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Abstract: We introduce a new class of continuous distributions called the Ku-

maraswamy transmuted-G family which extends the transmuted class defined by 

Shaw and Buckley (2007). Some special models of the new family are provided. 

Some of its mathematical properties including explicit expressions for the 

ordinary and incomplete moments, generating function, Rényi and Shannon 

entropies, order statistics and probability weighted moments are derived. The 

maximum likelihood is used for estimating the model parameters. The flexibility 

of the generated family is illustrated by means of two applications to real data sets. 
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1. Introduction 

The interest in developing more flexible statistical distributions remains strong nowadays. 

Many generalized distributions have been developed over the past decades for modeling data in 

several areas such as biological studies, environmental sciences, economics, engineering, 

finance and medical sciences. Recently, there has been an increased interest in defining new 

generated families of univariate continuous distributions by introducing additional shape 

parameters to the baseline model. One example is the beta-generated family proposed by 

Eugene et al. (2002). Another example is the generalized transmuted-G family definned by 

Nofal et al. (2015). For more details about the recent development of generalized statistical 

distributions, we refer the reader to Alzaatreh et al. (2013) and Lee et al. (2013). However, in 

many applied areas, there is a clear need for extending forms of the classical models. 

The generated distributions have attracted several statisticians to develop new models 

because the computational and analytical facilities available in most symbolic computation 

software platforms. Several mathematical properties of the extended distributions may be easily 

explored using mixture forms of exponentiated-G (exp-G for short) distributions. 

Consider a baseline cumulative distribution function (cdf) 𝐻(𝓍; 𝜙)and probability density 

function (pdf) ℎ(𝓍; 𝜙) with a parameter vector 𝜙, where 𝜙 = (𝜙𝑘) = (𝜙1, 𝜙2, … ). Then, the 

cdf and pdf of the transmuted class (TC) of distributions are defined by 
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and 

 
respectively. 

Note that the TC is a mixture of the baseline and exp-G distributions, the last one with 

power parameter equal to two. For λ = 0, equation (2) gives the baseline distribution. Further 

details can be found in Shaw and Buckley (2007). 

In this paper, we de…ne and study a new family of distributions by adding two extra shape 

parameters in equation (1) to provide more flexibility to the generated family. In fact, based on 

the Kumaraswamy-generalized (Kw-G) class pioneered by Cordeiro and de Castro (2011), we 

construct a new generator so-called the Kumaraswamy transmuted-G (Kw-TG) family and give 

a comprehen-sive description of some of its mathematical properties. We hope that the new 

model will attract wider applications in reliability, engineering and other areas of research. 

For an arbitrary baseline cdf G(x) , Cordeiro and de Castro (2011) defined the Kw-G 

generator by the cdf and pdf given by 

 
and 

 
respectively, where 𝑔(𝑥) = 𝑑𝐺(𝑥)/𝑑𝑥and a and b are two additional positive shape parameters. 

Clearly, for a = b = 1, we obtain the baseline distribution. The additional parameters a and b 

aim to govern skewness and tail weight of the generated distribution. An attractive feature of 

this family is that a and b can afford greater control over the weights in both tails and in the 

center of the distribution. 

The rest of the paper is outlined as follows. In Section 2, we de…ne the Kw-TG family and 

provide some special models. In Section 3, we derive a very useful representation for the Kw-

TG density function. We obtain in Section 4 some general mathematical properties of the 

proposed family including ordinary and incomplete moments, mean deviations, moment 

generating function (mgf), Rényi, Shannon and q-entropies, order statistics and their moments 

and probability weighted moments (PWMs). Four special models of this family are presented in 

Section 5 corresponding to the baseline exponential, power, log-logistic and Burr X 

distributions. Maximum likelihood estimation of the model parameters is investigated in 

Section 6. In Section 7, we provide a simulation study to test the performance of the maximum 

likelihood method in estimating the parameters of the Kumaraswamy transmuted-exponential 

(Kw-TE) model and perform two applications to real data sets to illustrate the potentiality of 

the new family. Finally, some concluding remarks are presented in Section 8. 

