro.html). 

Monitoring the trends in hospitalization numbers and conceive the factors that effect the 

hospitalization numbers are significant aspects of schizophrenia (or another serious psychi-atric 

disease) surveillance studies.  

Data on the number of hospitalization is count, to determine the factors that affects Hospitalization 

number, regression analysis of counts is used. Count data usually analyzed with the Poisson regression. 

The characteristics of the Poisson regression mean and variance must be the same, whereas in fact the 

count data is often becoming variance greater than the mean, which is often reffered to over-dispersion. 

To deal with the problem over-dispersion, modelling can be done with Negative Binomial (NB) and a 

flexiable alternative that captures both over-and under-dispersion is the Conway-Maxwell-Poisson 

(COM-Poisson) regression because it does not require the mean value equal to the value of variance.   

The main objective of this study is to assess the effects of demographic factors, habits, and relation 

with family and environment on the hospitalization number of people with schizophrenia by using the 

Poisson, NB and COM-Poisson regression models. 

This article is organized as follows, Section 2 briefly describes the Poisson, Negative Binomial and 

COM-Poisson regression methods respectively. Section 3 presents simulation data and dataset on 

hospitalization number of people with schizophrenia, where a sample of over-dispersed data. All 

mentioned regression models are applied and the results are compared. Section 4 presents conclusion. 

 

2 Count Regression Models 

The number of occurrence of any event within a specified time, can be described as counting data. 

In case of dependent variable is a count and researcher is interested in how this count changes as the 

explanatory variable increases count data regression model is used. Modelling count data has been 

widely used in actuarial sciences, Aitkin et al. (1990) and Renshaw (1994) fitted Poisson regression 

to two different set of U.K. motor claim data, and in biostatistics and demography, Frome (1983) 

modelled the lung cancer death rates among British physicians who were regular cigarette smokers. 

In recent years this model has been used frequently in economy, political science and sociology, Lord 

(2006) modeled motor vehicle crashes by using Poisson-Gamma model and Riphahn et al. (2003) 

fitted the model to German Socioeconomic Panel (GSOEP) data. Famoye and Singh (2006) proposed 
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a zero-inflated generalized Poisson (ZIGP) regression model to model domestic violence data with 

too many zeros. Pararai et al. (2010) derived the Generalized Poisson-Poisson mixture regression 

(GPPMR) model to handle accurate, underreported and overreported counts. Famoye et al. (2004) 

applied generalized Poisson regression (GPR) model for identifying the relationship between the 

number of accidents and some covariates. Ozmen and Famoye (2007) applied the Poisson, NB, GP, 

ZIP and ZIGP to zoological data set where the count data may exhibit evidence of many zeros and 

over-dispersion. 

Because of counts are all positive integers and for rare events the Poisson distribution (rather than 

the normal) is appropriate. However, it is suitable only for modeling equi-dispersed (i.e., an equal 

mean and variance) distribution. Many real data do not adhere to this assumption (over- or 

under-dispersed data) and inappropriate imposition of Poisson regression model may underestimate 

the standard errors and overstate the significiance of regression coefficients. For over-dispersed data, 

the Generalized Estimation Equations (GEEs) method with Negative Binomial distribution is a 

popular choice and increase efficiency of estimates (Lord 2006, Hilbe 2011). Other overdispersion 

models include Poisson mixtures (McLachlan, 1997) and quasi-Poisson model is characterized by the 

first two moments (mean and variance) (Wedderburn 1974). However, these models are not suitable 

for under-dispersed data. Under-dispersed data is less commonly observed. In cases the sample is 

small and the sample mean is very low and can be caused by the data generating process that is 

independent from the sample size or mean (Oh et al. 2006). A few models exist that allow for both 

over- and under-dispersed data. One example is the restricted generalized Poisson regression models 

of Famoye (1993). It is called “restricted” model, because it belongs to an exponential family under 

the condition that the distribution parameter is constatnt. The Conway-Maxwell-Poisson 

(COM-Poisson) regression model is an alternative model to fit data sets of varying dispersion. 

