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Abstract

In this paper, we advance new families of bivariate copulas constructed by distributional distor-
tions of existing bivariate copulas. The distortions under consideration are based on the unit
gamma distribution of two forms. When the initial copula is Archimedean, the induced copula
is also Archimedean under the admissible parameter space. Properties such as Kendall’s tau co-
efficient, tail dependence coefficients and tail orders for the new families of copulas are derived.
An empirical application to economic indicator data is presented.
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1 Introduction

Copulas have been employed to study the extent of tail dependence in the context of risk man-
agement, finance and insurance. The upper tail or extremal dependence refers to the degree of
dependence in the upper right tail behavior and is generally defined to be the conditional proba-
bility of a vector of multivariate random variables exceeding a large threshold given that a subset
of the random vector already exceeds the threshold. It is of interest in practice, for example,
in modeling the dependence of large loss events among various assets or insurance policies. In
this article, copula models are employed to analyze economic data. Methods for generating new
families of distributions, such as the one presented here, have been investigated to obtain better
fit to the data and more accommodating properties like concordance correlation coefficients, tail
dependencies and a wide range of associations.

For expository purposes, we first briefly review bivariate copulas. Let F (x, y) be the cumu-
lative probability distribution (cdf) of a bivariate random vector (X,Y ), FX(x) and FY (y) be
the respective marginal cdf’s of X and Y. Sklar (1959) shows that there exists a unique copula
C, a joint cdf of uniformly distributed random variables on [0, 1]× [0, 1], such that

F (x, y) = P (X ≤ x, Y ≤ y) = C
(
FX(x), FY (y)

)
.

The function C is the cdf of U = FX(x) and V = FY (y) given by, for 0 ≤ u, v ≤ 1,

C(u, v) = F
(
F−1X (u), F−1Y (v)

)
,

where F−1X and F−1Y (v) are the respective quantile functions of X and Y . The joint probability
density function (pdf), denoted by f(x, y), of (X,Y ) is

f(x, y) = c
(
FX(x), FY (y)

)
fX(x)fY (y), (1)
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where fX and fY are the respective pdf’s of X and Y and c(u, v) = ∂2C(u, v)/∂u∂v is the
copula pdf. The relation in Equation (1) indicates that the copula pdf c, containing dependence
information between X and Y , links the joint pdf of (X,Y ) and the product of marginals, which
is the joint pdf under the independence assumption.

A copula C is called Archimedean if it admits the representation

C(u, v) = φ−1
(
φ(u) + φ(v)

)
,

where the generator function φ : [0, 1] → [0,∞) has continuous derivatives on (0, 1) such that
φ(1) = 0, φ

′
(t) < 0 and φ′′(t) > 0 for 0 < t < 1. Let φ(0) =∞ in the sense that limt→0+ φ(t) =∞.

If φ(0) = ∞, the generator is said to be a strict generator. These conditions ensure that φ−1

exists. If φ(0) < ∞, the generator is not strict. In the bivariate case, an Archimedean copula
of the form C(u, v) = max

{
φ[−1]

(
φ(u) + φ(v)

)
, 0
}
may be obtained with weaker conditions on

the generator φ and its pseudo-inverse φ[−1] defined as φ−1(t) if 0 ≤ φ(t) ≤ φ(0), and 0 if
φ(0) ≤ φ(t) <∞. Note if φ(0) =∞, then φ[−1] = φ−1.

A function T : [0, 1] → [0, 1] is said to be a distortion function if it is continuous and non-
decreasing, not necessarily convex or concave, with T (0) = 0 and T (1) = 1. A distortion T is
said to be admissible for an initial copula C if the copula CT (u, v) define by

CT (u, v) = T
(
C(T−1(u), T−1(v))

)
for u, v ∈ [0, 1] (2)

is also a copula. From Theorem 3.3.3 in Nelsen (2006), CT (u, v) is a copula if only if T is convex.
If the initial C is Archimedean with a generator φ, then the new copula is Archimedean with
generator φ ◦ T−1; see the right composition rule by Genest et al. (1995) and Morillas (2005)
imparted below.

Multi-parametric models would allow more flexibility and improve the fit when applied to
data fitting. As pointed out by Di Bernardino and Rullière (2013), using parametric transfor-
mations or distortions of existing copulas has several possible advantages, e.g., improving both
the fit to observed data by adding parameters and the convergence of estimation algorithm.
Valdez and Xiao (2011) put forth three kinds of distortions of copulas, in which the distortion is
applied to the copula or to the marginals or to both the copula and the marginals. Fischer and
Köck (2010) present a general construction scheme of d-variate copulas, which generalizes the
Archimedean family, study admissible conditions on the distortion functions and derive the tail
dependence coefficients for power and dual power distortions. Di Bernardino and Rullière (2016)
consider transformations using conversion functions and examine the impact of the transforma-
tions on tail dependence coefficients; see also references on transformations of copulas therein.
Genest et al. (1998) provide four valuable rules that can be combined to construct classes of
Archimedean generators from an initial generator φ, including the right-composition rule stating
that if h : [0, 1] → [0, 1] is an increasing, concave bijection, then φ ◦ h(t) = φ

(
h(t)

)
generates a

bivariate Archimedean copula.
The approach in this paper originates from Wirch and Hardy (1999) in which the beta

distribution distortion is employed to adjust the premiums and produce a coherent risk measure
in the context of risk management. The beta distortion is given by

T (u) =

∫ u

0

1

B(α, β)
tα−1(1− t)β−1dt. (3)

where B(α, β), α, β > 0, is the beta function. Eugene et al. (2010) later utilize the same frame-
work to generalize univariate cdf with u replaced by any continuous cdf. The resulting cdf
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incorporates the parameters in the beta cdf and the cdf and allows more flexibility in statistical
modeling. The framework has been since widely adopted and extended to generalize univariate
distributions; see Alzaatreh et al. (2013) and Nadarajah and Rocha (2016) for an impressive
list of literature. Making use of the framework in Equation (3), Samanthi and Sepanski (2019)
propose a bivariate cdf’s of a bivariate random variable (X,Y ) by replacing u with a bivariate
cdf C such that

H1(x, y) =

∫ C(F1(x),F2(y)

0

1

B(α, β)
tα−1(1− t)β−1dt, (4)

where F1 and F2 are cdf’s of continuous random variables. The new family of the bivariate cdf
gives rise to a new family of copulas of the form in Equation (2).