 

2. The Kw-TG family 

In this section, we generalize the TC by incorporating two additional shape parameters to 

yield a more flexible generator. Then, the cdf of the Kw-TG family is defined by 
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The pdf corresponding of (5) is given by 

 
Henceforth, a random variable X having the density function (6) is denoted by 𝑋~Kw −

TG(λ, 𝑎, 𝑏, 𝜙) 

The hazard rate function (hrf) of X, say 𝜏(𝑥), is given by 

 
The quantile function (qf) of X, say Q(u) = 𝐹−1(𝑢), can be obtained by inverting (5) 

numerically and it is given by 

 
where B = [1 - ( 1 – u )1 /b]1/a, otherwise Q(u) = 𝑄𝐺(𝑢; 𝜙) . Some special cases of the new 

family are listed in Table 1. 

A physical interpretation of the Kw-TG family cdf is possible whenever a and b are 

positive integers. Consider a device made of a series of b independent components that are 

connected so that each component is made of a independent sub-components in a parallel 

system. If the sub-component lifetimes have a common cdf, then the lifetime of the device 

follows the Kw-TG family of distributions in (5). So, the system fails if any of the b 

components fail. Also, each component fails if all of its a sub-components fail. 

Moreover, suppose a system consists of b independent subsystems functioning 

independently at a given time and that each sub-system consists of a independent components 

that are connected in parallel. Further, suppose that each component consists of two units. The 

overall system will follow the Kw-TG model with λ = 1 if the two units are connected in series, 

whereas the overall system will follow the Kw-TG distribution with λ = −1 if the two units are 

connected in parallel. 
Table 1: Sub-models of the Kw-TG family 
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3. Mixture representation 

In this section, we provide a useful representation for the Kw-TG pdf. Consider the power 

series 

 
which holds for |𝓏| < 1 and b > 0 real non-integer. 

After applying the power series (7) to equation (6), we obtain 

 
Further, we can write the last equation as 

 
where 𝜐𝑘 = (−1)𝑘𝑎𝑏Γ(𝑏)/[𝑘! Γ(𝑏 − 𝑘)] 

Finally, the pdf (8) can be expressed as a mixture of exp-G densities 

 
where 𝜔𝑘 = 𝜐𝑘/(𝑘 + 1)𝑎 and 𝜋𝛾(𝑥) = 𝛾𝑔(𝑥)𝐺(𝑥)𝛾−1is the exp-G pdf with power parameter 

γ > 0. 

Thus, several mathematical properties of the Kw-TG family can be deter-mined from those 

properties of the exp-G family. For example, the ordinary and incomplete moments and mgf of 

X can be obtained directly from those of the exp-G class. Equation (9) is the main result of this 

section. 

The cdf of the Kw-TG family can also be expressed as a mixture of exp-G densities. By 

integrating (9), we obtain the same mixture representation 

 
where ∏  (k+1)a(x) the cdf of the exp-G family with power parameter (k + 1) a. 

 

4. Mathematical properties 

The formulae derived throughout the paper can be easily handled in most symbolic 

computation software platforms such as Maple, Mathematica and Matlab because of their 

ability to deal with analytic expressions of formidable size and complexity. Established explicit 
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expressions to evaluate statistical measures can be more efficient than computing them directly 

by numerical integration. We have noted that the infinity limit in these sums can be substituted 

by a large positive integer such as 50 for most practical purposes. 