COM-Poisson distribution is a two parameter generalization of the Poisson which also includes the 

Bernoulli and geometric distribution that allows for over- and under-dispersion. The distribution was 

briefly introduced by Conway and Maxwell in 1962 for modeling queuing systems with 

state-dependent service rates. The statistical properties of the COM-Poisson distribution, as well as 

methods for estimating its parameters were established by Shamueli et al. 2005. The COM-Poisson 

distribution has been used in a variety of count data application. (Consul 1989, Consul and Famoye 

1992, Famoye et al. 2004, Wang and Famoye 1997, Conway and Maxwell 1962, Shmueli et al. 2005, 

Lord et al. 2008, Lord et al. 2010, Khan and Khan 2010). Benson and Friel (2017) provided a new 

rejection sampler for the COM-Poisson distribution which significantly reduces the CPU time 

required to perform inference for COM-Poisson regression. Saghir and Lin (2013) proposed 

Shewhart-type multivariate control chart to monitor multivariate COM-Poisson (MCP) chart, based 

on the MCP distribution. Chanialidis et al. (2017) illustrated the method and the benefits of using a 

Bayesian COM-Poisson regression model, through a simulation and two real-world data sets with 

different  levels of dispersion. 
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Count data are commonly modeled with the Poisson distribution, with both mean and variance 

being equal. Due to heterogeneity (difference between individuals) and contagion (dependence 

between the occurrence of events), the variance is usually broader than the average, which makes the 

Poisson assumption more restrictive. By placing a Gamma distribution prior a Negative Binomial 

(NB) can be generated. Therefore, the NB distribution is also known as the Gamma-Poisson 

distribution. Because of the variance larger than the mean, the NB usually favored over the Poisson 

distribution for modeling over-dispersed counts (Zhou et al. 2012). 

The regression analysis of counts is commonly performed under the Poisson and NB likelihoods, 

whose parameters are usually estimated by finding the maximum of the nonlinear log likelihood 

(Long 1997, Cameron and Trivedi 1998, Agresti 2002, Winkelmann 2008). 

A flexiable alternative that captures both over-dispersion and under-dispersion is the COM-Poisson 

distribution. The COM-Poisson is a two-parameter generalization of the Poisson distribution which 

also includes the Bernoulli and Geometric distributions as special cases (Shmueli et al. 2005). The 

COM-Poisson distribution has been used in a variety of count data applications and has been 

extended methodologically in various directions (Sellers et al. 2012). 

 

2.1. Poisson Regression Model 

The most basic regression model for counts is the Poisson regression model (Long 1997, Cameron 

and Trivedi 1998, Agresti 2002, Winkelmann 2008), which can be expressed as  

𝑦𝑖~𝑃𝑜𝑖𝑠(𝜆𝑖),     𝜆𝑖 = 𝑒𝑥𝑝(𝑥𝑖
𝑇𝛽) (1) 

where 𝑥𝑖 = [1, 𝑥𝑖1, … , 𝑥𝑖𝑃]
𝑇 is the covariate vector for sample i. The Newton-Raphson method can 

be used to iterarively find the maximum log likelihood of β (Long, 1997). A serious constraint of the 

Poisson regression model is that it assumes equal-dispersion, i.e., 𝐸[𝑦𝑖|𝑥𝑖] = 𝑉𝑎𝑟[𝑦𝑖|𝑥𝑖] =

𝑒𝑥𝑝(𝑥𝑖
𝑇𝛽). In practice, however, count data are often overdispersed, due to heterogeneity and 

contagion (Winkelmann, 2008). To model overdispersed counts, the poisson regression model can be 

modified as  

𝑦𝑖~𝑃𝑜𝑖𝑠(𝜆𝑖)     𝜆𝑖 = 𝑒𝑥𝑝(𝑥𝑖
𝑇𝛽)𝜖𝑖 (2) 

where 𝜖𝑖 is a nonnegative multiplicative random-effect term to model individual heterogenety 

(Winkelmann, 2008). 