As one can see that the cdf of a continuous random variable with a support of [0, 1] may serve
the role of T in Equation (2). A method for generating a random variable with support [0, 1]
is to take the logarithmic transformation such that W = log(1/X1) or W = log

(
1/(1 − X2)

)
,

where the support of W is the set of non-negative real numbers. Specifically, here we hire the
unit-gamma distribution functions, introduced in Grassia (1977), of the random variables X1

and X2 derived with W being a gamma random variable. We call X1 unit gamma I random
variable and X2 unit gamma II random variable.

This paper studies new families of bivariate copulas generated by the unit-gamma (UG)
distribution distortions. It is organized as follows. The proposed new families of copulas and their
properties are presented in Section 2 and Section 3. Kendall’s tau coefficients are calculated for
some examples.The impact of parameters in the UG distortions on Kendall’s tau coefficients are
explored via graphical illustrations. The tail dependence coefficients are derived for the distorted
copulas. Section 4 contains an empirical application to economic indicator data, followed by
conclusions in Section 5. Preliminaries are placed in the appendix.

2 Unit Gamma I Distortion Generated Copulas

In this section, the induced bivariate cdf, conditional cdf, and copula via UGI distortion are pre-
sented. We also study properties of the UGI generated copulas such as Kendall’s tau coefficient,
tail dependence coefficients and tail orders.

Let W be a gamma random variable with pdf given by

g(w) = βαwα−1e−βw/Γ(α), α > 0, β > 0,

where Γ(α) is the gamma function. A unit-gamma I (UGI) random variable X1 is defined by
X1 = e−W . The respective pdf, cdf and quantile function of the UGI random variable X1 are
given by, for 0 < u < 1,

h1(u) =
βα

Γ(α)
[log(1/u)]α−1uβ−1,

H1(u) =

∫ u

0
h1(x)dx = 1−G(− log u, α, β) = 1−G(−β log u, α, 1), (5)

H−11 (u) = exp{−G−1(1− u, α, β)} = exp{−G−1(1− u, α, 1)/β}, (6)

where G(·) and G−1(·) are the cdf and the quantile function of a gamma random variable with
shape parameter α and rate parameter β. When α = 1, G(w, 1, β) = 1 − exp(−βw) for w ≥ 0
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and the quantile function G−1(u, 1, β) = − log(1 − u)/β for 0 < u < 1. Setting α = 1, the
H1(u) = uβ, i.e., the power transformation.

Implementing Equation (4) with the UGI distortion leads to a joint cdf for a bivariate
random variable (X,Y ) such that, for −∞ < x, y <∞,

F (x, y) =
βα

Γ(α)

∫ C
(
F1(x),F2(y)

)
0

[log(1/u)]α−1uβ−1du = H1

(
C
(
F1(x), F2(y)

))
,

where F1 and F2 are cdf’s of any continuous random variables and C(u, v) is an initial copula.
Note that in what follows, a prime mark denotes the first derivative of a function, e.g., F ′1(x) =
dF (x)/dx. The corresponding pdf is

f(x, y) =
[
h′1
(
C
(
F1(x), F2(y)

))
C2|1(F2(y)|F1(x))C1|2(F1(x)|F2(y))

+h1
(
C
(
F1(x), F2(y)

))
c(F1(x), F2(y))

]
f1(x)f2(y), (7)

where f1(x) = F ′1(x), f2(y) = F ′2(y), C2|1 = ∂C(u, v)/∂u, C1|2 = ∂C(u, v)/∂v and c(u, v) =
∂2C(u, v)/∂u∂v. The margins or marginal distributions of X and Y are FX(x) = H1

(
F1(x)

)
and

H1

(
F1(y)

)
, respectively. If H1 in Equation (5) is admissible, then the induced UGI distorted

copula is given by

CH1(u, v) = H1

(
C
(
H−11 (u), H−11 (v)

))
. (8)

As a result of Theorem 3.3.3 in Nelsen (2006) stating that CH1 in Equation (8) is a copula if and
only if H1 is convex, we derive the following.

Proposition 1. The distortion H1 : [0, 1]→ [0, 1] is admissible if 0 < α ≤ 1 and β ≥ 1.

Proof. A necessary and sufficient condition for H1 to be convex is that its second derivative is
non-negative for all u in [0, 1]. The second derivative of H1 given by

h′1(u) =
βα

Γ(α)
[log(1/u)]α−2uβ−2 [−(α− 1) + log(1/u)(β − 1)] ,

which is non-negative if β ≥ 1 and 0 < α ≤ 1. If β < 1, the convexity condition cannot be
satisfied at any α > 0 for all u ∈ [0, 1].

The conditional cdf of the new family of copulas is given by

CH1,2|1(v|u) =
∂CH1(u, v)

∂u
=
h1
(
C
(
H−11 (u), H−11 (u)

))
h1
(
H−11 (u)

) C2|1
(
H−11 (u)|H−11 (u)

)
.

