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ABSTRACT - A new distribution called the exponentiated Burr XII Weibull(EBW)
distributions is proposed and presented. This distribution contains several new and
known distributions such as exponentiated log-logistic Weibull, exponentiated
log-logistic Rayleigh, exponentiated log-logistic exponential, exponentiated Lomax
Weibull, exponentiated Lomax Rayleigh, exponentiated Lomax Exponential, Lomax
Weibull, Lomax Rayleigh Lomax exponential, Weibull, Rayleigh, exponential and
log-logistic distributions as special cases. A comprehensive investigation of the
properties of this generalized distribution including series expansion of probability
density function and cumulative distribution function, hazard and reverse hazard
functions, quantile function, moments, conditional moments, mean deviations,
Bonferroni and Lorenz curves, Renyi entropy and distribution of order statistics are
presented. Parameters of the model are estimated using maximum likelihood
estimation technique and real data sets are used to illustrate the usefulness and

applicability of the new generalized distribution compared with other distributions.

KEYWORDS -Burr Xl distribution, Exponentiated Distribution, Maximum Likelihood
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1. Introduction

Burr XI1I distribution is a well known parametric model that has found wide application in different
fields such as reliability, income and biological sciences. The hazard function of Weibull distribution
is monotonically increasing, decreasing or constant which is disadvantageous because practical
situations exhibit bath-tub shaped hazard function. Therefore, we propose a model that is flexible in
accommodating various hazard functions which are likely to be encountered in practical situations.

Burr XII distribution is a continuous distribution proposed by Irving W. Burr [4] as a two parameter
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distribution. Tadikamalla [30] added a scale parameter. The use of Burr XII distribution in accelerated
life testing models was presented by Lewis [14]. Also, Hamid [8] studied Burr XII distribution under
progressive Type-II censoring. Burr XI1 distribution is one of the most important and most widely used
distribution for lifetime as well as the wealth data analysis and modeling. The usefulness and
applicability of Burr XII distribution were studied by various authors including Hatke [9], Burr and
Cislak [5], Rodrigues [28], Abd-Elfattah et al. [2] and Tadikamalla [30]. Burr XII distribution has been
used in many applications such as actuarial science, quantal bio- assay, economics, forestry,
toxicology, life testing and reliability. Mdlongwa et al. [16] eluded to the fact that this distribution
covers shapes that is characteristic of a large number of distributions. The versatility and flexibility of
the Burr XII distribution makes it quite attractive as a tentative model for data whose underlying
distribution is unknown. Weibull distribution may be an initial choice when modeling monotone
failure rates because of its negatively and positively skewed density shapes, however, it does not
furnish a reasonable parametric fit for modeling practical situations with non-monotonic failure rates
that are very useful in reliability and survival analysis.

According to the literature, there are several useful and important ways of developing new
probability distributions from classic ones to relative new distributions. Nelson [20] wrote and
discussed that distributions with bathtub-shaped failure rate are sufficiently complex and therefore
difficult to model. The distribution proposed by Hjorth [11] is such an example. A review of these
distributions was presented by Rajarshi and Rajarshi [27]. Haupt and Schabe [10] developed a new
lifetime model with bathtub-shaped failure rates. It has been shown in the literature that exponentiated
distributions are flexible enough to accommodate in many cases both monotone as well as bath-tub
hazard rates. As a result many lifetime models extended Weibull and Burr XII distributions.
Mudholkar and Hutson [17] applied the exponentiated Weibull distribution to model survival data and
discussed that the generalized Weibull distribution has monotonically increasing, decreasing, bathtub
and unimodal hazard function. Properties and the application of the generalized Weibull distribution
was proposed by Mudholkar et al. [19]. For a review of these models the reader can refer to Mudholkar
and Srivastava [18] and Pham and Lai [25], where the authors summarized some generalizations of
Weibull distribution in their papers. Additional results on generalized distributions are given by
Oluyede and Yang [23] on the beta generalized Lindley distribution, Oluyede et al. [22] on the
gamma-Dagum distribution and the general family of univariate distributions generated from Weibull
distribution that was introduced by Gurvich et al. [7]. Paranaiba et al. [24] proposed the beta Burr XII
in order to add flexibility to the Burr XII distribution.

The primary motivation for the development of the exponentiated Burr X11 Weibull distribution is
the modeling of lifetime data and other data types with a diverse model that takes into consideration
not only shape and scale, but also skewness, kurtosis and tail variation. Also, motivated by various
applications of log-logistic,Weibull and beta distributions in several areas including reliability,

exponential tilting (weighting) in finance and actuarial sciences, as well as economics, where Burr XII
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distribution plays an important role in income, we construct and develop the statistical properties of
this new class of generalized distribution called the exponentiated Burr X1 Weibull distribution and
apply it to real lifetime data in order to demonstrate the usefulness of the proposed distribution.

In this paper, the results are organized in the following manner. The exponentiated Burr XII
Weibull distribution, expansion of the density function, sub-models, quantile function, hazard and
reverse hazard functions are given in Section 2. In Section 3, moments and conditional moments are
presented. Mean deviations, Lorenz and Bonferroni curves are given in Section 4. Section 5 contains
results on R’enyi entropy, density of the order statistics and L-moments. Maximum likelihood
estimates of the model parameters are given in Section 6. A Monte Carlo simulation study to examine
the bias and mean square error of the maximum likelihood estimates are presented in Section 7.
Section 8 contains applications of the new model to real data sets. A short conclusion is given in

Section 9.

2. The Model: Exponentiated Burr XI11 Weibull Distribution

In general, the generalized or exponentiated Burr XII Weibull (GBW or EBW) distribution is
Grpw (%) = [Faw (x)]° where
Few(x)=1-(1+ xc)_ke_“xﬁ
is a baseline Burr X1I-Weibull cdf and § > 0. The corresponding pdf is given by
Geaw (%) = 8[Fgy ()%™ fu ().

For large values of x, and for § > 1(< 1),the multiplicative factors[Fg,, (x)]°~1 > 1(< 1),
respectively. The reverse statement holds for smaller values of x. Consequently, this implies that the
ordinary moments of gggw (x) are larger (smaller) than those of Fgy, (x) whend > 1(< 1).