 

2.2. Negative Binomial Regression Model 

The Negative Binomial model (NB) (Long 1997, Cameron and Trivedi 1998, Winkelmann 2008, 

Hilbe 2007) is constructed by placing a Gamma prior on ϵi as 

𝜖𝑖~𝐺𝑎𝑚𝑚𝑎 (𝑟,
1

𝑟
) =

𝑟𝑟

𝛤(𝑟)
𝜖𝑖
𝑟−1𝑒−𝑟𝜖𝑖       (3) 

where 𝐸[𝜖𝑖] = 1 and 𝑉𝑎𝑟[𝜖𝑖] = 𝑟−1 . Marginalizing out 𝜖𝑖 in (2), we have a NB distribution 
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parameterized by mean  𝜇𝑖 = 𝑒𝑥𝑝(𝑥𝑖
𝑇𝛽) and inverse dispersion parameter 𝜙 (the reciprocal of r) 

as 𝑓𝑌(𝑦𝑖) =
𝛤(𝜙−1+𝑦𝑖)

𝑦𝑖!𝛤(𝜙
−1)

(
𝜙−1

𝜙−1+𝜇𝑖
)𝜙

−1
(

𝜇𝑖

𝜙−1+𝜇𝑖
)𝑦𝑖 , thus 

𝐸[𝑦𝑖|𝑥𝑖] = 𝑒𝑥𝑝(𝑥𝑖
𝑇𝛽)      (4) 

𝑉𝑎𝑟[𝑦𝑖|𝑥𝑖] = 𝐸[𝑦𝑖|𝑥𝑖] = 𝜙𝐸2[𝑦𝑖|𝑥𝑖]       (5) 

The maximum log likelihood of β and ϕ can be found numerically with the Newton-Raphson 

method (Lawless, 1987). 

 

2.3. Conway-Maxwell-Poisson (COM-Poisson) Models 

The Conway-Maxwell-Poisson (COM-Poisson) distribution has been re-introduced by statisticians 

to model count data characterized by either over- or under-dispersion (Shmueli et al. 2005, Guikema 

and Coffelt 2008, Lord et al. 2010, Zou and Lord 2012). The COM- Poisson distribution was 

firstintroduced in 1962 by Conway and Maxwell; only in 2008 it was evaluated in the context of a 

GLM by Guikema and Coffelt (2008), Lord et al. (2008) and Sellers and Shmueli (2010). The 

COM-Poisson distribution is a two parameter generalization of the Poisson distribution that is 

flexible enough to describe a wide range of count data distributions (Sellers et al. 2010); since its 

revival, it has been further developed in several directions and applied in multiple fields (Sellers et al. 

2012). 

𝑃(𝑦; 𝜆, 𝜐) =
𝜆𝑦

(𝑦!)𝜐𝑍(𝜆,𝜐)
      (6) 

for a random variable Y, where 𝑍(𝜆, 𝜐) = ∑
𝜆𝑠

(𝑠!)𝜐
∞
𝑠=0  , and 𝜐 ≥ 0 is a normalizing constant; 𝜐 is 

considered the dispersion parameter such that 𝜐 > 1  represents under-dispersion, and 𝜐 < 1 

over-dispersion. The COM-Poisson distribution includes three well-known distribution as special 

cases: Poisson (𝜐 = 1), Geometric (𝜐 = 0, 𝜆 < 1), and Bernoulli (𝜐 → ∞𝑤𝑖𝑡ℎ𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝜆

1+𝜆
) 

(Shmueli et al. 2005).  

Taking a GLM approach, Sellers and Shmueli (2010) proposed a COM-Poisson regression model 

using the link function, 

𝜂(𝐸(𝑌) = 𝑙𝑜𝑔 𝜆 = 𝑋′𝛽 = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗
𝑝
𝑗=1       (7) 

Accordingly, this function indirectly models the relationship between 𝐸(𝑌) and 𝑋′𝛽, and allows 

for estimating β and υ via associated normal equations. Because of the complexity of the normal 

equation, using 𝛽(0) and 𝜐(0) = 1, as starting values. These equations can thus be solved via an 

appropriate iterative reweighted least squares procedure (or by maximizing the liklihood function 

directly using an optimization program) to determine the maximum likelihood estimates, �̂� and �̂�. 