The copula pdf cH1(u, v) of CH1 is given by

h′1
(
C
(
H−11 (u), H−11 (u)

))
h1
(
H−11 (u)

)
h1
(
H−11 (u)

)C2|1
(
H−11 (u)|H−11 (u)

)
C1|2

(
H−11 (u)|H−11 (u)

)
+
h1
(
C
(
H−11 (u), H−11 (u)

))
h1
(
H−11 (u)

)
h1
(
H−11 (u)

)c(H−11 (u), H−11 (u)
)
, (9)

where C2|1(v|u) = ∂C(u, v)/∂u and C1|2(u|v) = ∂C(u, v)/∂v. If H1 is admissible, h′1 is non-
negative and so is Equation (9).
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For a strict Archimedean copula C with generator φ and ψ = φ−1, the conditional copula
distribution C(v|u) is given by

C2|1(v|u) =
∂C(u, v)

∂u
= ψ′ (φ(u) + φ(v))φ′(u) =

[
φ′
(
ψ
(
φ(u) + φ(v)

))]−1
φ′(u).

The conditional distribution function method expressed in three steps can be used to generate
pairs of observations (u, v) from C:(i) generate two independent variates u and t from uniform
(0, 1); (ii) set w = (φ′)−1 (φ′(u)/t) or w = (ψ′)−1 (t/φ′(u)) ; and (iii) set v = ψ (φ(w)− φ(u)) or
v = ψ (w − φ(u)). In step (ii), one solves the equation ψ′(w) = t/φ′(u) for w. When the UGI
distribution distortion is applied to an Archimedean copula C with initial generator φ,

CH1(u, v) = H1 ◦ φ−1
(
φ
(
H−1(u)

)
+ φ

(
H−1(v)

))
.

By the right-composition rule in Genest et al. (1998), CH1 is Archimedean with generator φ◦H−1
as H−1 is increasing and concave. The first derivatives of the generator and its inverse generator
to be employed for simulations are φ′

(
H−11 (t)

)
(H−1)′(t) and h1

(
ψ(t)

)
ψ′(t), respectively.

2.1 Kendall’s Tau Coefficient

The formula for the calculation of Kendall’s tau coefficient from a copula is in Equation (20)
in the appendix. If the initial copula C is Archimedean with strict generator φ, then one can
calculate Kendall’s tau coefficient using Equation (21). In this case, Kendall’s tau of CH1 is given
by, with a substitution of H−11 (t) = s,

τCH1
= 1 + 4

∫ 1

0

φ(H−11 (t))H ′1(H
−1
1 (t))

φ′(H−11 (t))
dt = 1 + 4

∫ 1

0

φ(s)

φ′(s)
h21(s)ds. (10)

According to Equation (10), the explicit functional form of the induced generator φ
(
H−11 (t)

)
is

not necessary for the calculation of Kendall’s tau.

Example 1 (UGI-Clayton Copula). Consider the case when the initial copula is the Clayton
copula given by C(u, v) = (u−θ + v−θ − 1)−1/θ, where θ > 0. By Equation (10), Table 4 in
the appendix and the fact that

∫ 1
0 [log(1/u)]a−1ub−1du = ba/Γ(a), Kendall’s tau, τIC , for the

UGI-Clayton copula is

τIC = 1− 4

∫ 1

0

1

θ
(t− tθ+1)h21(t)dt

= 1− 4β2αΓ(2α− 1)

θ[Γ(α)]2

[
1

(2β)2α−1
− 1

(2β + θ)2α−1

]
.

When α = β = 1, τIC = θ/(θ + 2). The power function distorted Clayton copula, i.e., α = 1,
has a Kendall’s tau value of 1− 2β/(2β + θ), which decreases as β increases at a fix θ; see also
Figure 1 below.

Example 2 (UGI-Gumbel Copula). The bivariate Gumbel copula is defined as

C(u, v) = exp{−[(− log u)θ + (− log v)θ]1/θ},

where θ ≥ 1. From Equation (5) and (6),

H1

(
C
(
H−11 (u), H−11 (v)

))
= 1−G

((
[G−1(1− u, α, 1)]θ + [G−1(1− v, α, 1)]θ

)1/θ
, α, 1

)
.
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The parameter β in the UGI distribution vanishes in the UGI-Gumbel copula. Note also that
the Gumbel copula is an extreme-value copula such that C(u, v) = Cn

(
u1/n, v1/n

)
for all n > 0.

When α = 1, the UGI distortion is the power transformation and thus returns the Gumbel
copula.

Kendall’s tau, τIG, of the UGI-Gumbel copula is given by

τIG = 1− 4β2α

θ[Γ(α)]2

∫ 1

0
[− log(t)]2α−1t2β−1dt = 1− 4Γ(2α)

22αθ[Γ(α)]2
,

in which, as explained above, the parameter β doesn’t play a role. The τIG value falls between
1 − 1/θ and 1 since Γ(2α)/{22α[Γ(α)]2} is an increasing function of α and has a limit of 0 as
α→ 0.

Example 3 (UGI-Frank Copula). The Frank copula is defined as

C(u, v) = −1

θ
log

(
1 +

(e−θu − 1)(e−θv − 1)

(e−θ − 1)

)
,

where θ 6= 0. Let k1(t) =
∫ t
0

(
eθu − 1

)
[h1(u)]2du. Note that k1(0) = 0. From Table 4 in the

appendix, the integral
∫ 1
0 φ(t)/φ′(t)[h1(t)

2]dt in Equation (10) for the UG1-Frank copula is given
by, applying integration by parts,

1

θ

∫ 1

0
(eθt − 1) log

(
e−θt − 1

e−θ − 1

)
[h1(t)]

2dt

=
1

θ

{[
log(e−θt − 1)− log(e−θ − 1)

]
k1(t)|1t=0 −

∫ 1

0
f1(t)

θ

eθt − 1
dt

}
=−

∫ 1

0

1

eθt − 1

∫ t

0

(
eθu − 1

)
[h1(u)]2dudt.

(11)

When α = β = 1, then Equation (11) is equal to−1/θ+
∫ 1
0 t/(e

θt − 1)dt = −1/θ+θ−2
∫ θ
0 t/(e

t − 1)dt.
The formula in Equation (11) is used to numerically compute Kendall’s tau the UGI-Frank copula
below.