 

4.1 Moments 

Henceforth, Y(k+1)a denotes the exp-G distribution with power parameter (k + 1) a. The rth 

moment of X, say 𝜇𝑟
′ , follows from (9) as 

 
The nth central moment of  X, say 𝜇𝑛, is given by 

 
The cumulants (kn) of X follow recursively from 

 
where 𝑘1 = 𝜇1

′ , 𝑘2 = 𝜇2
′ − 𝜇1

′2 , 𝑘3 = 𝜇3
′ − 3𝜇2

′ 𝜇1
′ + 𝜇1

′3  , etc. The measures of skewness and 

kurtosis can be calculated from the ordinary moments using well-known relationships 

 

4.2 Generating function 

Here, we provide two formulae for the mgf MX (t) = E (et X) of X. Clearly, the first one can 

be derived from equation (9) as 

 
where M(k+1)a (t) is the mgf of Y(k+1)a. Hence, MX (t) can be determined from the exp-G 

generating function. 

A second formula for MX (t) follows from (9) as 

 

where τ(t, k) = ∫ 𝑒𝑥𝑝
1

0
[𝑡𝑄𝐻(𝑢)]𝑢(𝑘+1)𝑎−1𝑑𝑢 and QH (u) is the qf corresponding to 𝐻(𝓍; 𝜙, 

i.e., QH (u) = 𝐻−1(𝑢; 𝜙). 

 

4.3 Incomplete moments 

The main applications of the first incomplete moment refer to the mean deviations and the 

Bonferroni and Lorenz curves. These curves are very useful in economics, reliability, 
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demography, insurance and medicine. The sth incomplete moment, 𝜑𝑠(𝑡)  , of X can be 

expressed from (9) as 

 
The mean deviations about the mean [δ1 = E(|X − μ1

′ |)]  and about the median [δ2 =
E(|X − M|)] of X are given by δ1 = 2μ1

′ F(μ1
′ ) − 2φ1(μ1

′ ) andδ2 = μ1
′ − 2φ1(M), respectively, 

where μ1
′ = E(X), M = Median(X) = Q(0.5) is the median, F(μ1

′ ) is easily evaluated from (5) 

and φ1(t) is the first incomplete moment given by (10) with s = 1. 

Now, we provide two ways to determine δ1 and δ2. First, a general equation for φ1(t) can 

be derived from (10) as 

 

where J(k+1)a(t) = ∫ xπ(k+1)a(x)dx
t

−∞
 is the first incomplete moment of the exp-G distribution. 

A second general formula for φ1(t) is given by 

 

 

where υk(t) = (k + 1)a ∫ QH(u)u(K+1)a−1du
H(t)

0
 can be computed numerically. 

These equations for φ1(t)  can be applied to construct Bonferroni and Lorenz curves 

defined for a given probability π by B(π) = φ1(q)/(πμ1
′ ) andL(π) = φ1(q)/μ1

′ , respectively, 

where μ1
′ = E(X) and q = Q(π) is the qf of X at π. 

 

4.4 Entropies 

The Rényi entropy of a random variable X represents a measure of variation of the 

uncertainty. The Rényi entropy is defined by 

 
Using the pdf (6), we can write 

 
Using the pdf (6), we can write 

 
Applying the power series (7) to the last term, we obtain 
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Then, the Rényi entropy of the Kw-TG family is given by 

 
where 

 
The 𝜃-entropy, say Hθ(X), can be obtained, for θ > 0, θ ≠ 1, as 

 
The Shannon entropy of a random variable X, say SI, is defined by 

𝑆𝐼 = 𝐸{−[𝑙𝑜𝑔𝑓(𝑿)]}, 
which follows by taking the limit of Iθ (X) as θ tends to 1. 

 

4.5 Order statistics 

Order statistics make their appearance in many areas of statistical theory and practice. Let 

X1,……,Xn be a random sample from the Kw-TG family. The pdf of Xi:n can be written as 

 
where B( ．; ．) is the beta function. Based on equation (5), we have 

 
Using (6) and (12) and after a power series expansion, we can write 

 

 
where 

 
Substituting (13) in equation (11), the pdf of Xi:n can be expressed as 

 
where π(k+1)a (x) is the exp-G density with power parameter (k + 1) a. 
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Then, the density function of the Kw-TG order statistics is a mixture of exp-G densities. 