A generalization of the Burr XIlI and Weibull distributions where competing risk and
exponentiation techniques are used to obtain the new exponentiated Burr XII Weibull (EBW)
distribution with cumulative distribution function (cdf) that can be written as

Geaw (0, k,a, B,8) = (1 — (1 +x°)"*e=®*"Y8 ¢ k,a, 5,5 > 0. (1)

The corresponding probability density function (pdf) is given by

9esw(x; ¢, k, a, B, )

5-1

=6(1- (1 +x) ke @) T (1 +x0) 1o’ @)

X (kex™' + (1 + x€) — afxP~1)
for x > 0,c,k,a, 3,6 > 0. We note that the parameter o control the scale of the distribution and
the parameters c, k, 8 and § controls the shape of the distribution, respectively.
Plots of the EBW pdf for selected values of the model parameters are given in Figure 1. The plots
show that the EBW distribution can be L-shaped or decreasing and right skewed among many potential

shapes. The reliability or survival function of the EBW distribution is given by
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G_EBW(x; c, k; a, ﬂ) 6)

c\—k —axP 8 (3)
=[1—(1+x) e ] ¢, k,a,B,and § > 0.
[an)
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Figure 1. Plots of the pdf of the EBW distribution for selected values of the model parameters

2.1.Expansion of Density Function

In this subsection, we present a series expansion of the EBW density function. Using the
generalization of binomial theorem : If b is a positive real non-integer and |z| < 1, then

-1/
(1-2)P1 = ' —F((b —)j)j!Z] )
j=0
We have the expression
2 (—1))
1-Q1+ xC)_ke_“xB)a_1 = jzoj—(! 1"1()3 5(18)3 a+ xc)_ke—axﬁ)j’ (5)

so we can write the EBW pdf as

- (—1)/T (S + 1)

() = . 2 (1 + x©) K gmait
Jesw L JT@ =i

X (1 + %)k Le=a* [lexc=1 4 (1 + x%)afxP1]

j+1-1

X ( + 1) (Gpw (X))

> (=1)Irs+1
=Z DI+ 1) gew (X)
=0

G+DjIr -

j+1-1

= > W) x G+ D(Gaw0) 1 gaw ),
j=0
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where

(-=1)/r@+1)
G+DjIr@—jy
and Gy (x), and gy (x) are the reliability function and pdf of the BW distribution with the

w(s,j) =

(6)

parameters ¢, k,a and (3, respectively.

2.2. Hazard and Reverse Hazard Functions

The hazard and reverse hazard functions of the EBW distribution are respectively given by

_ Yesw (X)
ho(x) = G_EBW(x)
81— (1 +x6)Kem @Y1 (1 4 x€)hTem@x (kex et 4 (1 + x€)apxP )
- 1—[1—(1+x¢)ke—axf|s
and
. 9esw (X)
To() = Ggpw (%)

= 6[1 — (1 + x%)"*e= 711 + x¢)~*=1e=a* [kexc=1 + (1 + x%)afxP1].
Plots of the hazard function for selected values of the EBW parameters are also presented in Figure
2. The graphs of the hazard function show that EBW distribution

05
|

04

hazard
03
I

0.1

0.0

Figure 2. Graphs of the hazard of the EBW distribution for selected values of the model parameters

have different shapes including monotonically increasing, monotonically decreasing and bathtub
followed by upside down bathtub shapes. These shapes of the hazard function show that EBW
distribution can accommodate both monotonic and non-monotonic hazard behaviors which are more

likely to be encountered when dealing with survival and lifetime data.



436 The Exponentiated Burr XII Weibull Distribution: Model, Properties and Applications

2.3. Some Sub-models

There are several new and well known distributions that can be obtained from the EBW
distribution. The sub-models include the following distributions :
®  When 3 =1, we obtain Exponentiated Burr XII Exponential (EBE) distribution.
The EBE cdf is defined by
Geew (X0, k,a,8) = (1 — (1 +x6)7F — e_“x)a, ¢, k,a d>0. 7
®  When 8 =2, we obtain Exponentiated Burr X1l Rayleigh (EBR) distribution.
The EBR cdf is given by
Gepw (¢ k,a,8) = (1 — (1 +x°)7% — =Y ¢k a,5 > 0. (8)
® When a - 0% and B =1, then we have the Exponentiated Burr XII (EB) distribution.
The EB cdf is defined by
Geg(x;¢,k,8) = (1 — (1 +x)7%,¢c,k,6 > 0. 9
® When k=B=1anda— 0", we obtain Exponentiated Log-logistic (ELL0G)
distribution. The ELL0G cdf is defined by
Grrioc(x;¢,8) = (1= (1 +x)™)%,¢,6 > 0. (10)
® When k— 0%, we obtain Exponentiated Weibull (EW) distribution (Mudholkar and
Srivastava [18]). The EW cdf is defined by
Gew(x;8,a,8) = (1 — e_“xﬁ)‘s, 5,a,f > 0. (11)
® When k- 0%,andB =2, we obtain Exponentiated Rayleigh (ER) distribution
(Mudholkar and Srivastava [18]). The cdf of ER distribution is given by
Ger(x;8,0) = (1 — e~ ®**)9, S,a>0. (12)
® When k- 0%,and B = 1, then we have the Exponentiated Exponential (EE) distribution
(Gupta et al. [6]). The cdf of EE distribution is given by
Ggr(x;a,8) = (1—e )%, §,a>0. (13)
® When ¢ =1, we have Exponentiated Lomax-Weibull (ELW) distribution. The cdf of the
ELW distribution is given by
Grw(@ ka,B,6) = (1— A +x)*e )5, ka,B,86>0. (14)
® When c=1andf =2, we obtain Exponentiated Lomax-Rayleigh (ELR) distribution.
The cdf of the ELR distribution is defined by
Ger(ik,a,8) = (1 — (1 +x)%e @8 k a,6 >0, (15)
® When ¢ = =1, we obtain Exponentiated Lomax-Exponential (ELE) distribution.
The cdf of the ELE distribution is given by
Gre(t;k,a,8) =1 -1 +x) ke @), ka,6>0. (16)
® When c=1,anda— 0%, we have Exponentiated Lomax (EL) distribution
(Abdul-Moniem and Abdel-Hameed [1]). The cdf of the EL distribution is given by
Ge(k,8) =1 —-1+x)%%,  k&>0. (17)
) When 6 = 1, we obtain Burr XII Weibull (BW) distribution and the cdf is given by
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Gew(x;c,k,a, ) =1—(1+ xc)‘ke‘“xﬁ, ¢, k,a, B >0. (18)
® When 6§ =3 =1, then we have Burr XII exponential (BE) distribution and the cdf is
given by
Gpp(x;c,k,a) =1 — (14 x€) ke~ ¢, k,a>D0. (19)
® When § =1andf =2, we obtain Burr XII Rayleigh (BR) distribution and the cdf is
defined by
Gpr(x; 0k, @) =1 — (1 + x€)"ke~ax®, ¢, k,a > 0. (20)
® When § =k =1, we obtain Log-logistic Weibull (LLoGW) distribution and the cdf is
defined by
Grroow(xca,p)=1—(1+ x¢)~le—ax’ c,a,fB>0. (21)
® When §=p=k=1, we have Log-logistic exponential (LLoGE) distribution and the
cdf is defined by
Groce(x;c,a) =1— (1 +x)"te™®,  c,a>0. (22)
® When § =k=1and3 =2, we have Log-logistic Rayleigh (LLoGR) distribution and
the cdf is defined by

Giogr(X @) =1— (1 +x°)Te™ ", ca>0. (23)
® When § =c=1, we obtain Lomax-Weibull (LW) distribution and the cdf is defined by
Gwiskap)=1-1+x) % e "  kap>o0. (24)