To examine the impact of the proposed distortions on Kendall’s tau, we numerically com-
puted Kendall’s tau as a function of the parameters α and β at |θ| = 4 and constructed three-
dimensional tau plots. The last column of Figure 1 is the tau plot for the distorted Frank copula
with θ = −4.

In general, as shown in Figure 1, Kendall’s tau of the UGI distorted copula increases as
α decreases. The parameter β is not involved in the UGI-Gumbel copula family as explained
in Example 2 and hence doesn’t affect tau values. For the UGI-Frank copula, Kendall’s tau
decreases as β increases when θ = 4 and increases as β increases with minimum occurred at
α = 1 and β = 1 when θ = −4.

2.2 Tail Dependence Coefficients

Consider next the tail dependence coefficients for the new family of copulas based on the UGI
distortion, where 0 < α ≤ 1 and β ≥ 1. Definitions of upper and lower tail dependence coefficients
are presented in Equation (22) in the appendix.
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Figure 1: Kendall’s tau of UGI distorted copulas with the initial copula specified in the title
with |θ| = 4 for α (alpha) ∈ (0.1, 1] and β (beta) ∈ [1, 8].

Proposition 2. Let λL and λU be the finite lower tail and upper tail dependence coefficients of
the initial copula C. Then the UGI induced copula CH1 has a lower tail dependence coefficient
λL,H1 = (λL)β and an upper tail dependence coefficient λU,H1 = 2− (2− λU )α.

Proof. By Equation (8) and (22) and L’Hospital’s Rule, the lower tail dependence coefficient is

λL,H1 = lim
u→0+

H1

(
C(H−11 (u), H−11 (u)

)
u

= lim
u→0

H1

(
C(u, u)

)
H1(u)

= lim
u→0+

h1
(
C(u, u)

)
h1(u)

dC(u, u)

du

= lim
u→0+

[
− log

(
C(u, u)

)
− log(u)

]α−1 [
C(u, u)

u

]β−1 dC(u, u)

du

= lim
u→0+

[
u

C(u, u)

dC(u, u)

du

]α−1
lim
u→0+

[
C(u, u)

u

]β−1
lim
u→0+

dC(u, u)

du

= (λL)β.

(12)

Note 0 < α ≤ 1 and − log(u)/[− log
(
C(u, u)

)
] is bounded by 1 since C(u, u) ≤ u. If

λL = limu→0C(u, u)/u = 0, the limit in Equation (12) is 0. The upper tail dependence coefficient
is given by

λU,H1 = 2− lim
u→1−

1−H1

(
C(H−11 (u), H−11 (u)

)
1− u

= 2− lim
u→1−

1−H1

(
C(u, u)

)
1−H1(u)

= 2− lim
u→1−

h1
(
C(u, u)

)
h1(u)

dC(u, u)

du

= 2− lim
u→1−

[
u

C(u, u)

dC(u, u)

du

]α−1
lim
u→1−

[
C(u, u)

u

]β−1
lim
u→1−

dC(u, u)

du

= 2− (2− λU )α, (13)

since limu→1−C(u, u)/u = 1 and dC(u, u)/du = 2− λU .
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2.3 Tail Orders

In this section, we study tail orders of the copula CH1 . Definitions of tail orders can be found in
the appendix, and we note here only the joint survival function C(u, v) = P (U > u, V > v) =
1− u− v + C(u, v).

Proposition 3. Suppose that C(u, u) ∼ uκL`(u) as u → 0+ and C(1 − u, 1 − u) ∼ uκU `∗(u)
as u → 0+ for some slowly varying functions ` and `∗ at 0 + . Then CH1 has a lower tail order
κL,H1 = κL and an upper tail order κU,H1 = 1.

Proof. The function log(1/u) is slowly varying at u = 0+, by Theorem A1 in the appendix,
h1(u) is regularly varying with index β − 1 at u = 0+. By Theorem A3, H1(u) =

∫ u
0 h1(t)dt is

regularly varying with index β, where β ≥ 1. Let `H1 be the associated slowly varying function
for H1, then as u→ 0+,

H1

(
C(H−11 (u), H−11 (u)

)
∼

[
C
(
H−11 (u), H−11 (u)

)]β
`H1

(
C
(
H−11 (u), H−11 (u)

))
∼

[
H−1(u)

]βκL `(H−11 (u)
)
`H1

(
C
(
H−11 (u), H−11 (u)

))
.

Applying Theorem A4 and Theorem A2 in Appendix 5, H−1 is regularly varying with index 1/β
and `(v) ∗ `H1(C(v, v)) is slowly varying at v = 0 + . Therefore, the lower tail order of a UGI
induced copula remains the same as the one of the initial copula.

Since − log(1− v) = v +O(v2) for |v| < 1, we have that

lim
v→0+

1−H1

(
1− v)

vα
= lim

v→0+

h1
(
1− v)

αvα−1
= lim

v→0+

βα[− log(1− v)]α−1(1− v)β−1

αΓ(α)vα−1

= lim
v→0+

βα[v +O(v2)]α−1(1− v)β−1

αvα−1Γ(α)
=

βα

αΓ(α)
(14)

That is, 1 − H1(1 − v) ∼ a1v
α as v → 0+, where a1 = βα/[αΓ(α)]. Let CH1 be the joint

survival function associated with CH1 in Equation (8). Since CH1

(
H1(1 − v), H1(1 − v)

)
=

2[1−H1(1−v)]−
[
1−H1

(
C(1− v, 1− v)

)]
and 1−H1

(
C(1−v, 1−v)

)
∼ a1[1−C(1−v, 1−v)]α

from Equation (14), as v → 0+,

lim
u→0+

CH1(1− u, 1− u)

u
= lim

v→0+

CH1

(
H1(1− v), H1(1− v)

)
1−H1(1− v)

(15)

= 2− lim
v→0+

a1[1− C(1− v, 1− v)]α

1−H1(1− v)
= 2− lim

v→0+

a1v
α[2− C(1− v, 1− v)/v]α

1−H1(1− v)

= 2−
[
2− lim

v→0+

C(1− v, 1− v)

v

]α
since 1 − C(1 − v, 1 − v) = 2v − C(1 − v, 1 − v). Therefore, κU,H1 = 1. The results also further
verify Proposition 2.