Based on the last equation, we note that the properties of Xi:n follow from those properties of 

Y(k+1)a. For example, the moments of Xi:n can be expressed as 

 
The L-moments are analogous to the ordinary moments but can be estimated by linear 

combinations of order statistics. They exist whenever the mean of the distribution exists, even 

though some higher moments may not exist, and are relatively robust to the effects of outliers. 

Based upon the moments in equation (14), we can derive explicit expressions for the L-

moments of X as in…nite weighted linear combinations of the means of suitable Kw-TG order 

statistics. 

We have 

 

The first four L-moments are given by:λ1 = 𝐸(𝑋1:1), λ2 =
1

2
𝐸(𝑋2:2 − 𝑋1:2), λ3 =

1

3
𝐸(𝑋3:3 −

2𝑋2:3 + 𝑋1:3) and λ4 =
1

4
𝐸(𝑋4:4 − 3𝑋3:4 + 3𝑋2:4 − 𝑋1:4). 

One simply can obtain the λ′s for X from (14) with q＝1 

 

4.6 Probability weighted moments 

The (s, r)th PWM of X following the Kw-TG distribution, say ρs,r, is formally defined by 

 
From equation (13), we can write 

 
where 

 
5. Special models 

In this section, we provide four special models of the Kw-TG family, namely, Kw-T 

exponential, Kw-T power, Kw-T log logistic and Kw-T Burr X distributions. These sub-models 

generalize important existing distributions in the literature. Section 4 is used to obtain some 

properties of the Kw-TE distribution. 

 

5.1 The Kw-TE distribution 

The exponential distribution with scale parameter > 0 has pdf and cdf given by 
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 h (x) = α𝑒−𝛼𝑥 (for x > 0) and H (x) = 1 - 𝑒−𝛼𝑥, respectively. Then, the Kw-TE density function 

reduces to 

 
The Kw-TE distribution reduces to the transmuted exponential (TE) distribution when a = b 

= 1. Also, when = 0, it reduces to the Kw-E distribution. Figure 1 displays some possible 

shapes of the density and hazard rate functions of this distribution. Figure 1 reveals that the pdf 

of the Kw-TE can be reversed J-shape or right skewed. The hrf can be decreasing (DFR), 

increasing (IFR) or constant (CFR) failure rate. 

Next, some properties of the Kw-TE are obtained by using the general properties discussed 

in Section 4. 

(1) Moments: From Section 4.1, the rth moment of Kw-TE distribution can be written as 

 
The nth central moment of the Kw-TE model is given by 

 
(2) Moment generating function: From Section 4.2, the mgf for Kw-TE can be expressed as 

 

 A second formula for MX (t) of the Kw-TE model (for t < λ ) is 

 

(3) Incomplete moments: From Section 4.3, the sth incomplete moment of the Kw-TE model is 

given by 

 

where  γ(a, z) =∫ 𝑦𝛼−1𝑧

0
𝑒−𝑦𝑑𝑦 is the incomplete gamma function. 

(4) Entropies: From Section 4.4, the Rényi entropy of the Kw-TE model is given by 
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where 

 
The Shannon entropy of the Kw-TE distribution follows by taking the limit of Iθ(X) 

when θ goes to 1. 

(5) Order statistics: From Section 4.5, the moments of order statistics for the Kw-TE 

distribution can be written as 

 

(6) Probability weighted moments: From Section 4.6 we have 

 

5.2 The Kw-T power (Kw-TPo) distribution 

The power (Po) distribution with shape parameter α > 0 and scale parameter β > 0 has pdf 

and cdf given by h (x) =αβ𝛼𝑥𝛼−1 (for 0 < x <𝛽−1) and H (x) = (𝛽𝑥)𝛼 , respectively. Then, the 

Kw-TPo density is given by 

 
This distribution reduces to the transmuted power (TPo) distribution if a = b = 1. For λ = 0, we 

obtain the Kw-Po distribution. For α = 1, it follows as a special case the uniform distribution 

defined on the interval (0, 1/β ). Figure 2 displays plots of the density and hazard rate functions 

for the Kw-TPo distribution for selected parameter values. These plots reveal that the pdf of the 

Kw-TPo can be reversed J-shape, J-shape, concave up or concave down. The hrf can be 

decreasing (DFR), increasing (IFR) or bathtub (BT) failure rate shapes. 