The associated standart errors of the estimated coefficients are derived using the Fisher Information 

matrix (Sellers et al. 2013).   
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2.5. Testing for Variable Dispersion 

Sellers and Shmueli (2010) established a hypothesis testing procedure to determine if significant 

data dispersion exists, thus demonstarting the need for a COM-Poisson regression model over a 

simple Poisson regression model; in other words, they test whether  (𝜐 = 1) or otherwise (Sellers et 

al. 2013). 

Since NB regression reduce to Poisson regression in the limit as 𝜃 → 0, The test of overdispersion 

in Poisson vs Negative Binom Poisson, is the test whether (𝜃 = 0) or otherwise, can be performed 

using Likelihood Ratio Test (LRT), 𝑇 = 2(𝑙𝑛𝐿1 − 𝑙𝑛𝐿0), where 𝑙𝑛𝐿1 and 𝑙𝑛𝐿0 are the models log 

likelihhood under their respective hypothesis. To test the null hypothesis at significance level α, the 

critical value of chi-square distribution with significance level  2α is used. The null hypothesis is 

rejected when T value exceed critical value of chi-square (Ismail and Zamani, 2013). 

 

2.6. Akaike Information Criteria (AIC) 

When several models available, one can compare the models' performance based on several 

likekihood measure which have been proposed in statistical literatures. One of the most regularly 

used measure are AIC. The AIC penalized a model with larger number of parameters, and is defined 

as 

𝐴𝐼𝐶 = −2𝑙𝑛𝐿 + 2𝑝      (8) 

where lnL denotes the fitted log likelihood and p the number of parameters (Ismail and Zamani, 

2013). A relatively small value of AIC is favorable for the fitted model. 

3 Application 

3.1. Simulated Data 

To demonstrate the flexibility of the COM-Poisson distribution, 500 data are derived from Poisson, 

Negative Binom and COM-Poisson, respectively. The inversion method is particularly simple to 

sample an integer value from the COM-Poisson distribution. The COM-Poisson probabilities are 

summed up starting from 𝑃(𝑌 = 0), until this sum exceeds the value of a simulated Uniform(0,1) 

variable. 𝑌 is then an observation from the COM-Poisson distribution (Minka et al, 2003). Goodness 

of fit (associated p-values provided in parentheses) of each distribution and estimated parameters are 

given in Table 1. The analysis are performed in R program. glm() function from "stats" package and 

cmp() function from "COMPoissonReg" package are used, respectievely. 

Table 1 illustrated that, while the Poisson distribution was meaningful only for identical distribution, 

the Negative Binom distribution was flexible for many distributions except under-dispersion. 

However, COM-Poisson distribution was flexible for all considered distributions. Furthermore the 

estimated parameters almost same for Poisson and Negative Binomial distributions. 
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Table 1: Goodness of fit on simulated data of size 500 

Distribution Estimated Parameter 

 Poisson  Negative Binom COM-Poisson 

Poisson (𝝀 = 𝟒) 

𝜆 =4.002 

(0.105) 

𝜆=4.002, θ=29.262 

(0.231) 

𝜆 =3.243, 𝜐=0.862 

(0.561) 

Negative Binom 

(𝝀 =4, θ=6) 

𝜆 =3.39 

(0.000) 

𝜆=3.39, θ=5.51 

(0.556) 

𝜆 =1.775, 𝜐=0.538 

(0.999) 

COM-Poisson (𝝀=12, 𝝊=5) 

𝜆 =1.242 

(0.000) 

𝜆=1.242, θ=2.333 

(0.000) 

𝜆 =13.916, 𝜐=5.150 

(0.651) 

COM-Poisson (𝝀=3, 𝝊=0.4) 

𝜆 =16.078 

(0.000) 

𝜆=16.078, θ=12.195 

(0.658) 

𝜆 =2.634, 𝜐=0.362 

(0.987) 

 

To illustrate the flexibility of the COM-Poisson model, the considered distributions (Poisson, 

Negative Binom and COM-Poisson) are above regressed with arbitrarily chosen single explanatory 

variable  X and determined coefficients (β0=3, β1=0.5). By fitting the considered distribution 

(Poisson, Negatif Binom and COM-Poisson) the estimated model parameters, Log likelihood and 

AIC values are given in Table 2. 