3 Unit Gamma II Distortion Generated Copulas

In the section, we introduce the UGII distortion and investigate Kendall’s tau coefficient, tail
dependence coefficients and tail orders of the resulting family of copulas.



672 Sepanski, J. H.

A unit-gamma II random variable X2 is defined by X2 = 1 − e−W , where W is a gamma
random variable. Its pdf, cdf and quantile function are given by, respectively, for 0 < u < 1,

h2(u) =
βα

Γ(α)
[log(1/(1− u))]α−1(1− u)β−1,

H2(u) =

∫ u

0
h2(x)dx = G(− log(1− u), α, β),

H−12 (u) = 1− exp{−G−1(u, α, β)}.

From Equation (5), H2(1−u) = 1−H1(u). Setting α = 1, H2(u) = 1− (1−u)β, the dual power
transformation.

The UGII-copula bivariate random variable (X,Y ) has joint cdf given by

H2

(
C
(
F1(x), F2(y)

))
=

βα

Γ(α)

∫ C
(
F1(x),F2(y)

)
0

[log(
1

1− u
)]α−1(1− u)β−1du, (16)

where F1 and F2 are cdf’s of any continuous random variables and C(u, v) is an initial copula.
If H2 is admissible, then the new family of copulas generated by UG II distribution function is

CH2(u, v) = H2

(
C
(
H−12 (u), H−12 (v)

))
.

The corresponding pdf, conditional pdf and copula density function can be easily derived with
H1 and h1 replaced by H2 and h2 in Equation (7) and (9).

The following proposition is shown using the Theorem 3.3.3 in Nelsen (2006).

Proposition 4. The distortion H2 : [0, 1]→ [0, 1] is admissible if α ≥ 1 and 0 < β ≤ 1.

Proof. The second derivative of H2 is given by, for 0 < u < 1,

h′2(u) =
βα log(1/(1− u))]α−2(1− u)β−2

Γ(α)

[
(α− 1)− log

(
1

1− u

)
(β − 1)

]
.

The convexity of the distortion H2 requires that [(α− 1) + log(1− u)(β − 1)] ≥ 0 for all 0 <
u < 1. When β ≤ 1, the convexity condition is met if α ≥ 1. When β > 1, it cannot be satisfied
at any finite α > 0 for all 0 < u < 1.

3.1 Kendall’s Tau Coefficient

Kendall’s tau coefficients are calculated for the UGII-Clayton and UGII-Gumbel copulas. Kendall’s
tau for UGII-Frank has no closed form and can be numerically computed using Equation (11)
with the pdf h1 replaced by h2.

Example 4 (UGII-Clayton Copula). By (10), Table 4 in Appendix 5 and a substitution of
s = − log(1− t), ∫ ∞

0
tb[− log(1− t)]α−1(1− t)β−1dt =

∫ ∞
0

(1− e−s)bsα−1e−βsds

=
∞∑
i=0

(
b

i

)∫ ∞
0

(−e−s)isα−1e−βsds =
∞∑
i=0

(
b

i

)
(−1)iΓ(α)

(β + i)α



Unit-Gamma Distortion of Bivariate Copulas 673

since for b > 0, (1 − e−s)b =
∑∞

i=0

(
b
i

)
(−e−s)i for |e−s| < 1. By Equation (21), Kendall’s tau,

τIIC , of the UGII-Clayton copula is equal to

τIIC = 1− 4β2α

[Γ(α)]2

∫ 1

0

t− tθ+1

θ
[− log(1− t)]2α−2(1− t)2β−2dt

= 1− 4β2αΓ(2α− 1)

θ[Γ(α)]2

[
1

(2β − 1)2α−1
− 1

(2β)2α−1

−
∞∑
i=0

(
θ + 1

i

)
(−1)i

(2β + i− 1)2α−1

]
.

When α = β = 1, by the Taylor expansion of (1 − x)θ+1 about 0, τIIG = θ/(θ + 2) since∫ 1
0 (1− x)θ+1dx =

∑∞
i=0

(
θ+1
i

)
(−1)i(i+ 1)−1 = 1/(θ + 2).

Example 5 (UGII-Gumbel Copula). Unlike the UGI-Gumbel copula in Example 2, the param-
eter β stays to play a role in the induced UGII-Gumbel copula. Since

Γ(γ1)

(γ2 + 1)γ1
=

∫ 1

0
(1− t)[− log(1− t)]γ1−1(1− t)γ2dt,

for γ1 > 0 and γ2 > 0 and log(t) = −
∑∞

i=1 (1− t)i/i for |1− t| < 1, Kendall’s tau, τIIG, of the
UGII-Gumbel copula is

τIIG = 1− 4β2α

θ[Γ(α)]2

∫ 1

0
t[− log(1− t)]2α−2(1− t)2β−2

∞∑
i=1

(1− t)i

i
dt

= 1− 4β2αΓ(2α− 1)

θ[Γ(α)]2

∑
i≥1

1

i

[
1

(2β + i− 1)2α−1
− 1

(2β + i)2α−1

]
.

When α = β = 1, τIIG = 1− 1/θ since
∑∞

i=1 1/[i(i+ 1)(i+ 2)] = 1/4.

Kendall’s tau plots in Figure 2 are constructed for the same parameter values used in Fig-
ure 1. From Figure 2, one can see that with initial copulas of Clayton, Gumbel, and Frank
copulas, Kendall’s tau of the UGII induced copulas increases as β decreases. Similar to the UGI
distortion, the UGII-Frank copula appears to have a minimum tau value at α = β = 1. Same
patterns appear to be present at other θ values for both the UGI and UGII distortions, though
the graphs are not included here.