® When 6§ =3 =c=1, we obtain Lomax-Exponential distribution (LE) distribution and

the cdf is given by

Gr(k,a)=1—(1+x)*e *,  ka>0. (25)
® When § =1,andk — 0%, we obtain Weibull (W) distribution and the cdf is given by
Gy (x;a,f)=1— e—axf a,B > 0. (26)
® When §==1,andk — 0%, we obtain Exponential (E) distribution and the cdf is
given by
Ge(x;a) =1—e %, a>0. (27)
® When §=1,8=2,andk - 0%, we obtain Rayleigh distribution and the cdf is given by
Gelx;0) =1 — e %7, a > 0. (28)
®  When a — 0%, we obtain Burr X1 (B) distribution and the cdf is given by
Gg(x;c,k)=1—A+x7% ¢ k>0. (29)
® When a - 0%,8 = 1,and k = 1, we have Log-logistic (LLoG) distribution and the cdf is
given by
Grroc(x;0) =1—(1+4x71, c>0. (30)
® When a - 0%,8 = 1,and c = 1, we have the Lomax (L) distribution and the cdf is given
by

GL(x; k) =1—-(1+x)7k, k>0. (31
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2.4. Quantile Function

To obtain the quantile function of the EBW distribution, we invert the following
equation : Gggw(x)=u, 0 < u <1, that s,

[1— (14 x€)ke~axF18 =4,

so that,
5 1
(1+ x¢)ke=®*" =1 —ys3,
and
1
axP + klog(1 + x°) + log (1 - u3> = 0. (32)

We can obtain the quantile function of the EBW distribution by solving the equation (32) using
numerical methods. Equation (32) can be used to generate random number. The quantiles for selected

values of the EBW distribution parameters are listed in Table 1.

Table 1. EBW quantile for selected values

(¢.k,8,a,p)
u (0.8,1.2,15,09,1.0) (1.2,1.8,1.2,2.0,3.0) (5.5,0.6,0.3,0.5,1.0) (0.3,1.82,3.0,6.0,2.0) (1.8,1.2,0.8,0.6,3.0)
0.1 0.0539 0.1336 0.0009 0.0464 0.1814
0.2 0.1062 0.2265 0.0094 0.1264 0.3000
0.3 0.1650 0.3112 0.0365 0.1974 0.4020
0.4 0.2342 0.3921 0.0966 0.2596 0.5040
0.5 0.3186 0.4720 0.2100 0.3171 0.6100
0.6 0.4262 0.5540 0.3940 0.3744 0.7191
0.7 0.5719 0.6412 0.6305 0.4360 0.8440
0.8 0.7905 0.7430 0.8584 0.5082 0.998
0.9 1.1978 0.8797 1.1304 0.6103 1.2030

3. Moments

In statistics, moments are used to characterize various features of a distribution, for example

skewness and kurtosis. The t** non central moment of the EBW distribution is given by

[oe]

E(X") = f xt g (X)dx
0

— f xt 6(1 _ (1 + xC)—ke—axﬁ)(S—l(l + xC)—k—le—axB
0

X (kex™1 + (1 + x)afxP~1)dx.
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Note that from the generalized binomial theorem : If b is a positive real non-integer and |z| < 1,

then

O (—1)/T(b)

(=2 = — I'(b — Nit’

(33)

we have the expression

S EDTO) okt

(1= (1 +x6)"ke-axfys-1 = TG (A +x

(34)

Thus, the t™ moment of the EBW distribution can be obtained as follows :

(o]

E(XY) = fo xt g (X)dx

Z 1)]F(5 + 1) t (1 + xc)—kj—k—le—a(j+1)xﬁ
JIré—j 0

X [kex®™t + (1 4 x)afxF~1]dx

. P .
Now, we apply the expansion e* = Z;’,":O’;—' To obtain

B (~1)/*P[a(j + DIPIE + 1)
E(X®) = Jzopz TG (35)

[kcf xtHpBre=1(1+x)THITt g a,ﬁf K EHPBHB=1(1+x) T 4
0 0

- 1-y1
Lety = (1 +x¢)7 1, thenx = ( )¢ and

1
-2 1 _ E—l 1—;
dx = — y( }C/) Y dy, so that

pJ'F(5 J))
Jj=0p=

1 1
19— 24 Ne—1 1-—
X [kcf [1yy %]t+P3+C—1ykj+k+1y a 3C’)C y ¢ dy
0

11—-y1 2(1 - )%'1 1'%
Y E]t+pB+B—1ykj+ky y Y
c

dy |

i i DI*P[a + DJPIES + 1)

— p'JIr(6—j)
j=0p

1 t _pB t+pB+c aB (Y ..., t pB B t+pB+8
I R e O [ (S R
0 0
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~ i i (—=1)/*P[a( + DIPI 6 + 1)

pB t+pﬁ+0)
p!jir@ —j

t
kB(k] thk—-——,
e c cC c

e e

where B(a,b) = fol z271(1 — z)P~1dz denote the complete beta function.

The first six moments (p3, uy, 13, 1y, Us, 1g), standard deviation (SD), coefficient of variation
(CV), coefficient of skewness (CS) and coefficient of kurtosis (CK) for different selected values of the

EBW distribution parameters are listed in Table 2.

Table 2. EBW Moments for selected values

(¢, k8, 0,B)

Moments ( 1.0,3.0,2.0,3.0,1.0) (1.0,3.0,1.0,1.5,2.0) (1.0,3.0,0.9,1.5,1.0) (0.9,2,0.8,0.5,2.0) (1.8,1.2,0.8,0.6,3.0)

My 0.2721 0.3068 0.2367 0.4303 0.2173
[ 0.1220 0.1708 0.1338 0.4162 0.1256
H3 0.0794 0.1301 0.1284 0.5738 0.1149
Ha 0.0699 0.1218 0.1820 0.9791 0.1435
Hg 0.0791 0.1325 0.3504 1.9405 0.2270
He 0.1107 0.1622 0.8668 4.3137 0.4345
SD 0.2188 0.2769 0.2786 0.4807 0.2800
CVv 0.8040 0.9023 1.1769 1.1170 1.2887
CS 1.9297 1.4450 2.7730 1.7638 2.4412

CK 9.2540 5.4392 15.9184 6.5761 11.8037
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Figure6. Plot of Skewness and Kurtosis for selected values EBW distribution parameters

Graphs of skewness and kurtosis of the EBW distribution as a function of different model shape
parameters are presented. The plots show the dependence of the kurtosis and skewness measures of the
shape parameter : 3, k, ¢ and f, respectively. Plot of the skewness and kurtosis decreases as ¢, p and &

increase while the graph of the skewness and kurtosis increase as parameter k increases.

3.1. Conditional Moments

The t™ conditional moment of the EBW distribution is given by

EX{X>1) == f xt gppw (x)dx (36)
EBW(r) Jr

1 oo
- — f 5t 5(1 _ (1 + xC)—ke—axB)J—l(l + xC)—k—le—axB
Gepwr) Jr

X (kex®™1 + (1 + x9)afxP~1)dx

i i (=1)/*P[a(j + DIPI(S + 1)

GEBW(r p!jir(é —j

t pB t+pB+c
XkB[:H_rC]— (k]+k_z_7;7>:

apf t pB B t+pB+p
+TB[1+rC]‘ (k”k_Z___Z f)

Where By (a,b) = foy z%71(1 — z)?~1dz is the incomplete beta function.