 

5.3 The Kw-T log logistic (Kw-TLL) distribution 



 
Ahmed Z. Afify1 , Gauss M. Cordeiro2, Haitham M. Yousof1, Ayman Alzaatreh4, Zohdy M. Nofal1    255 

The log-logistic (LL) distribution with positive parameters α and β has pdf and cdf given 

by h(x) =β𝛼−𝛽𝑥𝛽−1 [1 + (
𝑥

𝛼
)

𝛽
]

−2

 (for x > 0) and H (x) =1 − [1 + (
𝑥

𝛼
)

𝛽
]

−1

, respectively. Then, 

the pdf of the Kw-TLL distribution is given by 

 
The Kw-TLL model reduces to the transmuted log-logistic (TLL) distribution when a = b = 1. 

For λ = 0, we obtain the Kw-LL model. Plots of the density and hazard rate functions of the 

Kw-TLL distribution are displayed in Figure 3 for some parameter values. These plots show 

that the pdf of the Kw-TLL model can be reversed J-shape or concave down. The hrf can be 

decreasing (DFR), increasing (IFR) or upside down bathtub (UBT) failure rate shapes. 

 

5.4 The Kw-T Burr X (Kw-TBrX) distribution 

The Burr X (also known as generalized Raleigh) distribution with positive parameters α 

and β has pdf and cdf given by h (x) = 2α𝛽2𝑥𝑒−(𝛽𝑥)2
{1 − 𝑒−(𝛽𝑥)2

}𝛼−1 (for x > 0) and H (x) 

=[1 − 𝑒−(𝛽𝑥)2
]

𝛼
, respectively. Then, the pdf of the Kw-TBrX distribution reduces to 

 
The Kw-TBrX distribution includes the transmuted Burr X (TBrX) distribution when a = b = 1. 

For λ = 0, we obtain the Kw-BrX distribution. The plots in Figure 4 show some possible shapes 

of the density and hazard rate functions of the Kw-TBrX distribution. Figure 4 shows that the 

pdf of the Kw-TBrX model is very ‡exible. It can be reversed J-shape, left skewed or right 

skewed. The hrf can be decreasing (DFR), increasing (IFR) or bathtub (BT) failure rate shapes. 
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Figure 1: (a) The Kw-TE density plots.   (b) The Kw-TE hrf plots   

 
Figure 2: (a) Plots of the Kw-TPo pdf.   (b) Plots of the Kw-TPo hrf.  

 

6. Maximum likelihood estimation 

Several approaches for parameter estimation were proposed in the litera-ture but the 

maximum likelihood method is the most commonly employed. The maximum likelihood 

estimators (MLEs) enjoy desirable properties and can be used when constructing con…dence 

intervals and also in test statistics. The nor-mal approximation for these estimators in large 

sample theory is easily handled either analytically or numerically. 
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 Figure 3: (a) The Kw-TLL density plots.   (b) The Kw-TLL hrf plots   

 
Figure 4: (a) The Kw-TBrX density plots.    (b) The Kw- TBrX hrf plots  

 

So, we determine the MLEs of the parameters of the new family of distri-butions from 

complete samples only. Let x1,…..,xn be a random sample from the Kw-TG family with 

parameters λ,a,b and 𝜙 . Let 𝜃 =(𝑎, 𝑏, 𝜆, 𝜙T)
T
 be the (p×1) parameter vector. Then, the log-

likelihood function for θ, say l= l (θ) , is given by 

 
where pi = 1 +λ-2λ H (xi; 𝜙), zi = 1 + λ -λH (xi; 𝜙 ) and qi = zi H (xi; 𝜙 ).  
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Equation (15) can be maximized either directly by using the R (optim func-tion), SAS 

(PROC NLMIXED) or Ox program (sub-routine MaxBFGS) or by solving the nonlinear 

likelihood equations obtained by di¤erentiating (15). 