3.2 Tail Dependence Coefficients

Consider next the tail dependence coefficients of the UGII distorted copulas. Note that the
admissible parameter space of H2 is α ≥ 1 and 0 < β ≤ 1.

Proposition 5. Let λL and λU be the finite lower tail and upper tail dependence coefficients of
the initial copula C. Then the UGII distortion generated copula CH2 has a lower tail dependence
coefficient λL,H2 = (λL)α and an upper tail dependence coefficient λU,H2 = 2− (2− λU )β.

Proof. Similar to the derivations in Proposition 2, the lower tail dependence coefficient of the
family of H2 distortion generated copulas is given by,

λL,H2 = lim
u→0+

H2

(
C(H−12 (u), H−12 (u)

)
u

= lim
u→0+

h2
(
C(u, u)

)
h2(u)

dC(u, u)

du
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Figure 2: Kendall’s tau of UGII distorted copulas with the initial copula specified in the title
with |θ| = 4 for α (alpha) ∈ [1, 8] and β (beta) ∈ [0.1, 1].

= lim
u→0+

[
− log

(
1− C(u, u)

)
− log(1− u)

]α−1 [
1− C(u, u)

1− u

]β−1 dC(u, u)

du

= lim
u→0+

[
1− u

1− C(u, u)

dC(u, u)

du

]α−1
lim
u→0+

[
1− C(u, u)

1− u

]β−1
lim
u→0+

dC(u, u)

du

= (λL)α.

And the upper tail dependence coefficient is given by

λU,H2 = 2− lim
u→1−

1−H2

(
C(H−12 (u), H−12 (u)

)
1− u

= 2− lim
u→1−

[
− log

(
1− C(u, u)

)
− log(1− u)

]α−1 [
1− C(u, u)

1− u

]β−1 dC(u, u)

du

= 2− lim
u→1−

[
1− u

1− C(u, u)

dC(u, u)

du

]α−1
lim
u→1−

[
dC(u, u)

du

]β−1
lim
u→1−

dC(u, u)

du

= 2− (2− λU )β

(17)

Note the term [− log
(
1−C(u, u)

)
]/[− log(1− u)]/ in Equation (17) is bounded by 1, and if

limu→1−[1− C(u, u)]/(1− u) = 0, then Equation (17) gives that λU,H2 = 2.

3.3 Tail Orders

Proposition 6. Suppose that C(u, u) ∼ uκL`(u) as u → 0+ and C(1 − u, 1 − u) ∼ uκU `∗(u)
as u → 0+ for some slowly varying functions ` and `∗ at 0 + . Then CH2 has a lower tail order
κL,H2 = κL and an upper tail order κU,H2 = 1.

Proof. Since − log(1− u) = u+O(u2) for | u |< 1,

lim
u→0+

H2(u)

uα
= lim

u→0+

h2
(
u)

αuα−1
= lim

u→0+

βα[u+O(u2)]α−1(1− u)β−1

αuα−1Γ(α)
=

βα

αΓ(α)
. (18)
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Hence H2(u) ∼ a1uα as u→ 0+, where a1 = βα/[αΓ(α)]. It is regularly varying with index α at
u = 0+, and its inverse function H−12 (u) is regularly varying with index 1/α. Let `H−1

2
be the

slowly varying function associated with H−12 . If C(u, u) is of index κL at u = 0+, then

H2

(
C(H−12 (u), H−12 (u))

)
∼ a1

[
C
(
H−12 (u), H−12 (u)

)]α
∼ a1

[
H−12 (u)]κL`(H−12 (u))

]α ∼ a1uκL [`H−1
2

(u))`(H−12 (u))
]α

as u → 0 + . By Theorem A2 in the appendix, [`H−1
2

(u))`(H−12 (u))]α is slowly varying. Thus,
κL,H2 = κL. For the upper tail order, similar to the arguments for Equation (15), by L’Hopital
Rule and the fact that 1−H2(1− v) = H1(v), we have that

lim
v→0+

H1

(
1− C(1− v, 1− v)

)
H1(v)

= lim
v→0+

[
− log

(
1− C(1− v, 1− v)

)
− log(v)

]α−1 [
1− C(1− v, 1− v)

v

]β−1
C ′(1− v, 1− v)

= lim
v→0+

[
2− C(1− v, 1− v)

v

]β
since limv→0+ log

(
2v − C(1 − v, 1 − v)

)
/− log(v) = 1 and λU = 2 − limv→0+C

′(1 − v, 1 − v).
Therefore,

lim
u→0+

CH2(1− u, 1− u)

u
= lim

v→0+

CH2

(
H2(1− v), H1(1− v)

)
1−H2(1− v)

= 2− lim
v→0+

1−H2

(
C(1− v, 1− v)

)
1−H2(1− v)

= 2− lim
v→0+

[
2− C(1− v, 1− v)

v

]β
(19)

that is finite if the upper tail dependence of the initial copula is finite. If κU = 1, Equation (19)
equals to 2− [(2− λU )]β. If κU > 1, then λU = 0 and Equation (19) equals to 2− 2β.

In summary, the new families of copulas generated by the UGI and UGII distortions have
an upper tail order of 1 and the same lower tail order as the initial copula.

According to the results in Section 2 and Section 3, Table 1 tabulates the upper and lower
tail dependence coefficients of the three initial copulas considered as examples in this paper and
those of the distorted copulas. The distorted Clayton copulas allow one to capture both lower
and upper tail dependence. The Gumbel copula ability to model strong upper tail dependence
is retained after distortion. The Frank copula has neither lower nor upper tail dependence.
However, the distorted Frank copula can accommodate data with upper tail dependence.

4 An Empirical Application

In this section, we apply the proposed copula families to the economic indicator data ascertained
from the Trading Economics website (https://tradingeconomics.com). The main purpose is
not to address the economic implications but to examine how the new families of copulas perform
when fit to the data.