4. Mean Deviations

According to Stuart and Ord [29], the totality deviations from the mean p and the median M

measures the amount spread in a population. The mean deviation about the mean measures the average
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absolute deviations of the observation from its mean and the mean deviation about the median
measures the average absolute deviation of the observation from its median. The mean deviation about

the mean and the mean deviation about the median are respectively given by

o

8,(x) =2pG(u) —2u +2 fooxg(x)dx and 6y (x) = —u + 2] xg(x)dx.
u M

The mean deviation about the mean for the EBW distribution is given by :

8, (x) = 2uGgpyw (1) — 2u + 2T (),
Where

T(w) = f xGmw (O)dx 37)
u

_ii 1)/*P[a(j + DIPI(S + 1)
BT NGRS
1 pB 1+p[3+c>

XkB[1+Me]— (k]+k—z—7, c

ap 1 pB B 1+pﬁ+/>’)
B el kivk—=——2L S o
+c (1+4°] (kj+k c ¢ ¢’ c

The mean deviation about the median for the EBW distribution is given by

Sy(x) = —u+2T(M)
where

T(M) = f xgpmw (X)dx (38)
M

_ i i (—D/*Pla + DIPIE +1)

Ll P =)

1 pB 1+pB+c
XkB[1+Me]— (k]-i—k—E—T,f)

ap 1 pB B 1+p/>’+/>’)
B e (ki+k——-—"E2_Z2 e
+c (1+M?] (k]+k c ¢ ¢’ c

4.1. Bonferroni and Lorenz Curves

Bonferroni and Lorenz curves are presented in this section. These measures of in-equality are
widely used in various fields such as survival analysis, demography and insurance. Bonferroni and

Lorenz curves for the EBW distribution are given by

B(p) = — [ ! G (X = (1 T(@)] (39)
PU Jo pu
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o (=D *P[a( + DIPIES + 1)
pu ZZ pjtres—j

1 pB 1+pB+c
XkB[1+qe] 1(k]+k—z—7,f)
ﬁ 1 pB B 1+pB+p
B[1+qe] 1(k] +k—E———E,f>],

and

L) == f " e gemw (Odx = [ - T(0)] (40)
HJo Hu

Z Z (—1)/*Pla( + DIPT(S + 1)

p!jir( —j)
Jj=0p=

1 pB 1+pB+c
XkB[1+qe] 1(k]+k—z—7,f)

B 1 pp B1+pﬁ+[>’>]

B[1+qe]1(k]+k—z—7—z, -

respectively.

5. Rényi Entropy and Order Statistics

The concept of entropy can be shown to be a good measure of uncertainty and plays a vital role
in information theory. Rényi entropy and distribution of order statistics for the EBW distribution are

presented in this section.

5.1. Renyi Entropy

Renyi entropy is given by

1 (00}
o) = T l0(| [9mwxic b, ,)]d) (41)

,2 ¥+ 1,v>0.

Note that,
[gepw ()]” =6Y[1 - (1 + xc)_le_“xﬁ]sv_v(l + xc)_kv_”e_“"xﬁ
X (kex®™t 4+ (1 + x©)afxP~1)v

S (~DIrv — v + Dla(i + v))V
rév—v+1-1iilj!

=§?
i,j=0
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X xTB (1 + x€)~K=kv=v (ex =1 4+ (1 + x)aBxP1)".
Therefore,

i v - (=DIr v —v + Dla(i +v))!
fo [gepw (D) dx = 6 r@v—v+1-10ilj!

i,j=0
X f xIB (1 + xR (ex 1 + (1 + x€)afxB1)?.
0
Using binomial expansion

(kx4 (1 4 x)aBxB-1)¥ (42)

= z (;) [kex™1P Y[ + x)apfxP~ 1w

w=0
we have

[oe]

® e (-Drv—v+ Dlai + )} ;v o w
fo l9epw ()]"dx = & Z r(év—v+1—10ilj! (w) (@p) ke

ij=0

(o]
X.[ xj[>’+cv—cw— +[3W(1+xc>—ki—kv—v+wdxl
0

Let y = (1 +x°)~1 then

|| o Golrd
0
 (=1)IF v — v + D[al +v)) v 1
=gV Z Whcv—w Z
L T@v—v+1-Dil]! (w)(aﬁ) © o C (43)
i,j=
co . iB— _ 1 i —cw— 1
X]‘ yw—kl—kv—v jB cu+c;/v+u Bw : 1(1_y)jB+cv c;/v U+BW+C 1dy
0

L \C (DI 6y — v+ Dial + v)V

=4 v -
- r@év—v+1-1iilj! (W) (aB)”kc

i,j=0

Cc Cc

jp+rcv—cw—v+pw 1

Cc c

5.2. Order Statistics

The pdf of the it" order statistic and the corresponding moments are presented in this subsection.
Suppose that X;, X5, ..., X,denote continuous independent EBW random variables with common cdf

G(x) and pdf g(x), then the pdf of the i order statistic for a random sample of size n is given by
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n!g(x)

9n () = =y e =y (G GO L= G )

i+p—-1

i-1 _
G- 1)?én -y ;(—1)1’ (n; l) [(1 —(1+ xf)‘ke-“xﬁ)a] g(x).

Using the binomial expansion,

(1- (1 +x0)Fee’) (45)

v (D@ +p -1+ 1)
B ij:Oj!I‘((S(i +p—1+1-))

(G + 2yHeme?’

we have
L ng® O DTG +p -1+ 1) m—1 y
gim(x)_(i—1)!(n—i)!pz=;)j=0j!1”(6(i+p—1)+1—j)( D ) (46)

X ((1 + xc)_kje_“jxﬁ)a (1 -1+ xc)_ke’_“"ﬁ)&_1

x (1+ xc)‘k‘le‘“"ﬁ(kcxc‘l(l + x)apxP1)

i—-1 oo

(=1/sr@@i+p—1)+1) (n — 1)

n!
:(i—l)!(n—i)!;)jzo JITGG+p—D+1-)H \ p

5—
X (1 + xc>—(k+kj+1)e—a(j+1)xﬁ (1 _ (1 + xC)—ke—axB) !

X (kex®™1(1 + x)afxP1).
The tth moment of the ith order statistic from the EBW distribution can be derived from the result
of Barakat and Abdelkader [3].