The score vector components, say U(𝜃) =
𝜕𝑡

𝜕𝜃
= (

𝜕𝑡

𝜕𝛼
,

𝜕𝑡

𝜕𝑏
,

𝜕𝑡

𝜕𝜆
,

𝜕𝑡

𝜕𝜙𝑘
)𝑇 = (𝑈𝑎 , 𝑈𝑏 , 𝑈𝜆 , 𝑈𝜙𝑘

)𝑇 are 

given by 

 

 
and 

 
where h′(xi; ϕ) = ∂h(xi; ϕ)/ ∂h(xi; ϕ) and H′(xi; ϕ) = ∂H(xi; ϕ)/ ∂ϕk 

Setting the nonlinear system of equations Ua = Ub = Uλ = Uϕk = 0 and solving them 

simultaneously yields the MLE 𝜃 = ( �̂�, �̂�, �̂�, �̂�𝑇 ) of 𝜃 = (𝑎, 𝑏, 𝜆, 𝜙T)
T
.These equations cannot 

be solved analytically and statistical software can be used to solve them numerically using 

iterative methods such as the Newton-Raphson type algorithms. For interval estimation of the 

model parameters, we require the observed information matrix 

 
whose elements are given in appendix A. 

Under standard regularity conditions when n → ∞ , the distribution of 𝜃  can be 

approximated by a multivariate normal Np(0; J( 𝜃)−1) distribution to construct approximate 

confidence intervals for the parameters. Here, J(𝜃) is the total observed information matrix 

evaluated at 𝜃 . The method of the resampling bootstrap can be used for correcting the biases of 

the MLEs of the model parameters. Interval estimates may also be obtained using the bootstrap 
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percentile method. Likelihood ratio tests can be performed for the proposed family of 

distributions in the usual way. 

 

7. Applications 

In this section, we illustrate the applicability of the Kw-TG family to real data sets. We 

focus on the Kw-TE distribution presented in Section 5. The method of maximum likelihood is 

used to estimate the model parameters. This section is divided into two subsections. The …rst 

subsection is devoted to study the performance of the MLEs for estimating the Kw-TE 

parameters using Monte Carlo simulation for di¤erent parameter values and various sample 

sizes. In the second subsection, two data sets are used to prove empirically the applicability of 

the Kw-TE distribution. 

 

7.1 Monte Carlo simulation 

A simulation study is conducted in order to test the performance of the MLEs for 

estimating the Kw-TE parameters. We consider three di¤erent sets of parameters: I: a = 3, b = 2, 

𝜆 = 0.5, α = 2, II: a = 2, b = 3, 𝜆 = 0.8, α = 3 and III: a = 1, b = 5, 𝜆 = -0.7, α = 2. For each 

parameter combination, we simulate data from the Kw-TE model with di¤erent sample sizes, n 

= 50, n = 100, n = 150, n = 200, and calculate the MLEs by maximizing the log-likelihood 

equation in (15), where h (x) =α𝑒−𝛼𝑥. The process is repeated 1; 000 times and for each set of 

parameters and each sample size, the average bias (estimate-actual) and the standard deviation 

are evaluated. The results are presented in Table 2. From the results in Table 2, the biases and 

standard deviations decrease as the sample size increases. Furthermore, �̂�  and �̂�  are 

overestimated and b̂ is underestimated for the three sets of the parameters. 

Whilst �̂� is underestimated for sets I and II and overestimated for group III. In general, Table 2 

indicates that the MLE method performs quite good for estimating the Kw-TE parameters. 