Under the response variable had Poisson distribution, the Poisson regression model is given the 

smallest Log-likelihood and AIC values. Hence, the Poisson regression model was the best fit among 

the estimated models for statistically significant coefficients. The second best fit model for 

statistically significant coefficients was the COM-Poisson regression model. The dispersion 

parameter ( 𝜐 ) was estimate quite near to 1. For negative Binomial distributed responce 

(over-dispersed data), COM-Poisson and negative Binom are estimated the model parameters, Log 

likelihood and AIC values almost the same. The COM-Poisson regression model is estimated the 

dispersion parameter (𝜐) as a 0.524. Finally for COM-Poisson distributed responce, the Poisson and 

negative Binom regression models are obtained similar estimation results, the explanatory variable 

was not statistically significant. It is concluded from the Table 2, under different distributed responce 

variable the COM-Poisson regression model was the best model. 
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Table 2: Estimated model parameters and AIC for simulated data of size 500 

Distribution 

Estimated Parameter 

Poisson Negative Binom COM-Poisson 

Poisson 

(𝜷𝟎=3,𝜷𝟏=0.5) 

�̂�0=2.997(0.018)* 

�̂�1=0.482(0.029)* 

Loglik=-1516.585 

AIC=3037.2 

�̂�0=2.997(0.018)* 

�̂�1=0.482(0.029)* 

Loglik=-1516.586 

AIC=3039.2 

�̂�=77302 

�̂�0=2.997(0.195)* 

�̂�1=0.482(0.042)* 

Loglik=-1516.585 

AIC=3039.171 

𝜐=1.00 

Negative Binom 

(𝜷𝟎=3,𝜷𝟏=0.5, θ=5) 

�̂�0=2.927(0.048)* 

�̂�1=0.533(0.077)* 

Loglik=-1168.754 

AIC=2341.5 

�̂�0=2.939(0.060)* 

�̂�1=0.524(0.099)* 

Loglik=-1129.293 

AIC=2264.6 

�̂�=5.622 

�̂�0=1.590(0.073)* 

�̂�1=0.505(0.063)* 

Loglik=-1131.30 

AIC=2268.599 

𝜐=0.524 

COM-Poisson 

(𝜷𝟎=3,𝜷𝟏=0.5, 𝝊=5) 

�̂�0=1.366(0.072)* 

�̂�1=0.163(0.123) 

Loglik=-630.835 

AIC=1265.7 

�̂�0=1.366(0.073)* 

�̂�1=0.163(0.123) 

Loglik=-630.838 

AIC=1267.7 

�̂�=107816 

�̂�0=3.101(0.286)* 

�̂�1=0.659(0.250)* 

Loglik=-452.243 

AIC=910.486 

𝜐=5.274 

* 5% statistically significant 
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3.2. Hospitalization Number of People with Schizophrenia Data 

In this article, the data which is based on 205 schizophrenia patients for a four-year period of 

2011-2014, is obtained from Community Mental Health Center is located within Prof. Dr. A. Ilhan 

Ozdemir state hospital in Giresun. Besides age, Table 3 showed the rating factors and rating class for 

the number of hospitalization. 