The data contain the gross domestic product (GDP) in billion US dollars and the government
debt to GDP reported by more than 173 countries in 2017. Countries with missing values are

https://tradingeconomics.com
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Table 1: Tail dependence coefficients of distorted copulas with initial Clayton, Gumbel and Frank
copulas.
Copula λL λU λL,H1 λU,H1 λL,H2 λU,H2

Clayton 2−1/θ κU = 2 2−β/θ 2− 2α 2−α/θ 2− 2β

Gumbel κL = 21/θ 2− 21/θ 0 2− 2α/θ 0 2− 2β/θ

Frank κL = 2 κU = 2 0 2− 2α 0 2− 2β

Table 2: Summary statistics for the data, where SD = standard deviation.
Variables n mean SD median min max range

Debt to GDP 173 53.31 33.44 46.40 2.80 253 250.2
GDP 173 633.79 2410.00 48.72 0.39 19391 19390.2
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Figure 3: Scatter plot and histograms for GDP and Debt to GDP.

deleted. Basic numerical and graphical summaries of the two variables GDP (X) and Debt to
GDP (Y ) are shown below.

The semiparametric pseudo-maximum-likelihood approach (Genest et al., 1995) is used to
estimate the parameters. The observations (Xi, Yi) are first converted into pseudo-observations
(Ui, Vi) by component-wise applying the empirical distribution functions to the data and scaling
the result by n/(n+ 1), where n is the sample size. The parameter estimates are then obtained
by minimizing the pseudo log-likelihood

∑n
i=1 log c(Ui, Vi), where c(u, v) is the copula density

function.
In addition to the Clayton, Frank and Gumbel copulas, we fit the beta, UGI and UGII

distorted copulas using the mle() function in R. The parameters of the admissible beta distri-
bution are constrained such that α ≥ 1 and 0 < β ≤ 1. function. The parameter α in the UGI
distortion and the parameter β in the beta and UGII distortions are constrained to the interval
(0, 1]. In these cases, a monotone and invertible re-parameterization of α = eα1/(1 + eα1) or
β = eβ1/(1 + eβ1) is implemented to avoid possible optimization problems. Therefore, estimates
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Table 3: Pseudo-likelihood estimation results with standard errors in parentheses.

Copula θ̂ α̂1 β̂ PLL τ̂ λ̂L λ̂U

Clayton 0.06 (0.10) - - 0.17 0.027 0.00 0.00
Frank 0.71 (0.47) - - 1.13 0.079 0.00 0.00
Gumbel 1.12 (0.06) - - 2.98 0.103 0.00 0.14

UG1-Frank −0.54 (0.71) 1.46 (0.45) 1.00 (0.00) 3.794 0.075 0.00 0.25
UG1-Gumbel 0.86 (0.17) 0.82 (0.87) - 3.766 0.077 0.00 0.46
UGII-Frank −0.50 (0.93) 1.05 (0.98) 1.54 (1.91) 3.797 0.075 0.00 0.23
UGII-Gumbel 0.87 (0.32) 1.14 (1.41) 1.02 (1.00) 3.758 0.079 0.00 0.34
Beta-Frank −0.47 (0.68) 1.00 (0.00) 1.46 (0.46) 3.795 0.075 0.00 0.25
Beta-Gumbel 0.89 (0.16) - 0.98 (0.89) 3.750 0.078 0.00 0.24

of α1 and β1 are reported. For the beta-Frank model, Table 3 reports the maximized pseudo-log-
likelihood values (PLL) and the parameter estimates with their standard error in parentheses.
We also computed the estimated Kendall’s tau coefficients using the estimates θ̂, α̂ and β̂ to
estimate the tail dependence coefficients using Table 1. For beta-Frank model, the maximum
PLL is obtained at α = 1 and a standard error of zero is assigned.

The sample Pearson’s correlation coefficient between the two variables is 0.23, resulting in
the conclusion that the correlation coefficient is significantly different from 0 with a p-value of
0.002. The sample Kendall’s tau coefficient is 0.074, statistically insignificant with a p-value of
0.15. The UGII-Frank and UGI-Frank copula models perform better than the Clayton, Gumbel
and Frank copulas for the data set in terms of PLL. The initial Frank copula may have offered the
most flexibility as the θ value can be either positive or negative. While the sample Kendall’s tau
is not statistically significant, there seems to exist an upper tail dependence between GDP and
Debt to GDP according to the best performers, the UGII-Frank and UGI-Frank copula models.

5 Conclusions

The purpose of this paper has been to introduce new families of copulas based on distributional
distortions. Specifically, unit gamma distortions are proposed to be applied to existing copulas.
Issues such as extensions to multivariate copulas and estimation of parameters need further
investigation.

This paper offers the idea that a cumulative distribution function with support of [0,1] can
be employed in the right-composition rule. The framework in Equation (4) can be employed
to generate new families of bivariate joint distributions, which entails new families of bivariate
copulas. The addition of parameters allows more flexibility and hence better fit to data as seen
in the empirical example. When the copula being distorted is Archimedean, the distributional
distortion can be seen as a method to construct a new Archimedean generator by applying the
right-composition rule.

Kendall’s tau coefficients are derived for the cases when the initial copulas are Clayton, Gum-
bel and Frank copulas. They may not have closed forms but can be numerically computed using
Equation (10) or (20). Note that Spearman’s rank correlations can be computed by using the nu-
merical integration formula given by 12

∫
[0,1]×[0,1]C(u, v)dudv−3 or 3−12

∫
[0,1]×[0,1] uC2|1(v|u)dudv.

The impact of the distortions on Kendall’s tau coefficient is demonstrated via three-dimension
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Table 4: Generators, lambda functions, and Kendall’s tau coefficients of the Clayton, Gumbel
and Frank copulas.
Copula φ(·) λ(·) τ

Clayton
1

θ
(t−θ − 1), θ ≥ 0 (tθ+1 − t)/θ θ

θ + 2

Gumbel
(
− log(t)

)θ
, θ ≥ 1 t log(t)/θ 1− θ−1

Frank − log

(
e−θt − 1

e−θ − 1

)
, θ 6= 0

1

θ
ln
e−θt − 1

e−θ − 1
(eθt − 1) Equation (11)

plots of Kendall’s tau for the cases when the initial copulas are the Clayton, Gumbel and Frank
copulas.