 

7.2 Real data 

In this section, the Kw-TE model is fitted to two data sets and compared with other existing 

distributions. In order to compare the …ts of the distri-butions, we consider various measures 

of goodness-of-fit including the Akaike information criterion (AIC), Bayesian information 

criterion (BIC), Hannan-Quinn information criterion (HQIC), consistent Akaike information 

criterion (CAIC), maximized log-likelihood under the model ( -2ℓ̂), Anderson-Darling (A*) and 

Cramér-Von Mises (W*) statistics. The measures of goodness-of-fit measures are given by 
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Table 2: Bias and standard deviation for yhe parameter estimates 

 
 

AIC = −2ℓ̂ + 2p, BIC = −2ℓ̂ + 2plog(n) 

 

HQIC = −2ℓ̂ + 2plog(log(n)), CAIC = −2ℓ̂ + 2pn/(n − p − 1) 

 
and 

 
respectively, where zi = F (yj ), p is the number of parameters, n is the sample size and the 

values ýjs are the ordered observations. The smaller these statistics are, the better the fit is. 

Upper tail percentiles of the asymptotic distributions of these goodness-of-fit statistics were 

tabulated in Nichols and Padgett (2006). 
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Data set I: Failure times of 84 aircraft windshield 

The first data set was studied by Murthy et al. (2004), which repre-sents failure times for a 

particular windshield device. The windshield on a large aircraft is a complex piece of 

equipment, comprised basically of several layers of material, including a very strong outer skin 

with a heated layer just beneath it, all laminated under high temperature and pressure. Failures 

of these items are not structural failures. Instead, they typically involve damage or delami-

nation of the non-structural outer ply or failure of the heating system. These failures do not 

result in damage to the aircraft but do result in replacement of the windshield. For further 

details, see, for example, Murthy et al. (2004). The data consist of 84 observations. These data 

were previously studied by Cordeiro et al. (2014) to compare the …ts of the McDonald Weibull 

(McW), beta Weibull (BW), Kumaraswamy Weibull (Kw-W) and Weibull distributions. Here, 

we shall compare the …ts of the Kw-TE model with other models: the McW (Cordeiro et al., 

2014), gamma Weibull (GW) (Provost et al., 2011), BW (Lee et al., 2007), modi…ed beta 

Weibull (MBW) (Khan, 2015), transmuted modi…ed Weibull (TMW) (Khan and King, 2013) 

and transmuted exponenti-ated generalized Weibull (TExGW) (Yousof et al., 2015) 

distributions, whose pdf’s (for x > 0) are given by 

 

 
The parameters of the above densities are all positive real numbers except for the TMW 

and TExGW distributions for which |𝜆| ≤ 1. 

 

Data set II: Breaking stress of carbon fibres 

The second real data set consists of 100 observations from Nichols and Padgett (2006) on 

breaking stress of carbon fibres (in Gba). Here, we use these data to compare the Kw-TE model 

with other models, namely: Weibull Fréchet (WFr) (Afify et al., 2016), TLL, exponentiated 

transmuted generalized Rayleigh (ETGR) (Afify et al. 2015), transmuted Marshall-Olkin 

Fréchet (TMOFr) (Afify et al., 2015), transmuted Fréchet (TFr) (Mahmoud and Mandouh, 2013) 

and Marshall-Olkin Fréchet (MOFr) (Krishna et al, 2013) distributions with pdf’s (for x > 0) 

given by 
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The parameters of the above densities are all positive real numbers except for the ETGR 

and TFr distributions for which|𝜆| ≤ 1. 

Tables 3 and 4 list the numerical values of 2`, AIC, BIC, HQIC, CAIC, W and A for the 

models fitted to both data sets. The MLEs and their corre-sponding standard errors (in 

parentheses) of the model parameters are given in Tables 5 and 6. These figures are obtained 

using the MATH-CAD PROGRAM. 