 

Table 3. Rating factors and rating classes for the number of hospitalization 

Rating Factors Rating Classes 

Gender Male 

Female 

 

 

 

 

Education Status 

Illiterate 

Primary School 

Secondary School 

High School 

College 

Undergraduate 

Graduate 

 

 

Marital Status 

Single 

Married 

Divorced 

Widow 

 

 

 

Income Status 

Unavailable 

Working 

Someone is looking 

State protection 

Retired 

 

Urban Status City 

 Bent 

Live Alone 

Yes 

No 
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Rating Factors Rating Classes 

Family Disease 

No 

Yes 

 

Substance Abuse 

No 

Yes 

 

Relation with Family and Environment 

Not good 

Not good not bad 

Good 

 

Activity Status 

Passive 

Active 

 

The sample consisted of 65% men and 35% women. The patients ranged in age from 17 to over 78 

years. Most of the were single (55%). While the most observed level of education was primary school 

(42%), the least observed was graduate level education (0.5%). In terms of income statu, the patients 

were 34% under state protection and 9% working. About 70% of the patients were lived in city. 

About 92% of the patients were not lived alone. In terms of family disease, 46% of the patients were 

had family disease history. About 56% of the patients were substance abused, 49% of the patients 

were had good relationship with the family and enviroment. Finally about 70% of patients were had 

active life. 

The number of hospitalization ranged from 0 to 35 with a mean 2.73 (variance 11.60). The 

distribution of the number of hospitalization is presented in Figure 1 is skewed to the right. In other 

words, few patients are hospitalized 10 or more times. The modal number of hospitalization were 

zero and one hospitalization (21%) followed by two hospitalization (17%).   
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Figure 1: Distribution of Hospitalization number 

 

 

All the models described above are applied to data set. At the end of the section, all fitted models 

are compared highlighting that the modelled mean function was similar but the fitted likelihood and 

AIC were different. The analysis are performed in R program. glm() function from "stats" package, 

glm.nb() function from "MASS" package and cmp() function from "COMPoissonReg" package are 

used, respectievely. 

Several models are fitted by including different rating factors; first the main effects only, then the 

main effects plus each of the paired interaction factors to assess the magnitude of the effect of several 

factors acting jointly over and above their effects are considered seperately. The best model is chosen 

using backward stepwise based on both AIC (𝐴𝐼𝐶𝑚𝑜𝑑𝑒𝑙(2) < 𝐴𝐼𝐶𝑚𝑜𝑑𝑒𝑙(1)) and p values (drop a 

covariate if it was not significant).  

Turning first to the main effects model, Table 4 showed the results of parameter estimates, standart 

error, AIC and Log likelihood. 

The formal test for significance of over-dispersion, the log-likelihood ratio, which is 

-2×(log-likelihood of Poisson regression-log˗likelihood of Negative Binomial regression), is 

computed. The log-likelihood ratio is became 143.58, which exceeded critical value of chi-square, 

giving evidence of over-dispersion. The estimated dispersion parameter for COM-Poisson model was 

𝜐 = 0.1289, indicating over-dispersion. To test the significance of dispersion parameter a hypothesis 

test which established by Sellers and Shmueli (2010) is used. The p value found 0, indicating 

over-dispersion that requires a COM-Poisson regression instead of Poisson regression. Based on both 

tests, evidence of over-dispersion indicates inadequate fit of the Poisson model. The best model for 

the main effects models is chosen according to smallest log-Liklihood and AIC values. In terms of 

Log likelihood and AIC, the Negative Binomial model showed best fit for main effects model. 
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Table 4.  Parameter estimates, standart error and AIC value for main effects models 

 

 

Factors 

Classic Poisson Negative Binomial COM-Poisson 

Estimated 

Coefficent 

Standart 

Error 

Estimated 

Coefficent 

Standart 

Error 

Estimated 

Coefficent 

Standart 

Error 

Intercept 0.0428 0.2349 -0.0893 0.3682 -0.4592 0.1467 

Age 0.0221 0.0221* 0.0247 0.0065* 0.0076 0.0025* 

Gender -0.4779 0.1043* -0.4881 0.1578* -0.1794 0.0686* 

Education Statu 0.0845 0.0317* 0.1082 0.0519* 0.0286 0.0187* 

Substance Abuse 0.2760 0.0954* 0.2752 0.1501* 0.0981 0.0589* 

Relation with Family 

and Environment 
-0.1807 0.0505* -0.2070 0.0827* -0.0599 0.0304* 

Dispersion parameter - - 1.821 0.319 0.1289 0.0549 

Log-liklihood -498.56 -426.77 -431.10 

AIC 1009.1 867.54 876,19 

* p<0.05 (significant covariate)  