BX(,] =t Z o (PO (0) U - 6P, 47)
0

n—i
p=n+i—-1 p

Note that
[ee] p ]
jo X1 = GO)JP dx = ;(—1)1 (’[l’)f0 X6 (0] dx
14 p .
— (_1)1 t—1[(1 _ (1 + C)—k —axﬁ)d]ld
; (l)_];) X X e X

p 4l

= ; ;(—1)”5 (219) (il> foth‘l((l + x¢)ke=axPys gy
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SRR BEY @ ()
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Therefore,
B[X] =t Z ot (PTD0) [t - e (48)
p=n+i-1

S SFS e O G

p=n+i—-11=0s=0r=

Bt rﬂ+t)

)
(o Cc Cc

5.3. L-moments

The L moments introduced by Hoskings [13] are expectations of some linear combinations of
order statistics and they exist whenever the mean of the distribution exits, even when some higher

moments may not exist. They are relatively robust to the effects of outliers and are given by

Mewa = 12( 1)]( )E(kar—gaers ) e = 012, .. (49)

The L—-moments of the EBW distribution can be readily obtained from equation (48). The
first four L-moments are given by A1=EX1:1,2=12EX2:2-X1:2,A3=13EX3:3-2X2:3+X1:3and
A4=14EX4:4-3X3:4+3X2:4—X1:4, respectively.

6. Estimation and Inference

Maximum likelihood estimates (MLEs) of the parameters of the EBW distribution from
complete samples are presented in this section. Suppose that x1,2,...,xn denote the random sample of
size n from EBW distribution and ¢=(c,k,a,,6)T denote the parameter vector. The log-likelihood

function of the parameter vector is given by

l =logL = nin(8) + (6 — l)z In (1 -1+ xf)_ke_“xiﬁ) (50)

i=1
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—(k+1) z In(1 + x£)

n n
—az xf + Z In (kcxf'1 + 1+ xic)aﬁxl.ﬁ_l).

i=1 i=1

The score vector is given by

D

(61 al al al al)T
dc’ ok’ da’ Ap’ 5

and its elements are given by

n ﬁ c
ol k(1 + xf) k1= xi In(x) xfIn(x;)
—:(5—1)2 _ —(k+1)z (52)
& S o1-(1+x) el (1+x)

)

+Z kxf~t + kexf ™ in(x;) + aﬁxﬂ Yx€in(x;)
exfT+ (1 +xf) aﬂxi

—ax; ln(1+xc) n

n
0l k(1+x{)~
= (- 1)2 A +x)™ Z In(1 + x£) (53)
= 1-(1+ C)
n x&-1
Z Xi
= k C1+(1+xc) aﬁxﬁl
B n
1+ x9) ke qxP In(x;
3 —(8— 1) y 2 — B( l)—ainﬁln(xi) (54)
ﬁ = 1-(14xf) e ™ =
.\ Z": a(1+x)xF71 (1 + Bin(x)
— fexfTM+ (14 xf)a[)’xiﬁ_l
al 1+xf &
a—=(5—1) ( )" L fo (55)
a =1-(1+xf e_“x p
+Zn: (1+ xf)xiﬁ_1
. 1
—fecx{™! + (1+ xf)aﬁxl.ﬁ
and
dlod=nd+i=1nlni(1-1+xic—k)e—axif, (56)

respectively. Solving the nonlinear system equations, Un@=0 yields the maximum likelihood
estimates. These equations can be obtained numerically via iterative methods such as

Newton-Raphson technique using statistical software.
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6.1. Asymptotic Confidence Intervals

The Fisher information matrix of the EBW distribution is a 5 x 5 matrix given by J(¢) =

2
[]ei_ej]sxs:E<—Zeli°agel“i),i,j=1,2,3,4,5. The toal Fisher information matrix nj(¢) can be

approximated by

921
96; 06,

In((p) ~ JiJj = 1J2J3J415 (57)

q”:‘JSXS

For a given set of observations, we obtain the total Fisher information matrix (FIM) nJ(¢) after
the convergence of the Newton-Raphson technique. Applying the usual large sample approximation,
MLE of ¢, that is @ can be treated as being approximately N<(eo,],(@)™1), where J,(¢)tis the
expectation of FIM. When the conditions for parameters in the interior of the parameter space, but
not on the boundary,are met, the asymptotic distribution becomes vn(® — ¢) is N5(0,](¢)~*,where
J(@) = lim,_on 1, (¢) is the unit information matrix.This asymptotic behavior remains valid if the
unit information matrix is replaced by the average sample information matrix evaluated at @,say
nll, (§).The estimated asymptotic multivariate normal Ng(o,1,(@)™1) distribution of @ can be
used to construct confidence intervals for the parameters. An 100(1 — &)% asymptotic confidence

interval (ACI for each parameter o, is given by
ACI,. = <(f’r_zi,’irr:¢\r+ziﬂ/irr>' (58)
2 2
Where 1, is the (r,r) diagonal element of I,(®)~* for r=1,2,3,4,5 and zg isthe 1 —g guantile
2

of the standard normal distribution.

6.2. Likelihood Ratio Test

For a given dataset, the Likelihood ratio (LR) test can used to compare EBW distribution with

its nested-models. For instance, to test ¢ = k = 1, the LR statistic is
w=2 [ln(L ((ekap.8)-in(L(1raB, S))] , (59)

where é,k, &, 8, and § are the unrestricted estimates, and &, 3, and & are the restricted estimates.
The LR test rejects the null hypothesis if w > x?2, where x2 denote the upper 100 € % point of the

x? distribution with 2 degrees of freedom.

7. Simulation Study
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The accuracy and performance of the EBW distribution is investigated by conducting two
simulations for different parameter values and sample sizes. The simulations were repeated N = 1000
times each with sample sizes n = 35, n =50, n =70, n = 100, n = 200, n = 400 and n = 800 and the true
parameters values[: ¢c=2.8,k=1.2,0=0.01,=0.2,0=1.5andl:c=5.5,k=7.5,0=0.01,3=0.2,
d = 0.7. Three quantities were computed in this simulation study: the mean, average bias and root-

mean-square error. The mean estimate of the MLE { of the parameter @ = ¢, k, a, 3,6 is given by

Mean =

The root-mean-square error (RMSE) of the MLE ¢ of the parameter ¢ = ¢, k, a, 8,8 is given by

RMSE =

The mean of MLEs of the EBW distribution parameters along with their respective
root-mean-square errors and average bias for different sample sizes are listed in Tables 3 and 4,

respectively.