Results on tail dependence coefficients are obtained for the induced copulas. The induced
copulas can accommodate a wider range of upper tail dependence coefficient values. For example,
the upper tail dependence coefficient of the distorted Frank copula ranges from 0 to 2−2β, while
the Frank copula has zero upper tail dependence. For the property of the tail order, in summary,
the new families of copulas generated by the UGI and UGII distortions both have an upper tail
order of 1 and a lower tail order of the initial copula.

Appendix: Preliminaries

The preliminaries for the properties studied in this article are staged in this appendix.

Kendall’s Tau Coefficient

Kendall’s tau concordance coefficient between two continuous variables is the probability of
concordance minus the probability of discordance. For two continuous random variables with a
copula C, Kendall’s tau, denoted by τ, between the two variables can be calculated by

τ = 1− 4

∫ 1

0

∫ 1

0

∂C

∂u
(u, v)

∂C

∂v
(u, v)dudv. (20)

Genest and Rivest (1993) show that Kendall’s function K(t) = P
(
C(u, v) ≤ t

)
of an

Archimedean copula with strict generator φ(·) can be expressed as K(t) = t − φ(t)/φ′(t) and
that

τ = 3− 4

∫ 1

0
K(t)dt = 1 + 4

∫ 1

0
λ(t)dt (21)

where the lambda function λ : [0, 1] → [−1, 0] is defined to be φ(t)/φ′(t). Table 4 displays the
generator φ(·), lambda function and τ of the copulas used as examples in this paper.

Tail Dependence coefficients

A tail dependence coefficient measures the probability that a random variable X reaches extreme
values given another variable Y attains extreme values. The upper tail dependence coefficient
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λU is the limit, if exists, defined to be

λU = lim
v→1−

P
(
X > F−1(v) | Y > F−1(v)

)
> 0

The joint survival function is C(u, v) = P (U > u, V > v) = 1 − u − v + C(u, v). If the limits
exist, then the upper tail dependence coefficient λU and the lower tail dependence coefficient λL
are

λU = lim
u→1−

C(u, u)

1− u
= 2− lim

u→1−

1− C(u, u)

1− u
= 2− lim

u→1−

dC(u, u)

du

λL = lim
u→0+

C(u, u)

u
= lim

u→0+

dC(u, u)

du

(22)

If λU is in (0, 1], then C has upper tail dependence. If it is 0, then C has no upper tail dependence.
Similar conclusions are made for λL.

Tail Orders

We next describe the concepts of tail order and tail order functions that Hua and Joe (2011)
propose as an integrated way to study the strength of dependence in the joint tails; see also Joe
(2014).

For a bivariate copula C, if C(u, u) ∼ uκL`(u) as u→ 0+, then κL is referred to as the lower
tail order of the copula C, where `C(u) is slowly varying at 0 + . Let Ĉ(u, v) = C(1−u, 1− v) =
u + v − 1 + C(1 − u, 1 − v) be the survival copula. The upper tail order is defined as κU if
Ĉ(u, u) ∼ uκU `

Ĉ
(u) as u → 0+ for some slowly varying function `

Ĉ
(u) at 0 + . When κL = 2

and `C(u) → a as u → 0+, for some positive a, the bivariates are near independent in the
lower tail. If 1 < κL < 2, the bivariates are positively associated and have intermediate tail
dependence. The case κL = 1 corresponds to the usual tail dependence λL ∈ (0, 1) defined to be
limu→0+C(u, u)/u = limu→0+ `L(u). Similar conclusions are made for κU .

Assume that a bivariate copula C has a lower tail order of κL and an upper tail order of
κU , then the respective lower tail and upper tail order functions of C are given by, if the limits
exist, for 0 < w1, w2 <∞,

b(w1, w2) = lim
u→0+

C(uw1, uw2)

uκL`C(u)
and b∗(w1, w2) = lim

u→1−

Ĉ(uw1, uw2)

uκU `
Ĉ

(u)
.

Regular Variation

A brief account on properties of regularly varying functions is submitted here since the properties
are needed here. Proofs and details can be found in Bingham et al. (1987).

Let f1(x) ∼ f2(x) denote that the real-valued functions f1 and f2 are asymptotically equal
such that limx f1(x)/f2(x) → 1 as x → 0 (or ∞). A positive measurable function f defined on
some [a,∞) for some a > 0 is said to be regularly varying with index ρ, and we write f ∈ R(ρ),
if for some real number ρ it satisfies

lim
x→0+

f(γx)/f(x) = γρ for all γ > 0,

The function f is said to be slowly varying if ρ = 0.

Theorem A1 (Karamata’s Characterization Theorem). Every regularly varying function f with
index ρ is of the form f(x) = xρ`(x), where ` is a slowly varying function.
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Theorem A2 (Closure Property). Suppose that f1 ∈ R(ρ1) and f2 ∈ R(ρ2). Then (i) fρ1 ∈
R(ρρ1). (ii) f1 ◦ f2 ∈ R(ρ1ρ2). (iii) f1 + f2 ∈ R(ρ), where ρ = max(ρ1, ρ2).

Theorem A3 (Karamata’s Integral Theorem). If ` is slowing varying, for ρ > −1, then∫ x
c t

ρ`(t)dt ∼ xρ+1`(x)/(ρ+ 1), as x→ 0 (or ∞).

Theorem A4. If f1 ∈ R(ρ) with ρ > 0, there exists f2 ∈ R(1/ρ) such that f1
(
f2(x)

)
∼

f2
(
f1(x)

)
∼ x as x→ 0. Here f2, an asymptotic inverse of f1, is determined uniquely to within

asymptotic equivalence.
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