The significance of the interactions effect are looked at by adding them into the main effects model 

one at a time and retaining the significant interactions. Accordingly, all the three-way and 

higher-level interactions effects are obtained non-significant. From the two-way interactions only 

gender and education status, education status and marital status, and marital status and substance 

abuse were significant. The interaction plots are also used to assess the effect a pair of factors has on 

the response by plotting, for each value of one of the factors, a line between mean response at the low 

level of the other factor to the mean response at the high level. An interaction effect is indicated when 

the lines for different levels of the first factor have unequal slopes. The plots in Figure 2 confirmd the 

presence of interactions gender and education status, education status and marital status, and marital 

status and substance abuse. The first plot (a) indicated a decrease in the mean number of 

hospitalization from the males to the females almost all of the education status except Undergraduate. 

The second plot (b) revealed that for single category the mean number of hospitalization increased as 

their education status increased from illeteracy to college and decrased at undergraduate, for widow 

category the mean number of hospitalization decreased as their education status increased from 

illeteracy to high scholl. The Third plot (c) revealed that for non-substance abuse category the mean 

number of hospitalization decreased as marital status changed from the single to the divorced and 

increased at widow class. 
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Figure 2: Interaction plots 

 

Table 5 showed the results of parameter estimates, standard error, AIC and Log likelihood for the 

main effects plus interaction effects model. 

 

Table 5. Parameter estimates, standart error and AIC value for models 

 

 

Factors 

Classic Poisson Negative Binomial COM-Poisson 

Estimated 

Coefficent 

Standart 

Error 

Estimated 

Coefficent 

Standart 

Error 

Estimated 

Coefficent 

Standart 

Error 

Intercept 0.0451 0.2144 0.0890 0.3200 -0.4294 0.1427* 

Age 0.0188 0.0042* 0.0178 0.0066* 0.0071 0.0027* 

Gender -1.2280 0.1870* -1.1929 0.2633* -0.5057 0.1311* 

Marital Statu 0.4631 0.0917* 0.4298 0.1456* 0.1825 0.0573* 

Substance Abuse 0.5341 0.1148* 0.4953 0.1727* 0.2115 0.0765* 

Gender*Education 0.3178 0.0603* 0.3239 0.0933* 0.1250 0.0388* 

Education*Marital -0.1480 0.0350* -0.1366 0.0515* -0.0573 0.0234* 

Marital*Substance 

Abuse 
-0.5039 0.1042* -0.4550 0.1568* -0.2006 0.0683* 

Dispersion parameter - - 2.079 0.389 0.1733 0.0586 

Log-liklihood -479.39 -420.64 -423.32 

AIC 974.77 859.28 864.64 

* p<0.05 (significant covariate)  
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To control significance of over-dispersion, the log-likelihood ratio, which was -2×(log-likelihood of 

Poisson regression-log˗likelihood of Negative Binomial regression), is computed. The log-likelihood 

ratio is became 117.5, which exceeded critical value of chi-square, giving evidence of 

over-dispersion. The estimated dispersion parameter for COM-Poisson model was 𝜐 = 0.1733, 

indicating over-dispersion. To test the significance of dispersion parameter a hypothesis test which 

established by Sellers and Shmueli (2010) is used. The p value are found 0, indicating 

over-dispersion that requires a COM-Poisson regression instead of Poisson regression. Based on both 

test, evidence of over-dispersion indicated inadequate fit of the Poisson model. The best model for 

the main effects plus interaction effects models is chosen according to smallest log-Liklihood and 

AIC values. In terms of Log likelihood and AIC, the Negative Binomial model showed best fit for 

main effects model. Both Log likelihood and AIC values are decreased with added the interaction 

effects on the main effects models. The results from the Negative Binomial model analysis are 

presented in Table 5.  
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