Table 3. Monte Carlo Simulation Results: Mean, Average Bias and RMSE

Parameter n Mean Average Bias RMSE Mean A\/B(elgasge RMSE
c 35 3.2089 0.4089 6.9780 6.1635 0.6635 1.9732
50 3.1733 0.3733 5.3093 5.9765 0.4765 1.7224
70 3.1316 0.3316 1.0617 5.7721 0.2721 1.5041
100 3.0820 0.2820 0.9990 5.6304 0.1304 1.2154
200 3.0309 0.2309 0.8730 5.54964 0.0464 0.9735
400 3.0268 0.2268 0.7993 5.5073 0.0073 0.7899
800 3.0230 0.2230 0.7300 5.5040 0.0040 0.6109
k 35 1.4725 0.2725 0.7873 9.3832 1.8832 4.6803
50 1.4090 0.2090 0.7330 8.7313 1.2313 3.4260
70 1.4089 0.2089 0.7322 8.4000 0.9000 2.2979
100 1.3565 0.1565 0.6533 8.1310 0.6310 1.5389
200 1.2464 0.0464 0.5423 7.8630 0.3630 0.9900
400 1.1431 -0.0569 0.4251 7.6610 0.1610 0.6500
800 1.1164 -0.0836 0.3645 7.6055 0.1055 0.4643
o 35 0.1252 0.1152 0.4548 0.2137 0.2037 1.5899
50 0.1245 0.1145 0.3826 0.6605 0.6505 1.3008
70 0.1219 0.1119 0.3557 0.1080 0.0980 0.3840
100 0.1108 0.1008 0.3564 0.0976 0.0876 0.3201
200 0.0720 0.0620 0.2403 0.0661 0.0561 0.2216
400 0.0394 0.0294 0.1423 0.0385 0.0285 0.1295
800 0.0233 0.0133 0.0453 0.0218 0.0118 0.0344
B 35 0.3906 0.1906 0.6030 1.3533 1.1533 21.4730
50 0.3698 0.1698 0.5049 0.8816 0.6816 5.7462
70 0.3690 0.1690 0.4711 0.4778 0.2778 0.5709
100 0.3596 0.1596 0.3750 0.4008 0.2008 0.3824
200 0.3325 0.1325 0.2403 0.2964 0.0964 0.2277
400 0.3038 0.1038 0.1745 0.2434 0.0434 0.1049
800 0.2990 0.0990 0.1494 0.2424 0.0424 0.2282
3 35 3.2622 1.7622 8.3689 1.7313 1.0313 8.3791
50 2.5243 1.0243 7.2240 1.6468 0.9468 8.2344
70 2.3602 0.8602 4.8890 1.4017 0.7017 a4.6e477
100 1.8614 0.7833 4.5192 1.3096 0.6096 3.7003
200 1.8614 0.3614 2.4956 1.0655 0.3655 2.6472
400 1.6217 0.1217 2.1650 0.8689 0.1689 1.4403
800 1.4967 -0.0033 0.2755 0.7434 0.0434 0.2282

For Table 4, N = 1000 samples are simulated for the true parameters values1: ¢=0.9,k=1.0, a =

2.0,p=48,0=10andll:c=1.0,k=09,0a=2.4,p=5.0,5=0.8.
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Table 4. Monte Carlo Simulation Results: Mean, Average Bias and RMSE

Parameter n Mean Average Bias RMSE Mean Average Bias RMSE
c 35 1.1323 0.2323 0.9756 1.0245 0.0245 0.8598
50 0.9665 0.0665 0.8105 0.9159 -0.0841 0.7577

70 0.9377 0.0377 0.7519 0.9094 -0.0906 0.6907

100 0.9339 0.0339 0.7135 0.8488 -0.1512 0.6344

200 0.9108 0.0108 0.6240 0.8391 -0.1609 0.5786

400 0.9080 0.0080 0.5213 0.8285 -0.1715 0.4926

800 0.9034 0.0034 0.4210 0.7966 -0.2034 0.4016

k 35 2.3253 1.3253 2.4019 2.3655 1.4655 2.4185
50 2.2319 1.2319 2.2713 2.2922 1.3922 2.2761

70 2.1641 1.1641 2.1877 2.0913 1.1913 2.1820

100 2.0618 1.0618 2.0689 2.0811 1.1811 2.1009

200 1.8112 0.8112 1.7352 1.8381 0.9381 1.7031

400 1.6082 0.6082 1.3569 1.4795 0.5795 1.2065

800 1.2991 0.2991 0.8822 1.1876 0.2876 0.7222

[ed 35 2.1451 0.1451 1.3001 8.5739 6.1739 1.9055
50 2.1343 0.1343 0.7557 2.8089 0.4089 1.4892

70 2.1202 0.1202 0.6079 2.6653 0.2653 0.7914

100 2.0987 0.0987 0.5165 2.6368 0.2368 0.6541

200 2.0788 0.0788 0.4043 2.5742 0.1742 0.4586

400 2.0506 0.0506 0.3106 2.5173 0.1173 0.3452

800 2.0228 0.0228 0.2513 2.4615 0.0615 0.2585
B 35 7.8893 3.0893 9.9513 5.3899 0.3899 23.0224
50 6.0169 1.2169 3.7305 5.0083 0.0083 3.0644

70 5.4835 0.6835 1.9066 5.1654 0.1654 2.1063

100 5.1948 0.3948 1.3406 5.5817 0.5817 1.2072

200 4.9924 0.1924 0.9699 4.9505 -0.0495 0.9024

400 4.8506 0.0506 0.5796 4.9221 -0.0779 0.7615

800 4.8251 0.0251 0.5741 4.7966 -0.2034 0.4016

& 35 11.3895 10.3895 36.4545 9.5353 8.7353 31.9856
50 10.0516 9.0516 30.6932 8.4925 7.6925 27.7475
70 9.8992 8.8992 28.5762 8.2898 7.4898 26.1824

100 9.2090 8.2090 25.1325 7.2969 6.4969 23.1872

200 6.3469 5.3469 18.6272 5.0284 4.2284 14.5848

400 3.7574 2.7574 9.8552 2.6604 1.8604 6.1662

800 2.0094 1.0094 4.6033 1.4015 0.6015 2.5003

From the results in Tables 3 and 4, it can be verified that the mean of MLEs converges to the true
value and the RMSEs decay toward zero as the sample size n increases. Also, the average bias decrease

as the sample size n increases for all parametric values.

8. Applications

In this section, applications of the proposed model to real datasets are presented. The first
dataset is used to illustrate that EBW distribution can be a better fit when compared with its
sub-models (EB, BXII, ELLoG, LLoG and Exponential (Exp) distributions) as well as with the
non-nested Exponentiated Kumaraswamy Weibull (EKW) distribution which was used by Huang and
Oluyede [12]. The pdf of EKW distribution is given by

Irxw (G a,b, c,0,)) = abcOAxC~ e~ A0 (1 — g~(A0)%ya-1 (60)
(1—[1—e @)= x1—{1- [1- e—(xx)c]a}b]e—1_

Tables 6 and 8 lists the maximum likelihood estimates (MLES) of the parameters and standard
errors (in parenthesis) for the fitted EBW, EB, BXIl, ELL0G, LLoG, Exp, EKD and EKW
distributions and the wvalues of the following statistics : Akaike Information

Criterion(AIC=2p-2log(L)),Corrected Akaike Information Criterion (AICC=AIC+25_(LI:11)),

Bayesian Information Criterion(BIC=plog(n)-2log(L)),Hannan-Quinn Information Criterion (HQIC =
2log(L) + 2plog(log(n))), where L. = L({) denote the value of the likelihood function evaluated at

the parameter estimates, n represent the number of observations and p represent the number of
estimated parameters. Furthermore, the goodness-of-fit statistics : Cramer-von-Mises (w*) and
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Anderson-Darling (A*) are also presented. The smaller the goodness-of-fit statistics the better the fit.

The computations were performed using R software.

8.1. Breaking Stress Data

The data set given in Table 5 represent breaking stress of carbon fibres (Gba) reported in Nichols
and Padgett [21]. The dataset consist of 100 observations. Initial values for EBW distribution in R code

are takento be : ¢=10,k=0.0001,6=8,a=0.1, 3= 1.5.

Table 5. Breaking stress of carbon fibres (in Gba) data

370 274
169 328
293 322
255  2.59
491 368
217 117
085 161
205 3.65

2.13
3.09
3.39
2.38
1.84
5.08
2.79

2.50
1.87
2.81
281
1.59
2.48
4.70

3.60
315
420
217
319
118
203

311
490
333
217
157
351
1.80

321 287 1471 311 442 241 319 32
315 243 295 297 339 296 253 267
255 331 331 285 25 356 315 235
283 192 141 368 297 136 098 276
081 5% 173 159 200 122 112 17l
217 169 125 438 184 039 368 248
157 108 203 161 212 189 288 282

Table 6. Estimation of Models for breaking stress of carbon fibres (in Gba) data

Estimates Statistics

Model c k a B § 2logl  AIC  AICC  BIC  HIQC w* A*

EBW 32602  0.0019088 0098987 25746 12187 2825159 2925159 293.1542 3055417 297.7877 0.06467943 04062228
(0.00024515) (0.0046326) (0.080349) (0.70248)  (0.52217)

EB 5696500  0.112683 0527553  864.087 8700.08 870.33 877.8955 873243 0.8637942 4.852515
(L267685)  (0.027122) (0.035251)

BXIl 5939512  0.187414 378.9669 382.9669 383.0906 6388.1772 385.0756 0.872757 4.902512
(1.279319)  (0.043787)

ELLoG  0.910017 0523430 1005.831 1009.954 1015.041 1015.041 1011.939 0.2937121 1.575019
(0.076288) (0.05287)

LLoG  1.62874 467.6428 469.6428 469.6836 472.2479 470.6971 0.3644871 1.93926
(0.12677)

Exp 0.3814764 392.7417 394.7417 394.7825 397.3469  95.7961 0.07182727 0.4117877

(0.021193)
¢ a b o 2
EKW 1584154 2525451  6.457514 0797712 0.239382 282.6165 292.6165 293.548 305.6423 297.8883 0.06875902 0.4048473

(075113)  (0.0011470) (0.25570) (0.00088177) (0.27763)
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The asymptotic covariance matrix of the MLE’s for the EBW distribution, I51(®) is given by :

0.0000000900964  0.0000003859855 —0.0001225090 —000001954973 0.0001716851
0.0000003859855  0.00002146137 —0.0004235051 —0.0001571949 0.0012282757
—0.0001225090 —0.0004235051 0.2726660110 0.03932091 —0.3416936879 (61)
—0.00001954973 —0.0001571949 0.0393209125 0.006455961 —0.0560270381
—0.0001716851 0.001228276 —0.341693687 —0.05602704 0.4934774847

and the approximate 95% two-sided confidence interval for the model parameters c, k, o, p and &

+

are given by 32.60

0.0004804857, 0.0019088 + 0.0090799783, 0.098987+0.1574840350,

2.5746+1.3768598713, and 1.2185+1.37685987, respectively.

The LR statistics for testing the hypothesis H, : EB against H, : EBW, H,: BXII against H,:
EBW, H,: ELL0G against H,: EBW, H,: LLoG against H,: EBW and H,: Exp against H,: EBW
are 581.5711 (pvalue<0.0001), 96.451 (pvalue<0.0001), 723.3151 (pvalue<0.0001), 185.1269
(pvalue<0.0001) and 110.2258 (pvalue<0.0001),respectively. According to the LR statistics the EBW
distribution fits better than the five sub-models. For model selection, EBW distribution compares
favorably with the EKW distribution since the AIC, AICC, BIC and HIOC statistics for EBW and
EKW distributions are very close. The smallest values of both the w* and A* show that the EBW

distribution fit better than the nested-models and the non-nested models for breaking stress data.

Consequently, the EBW distribution is the best fitted distribution when compared to the nested and

non-nested distributions. Plots of the fitted densities are given in Figure 7.
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Fitted PDF for breaking stress of carbon fibres (in Gba) data
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Figure 8. Probability Plots for breaking stress of carbon fibres (in Gba) data

8.2. Air Conditioning System of an Airplane Data

The dataset taken from Linhart and Zucchini [15] represents failure times of the air conditioning
system of an airplane (see Proschan [26]). Initial values for EBW distribution in R code are ¢ = 10, k =
0.0001,8=28,a=0.1, = 1.5. This dataset is used to illustrate that fact that the EBW distribution is a
“better”fit when compared with its sub-models (EB, BXII, ELL0G, LLoG and Exponential (Exp)
distributions) and the non-nested EKD distribution (Huang and Oluyede [12]). The pdf of EKD
distribution is given by

Iexw (G a, A, 8,0,0) = aAd@x 9~ 1(1 — ax~%)*1 (61)

[1-(1 =290t x{1-[1-(1- Ax-‘s)'“]@}f?-l,

fora,A,6,0,0 > 0.

Table 7. Failure Times of the Air Conditioning System of an Airplane Data

550 500 490 6.40 510 520 520 500 470 4.00 450 420 4.10
456 501 470 313 312 268 277 270 236 438 573 435 6.81
191 266 261 168 204 208 213 380 373 371 328 390 4.00
3.80 410 390 405 400 395 4.00 450 450 420 455 465 4.10
425 430 450 470 515 430 450 490 500 535 515 525 580
585 590 575 625 6.05 590 360 410 450 530 485 530 545
510 530 520 530 525 475 450 420 400 415 425 430 375
395 351 413 540 500 210 460 320 250 410 350 320 3.30
460 430 430 450 550 460 490 430 3.00 340 3.70 440 490
490 5.00
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Table 8. Estimation of Models for Failure Times of the Air Conditioning System of an Airplane Dataset.

Estimates Statistics w* A*

Model c k a B § 2lg.  AIC AICC  BIC  HIQC c

EBW 17492 040577 0.000068201 47916 42945 333.9531 3439531 344.4841 357.8487 349.5057 0061916186 0.3592337
(0.0000099039)  (0.0042695) (0.000074141) (0.000026926) (0.000039995)

B u8% 006 - : 05684 1242.307 1248327 12485% 1256.664 1251712 0.9798776 5507342

(000000097484
uw - S (B

BXIL 25658 S (Vi : - 6642514 6662514 668.3548 6739096 6705084 0975047 550
(002290148) ~ (000090739)

ELLG 0589499 : : : 0521819 1434983 1434683 1438767 14444242 144094 05844684 3469424
0os3y - : S (0033%)

LLoG 1068287 : : : - 785550 875579 7875021 790337 7886864 06487056 3829855
(0075801)

Exp : N P : - 5065500 5885509 5885851 59133 5896794 02106014 1311827

(002119)
a \ § [} 4

EKD 28714 4087 2679 9340 61333 3370184 3470484 3475493 360914 3526609 008319514 05038009
(075113 (00011470) (025570)  (0.00088LTT)  (0.27763)

The asymptotic covariance matrix of the MLE’s for the EBW distribution, I;1(®) is given by :

9.808725¢ — 11 4228437¢ — 08 ~3.961090e — 10 —4.057418e — 10 —2.666698e — 10
N - ~ ~ —1.749110e — 07  —1.149585e — 07
4228437¢ — 08 1.822834e — 05 1.707584e — 07 L749110e — O LLao8sse — 07 61
—4.057418e — 10 —1.749110e — 07 1.638583¢ — 09 : e - e (61)
1.107670e — 09 7.250006¢ — 10
—2.666698¢ — 10 —1.149585e — 07 1.076901e — 09 paaToTte — 00 e o
~3.961090e — 10 —1.707584e — 07 1.599620e — 09 : e : e

and the approximate 95% two-sided confidence interval for the parameters ¢, k, a, Band & are given
by 17.491 + 0.0004804857, 0.40577 + 0.0090799783, 0.000068201 +0.1574840350, 4.7916 *
1.3768598713, 4.2945 + 1.0234616494, respectively.The LR statistics for testing the hypothesis H, :
EB against H, : EBW, H,: BXII against Ha: EBW, H,: ELL0oG against H,: EBW, Hy: LL0oG
against H, : EBW and H,: Exp against H, : EBW are 108.3739 (pvalue<0.0001),
330.2983(p-value<0.0001),1100.73 (p-value<0.0001), 453.609 (p-value<0.0001) and 252.5973
(p-value<0.0001), respectively. We conclude that the EBW distribution is a significantly better than
the EB, BXII, ELL0G, LLoG and Exp distributions. The smaller values of AIC, AICC, HQIC and
BIC statistics gives clear evidence that EBW distribution fits better when compared with the nested
and non-nested models. The EBW distribution is the “better’model since it has the smallest value for
the goodness-of-fit statistics w* and 4+, respectively. Plots of the fitted densities are given in Figure
9.
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Figure 9. Fitted PDF for Air Conditioning System of an Airplane data
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A new and generalized distribution called the exponentiated Burr X1 Weibull (EBW) distribution

has been proposed and studied. The EBW distribution has several new and well known distributions

including the Burr XII, Lomax Exponential, Lomax Rayleigh, Lomax, Weibull, Rayleigh,

Exponentiated Weibull, Exponentiated Rayleigh and Exponentiated exponential distributions as

special cases. The EBW distribution possesses hazard function with very useful and flexible behavior.

We also obtain closed form expressions for the moments, conditional moments, mean and median

deviations, Bonferroni and Lorenz curves, distribution of order statistics and R’enyi entropy.

Maximum likelihood estimation technique is used to estimate the model parameters. Finally, the EBW

distribution is fitted to real datasets in order to illustrate its applicability and usefulness.
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Figure 10. Probability Plots for Air Conditioning System of an Airplane data
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10. Appendices

Appendix A. R Code: Deftne Functions

rm(list=1s())
library(stats4)
library(bbmle)
library(stats)
library(numDeriv)

#define pdf EBW
fl=function(x,c,k,alpha,beta,theta) {
aa=delta™((1-((1+((x)"¢)))*(-k))*
(exp(-alpha*(x"(beta))))))"(delta-1)
bb=(exp(-alpha*(x"beata)))*((1+((x)"c))"(-k-1))
cc=(k*c*x"{c-1}+(alpha*beta*x(beta-1)*(1+x"c)))
y=aa**bb*cc

return(y)

}

## define EKD pdf

# alpha,lambda,delta,phi,theta>0
EKD_pdf=function(alpha,lambda,delta,phi,theta,x){
alpha*lambda*delta*phi*theta*((x)"(-delta-1))*
((1+lambda*(x"(-delta)))*(-alpha-1))*
((1-((1+lambda*(x”(-delta)))"(-alpha)))"(phi-1))*
((1-((1-((1+(lambda) *(x"(-delta)))"(-alpha)))"(phi)))*
(theta-1))

}

## Define EKW pdf

# a,b,c,theta,l]ambda>0

EBW _pdf=function(a,b,c,theta,lambda,z){
theta*a*b*c*(lambda”c)*(x"(c-1))*(exp(-(lambda*x)"c))*
((1-(exp(~(lambda*x)c)))(a-1))*
((1-((1-(exp(-(lambda*x)c))) @)/ \(b-1))*
((1-(1-((1-(exp(~(lambda*x)"c)))(a)))\(b))(theta-1))

}

## define EBW quantile
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quantile=function(c,k,alpha,beta,theta,u){
f=function(y){
k*log(1+((y)"c))+alpha*(y"beta)+log(1-u(1/delta))
}

re<-uniroot(f,lower=0,upper=1000,tol=le-9)
result=rc$root$

}

## Moments of EBW
EBW_moments=function(c,k,alpha,beta,delta,r){
f=function(c,k,alpha,beta,delta,r,x){

(x*r)*(EBW _pdf(c,k,alpha,beta,delta,x))

}
y=integrate(f,lower=0,upper=Inf,subdivisions=1000000,
k=k,alpha=alpha,beta=beta,delta=delta,r=r)
return(y$value$)

}

## define EBW cdf

EBW _cdf=function(c,k,alpha,beta,delta,x){
(1-(((AH((x)"c)))"(-k)) *(exp(-alpha*(x"beta))))) (delta)
}

## Define the hazard function

# ¢ k,alpha,beta,delta>0

EBW _hazard=function(c,k,alpha,beta,delta,x){
y=fl(c,k,alpha,beta,delta,x)/(1-EBW_cdf
(c,k,alpha,beta,delta,x))

}

##Table of moments

EBW _pdf=function(x,c,k,delta,alpha,beta){
delta*((1-(((1H((x)"(c)))"(-k))*(exp(-alpha*
(x"(beta))))))"(delta-1))*(exp(-alpha*(x"beta)))*
(1N (k-D)*(k*e*x(e-1)+
(alpha*beta*x”(beta-1)*(1+x"c)))

H

EBW_moments=function (c,k,aloha,beta,delta,r){

f=function(x,c,k,alpha,beta,delta,r) {
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(x*r)*(EBW_pdf(x,c,k,alpha,beta,delta))

}
y=integrate(f,lower=0,upper=Inf,subdivisions=1000000,
c=c,k=k,alpha=alpha,beta=beta,delta=delta,r=r)
return(y$value$)}

##Maximum likelihood estimators
EBW_LL<-function(par){-sum(log(par[5]*
((A-((AH) (par[1]))*(-par[2]))*
(exp(-par[3]*(x"(par[4]))))))"(par[5]-1))*
(exp(-par[3]*(x"par[4])))*

() par[1]))*(-par[2]-1))*
(par[2]*par[1]*x*{par[1]-1}+(par[3]*par[4]
*x"(par[4]-1)*(1+x"par[1])))))

}

mle.result &nlminb(c(c,k,alpha,beta,delta),
EBW_LL,lower=0,upper=Inf)

summary(mle.result)
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