In Table 3, we compare the fits of the Kw-TE model with the McW, GW, BW, MBW, 

TMW and TExGW models. The figures in this table indicate that the Kw-TE model has the 

lowest values for all goodness-of-fit statistics (for failure times of Aircraft Windshield data) 

among the fitted models. So, the Kw-TE model could be chosen as the best model. In Table 4, 

we compare the fits of the Kw-TE, WFr, ETGR, TLL, TMOFr, TFr and MOFr models. It is 

shown that the Kw-TE model has the lowest values for all goodness-of-fit statistics (for 

breaking stress of carbon fibres data) among all fitted models. So, the Kw-TE model can be 

chosen as the best model. 
Table 3: Goodness-of-fit statistics for failure times of aircraft windshield data 

 
 

Table 4: Goodness-of-fit statistics for breaking stress of carbon fibres data 
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Table 5: MLEs and their standard errors (in parentheses) for data set I 
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Figure 5: The fitted densities of the Kw-TE model and other models for both data sets 

 
Figure 6: The fitted cdf of the Kw-TE model for data sets I (left panel) and for data sets II (right panel)  
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Figure 7: The QQ plots of the Kw-TE model for data sets I (left panel) and for data sets II (right panel) 

 

Table 6: MLEs and their standard errors (in parentheses) for data set II 

 
 

It is clear from Tables 3 and 4 that the Kw-TE model provide the best fits to both data sets. 

The histograms of the fitted distributions to data sets I and II are displayed in Figure 5. The 

plots support the results obtained from Tables 3 and 4. Figures 6 and 7 display the fitted cdf and 

the QQ plots for the Kw-TE model to the two data sets. It is evident from these plots that the 

Kw-TE provides good fit to the two data sets. 

 

8. Conclusions 
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There is a great interest among statisticians and practitioners in the past decade to generate 

new extended families from classic ones. We present a new Ku-maraswamy transmuted-G 

(Kw-TG) family of distributions, which extends the transmuted family by adding two extra 

shape parameters. Many well-known distributions emerge as special cases of the Kw-TG 

family by using special para-meter values. The mathematical properties of the new family 

including explicit expansions for the ordinary and incomplete moments, generating function, 

mean deviations, entropies, order statistics and probability weighted moments are pro-vided. 

The model parameters are estimated by the maximum likelihood method and the observed 

information matrix is determined. It is shown, by means of two real data sets, that special cases 

of the Kw-TG family can give better …ts than other models generated by well-known families. 
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distribution. Comm. Stat. Theory Methods, 42, 4091-4107. 

[12] Lee, C., Famoye, F. and Alzaatreh, A. (2013). Methods for generating fami-lies of 

continuous distribution in the recent decades. Wiley Interdisciplinary Reviews: 

Computational Statistics, 5, 219-238. 

[13] Lee, C., Famoye, F. and Olumolade, O. (2007). Beta-Weibull distribution: some properties 

and applications to censored data. Journal of Modern Ap-plied Statistical Methods, 6, 17. 

[14] Mahmoud, M.R. and Mandouh, R.M. (2013). On the Transmuted Fréchet Distribution. 

Journal of Applied Sciences Research, 9, 5553-5561. 

[15] Murthy, D.N.P. Xie, M. and Jiang, R. (2004). Weibull Models. Wiley. 

[16] Nichols, M. D., and Padgett, W. J. (2006). A Bootstrap control chart for Weibull 

percentiles. Quality and Reliability Engineering International, 22, 141-151. 

[17] Nofal, Z. M., Afify, A. Z., Yousof, H. M. and Cordeiro, G. M. (2015). The generalized 

transmuted-G family of distributions. Comm. Stat. Theory Methods. Forthcoming. 

[18] Provost, S.B., Saboor, A., Ahmad, M. (2011). The gamma Weibull distri-bution. Pak. J. 

Statist., 27, 111-131. 

[19] Shaw, W. T. and Buckley, I. R. C. (2007). The alchemy of probability distri-butions: 

beyond Gram-Charlier expansions and a skew-kurtotic-normal dis-tribution from a rank 

transmutation map. arXiv preprint arXiv:0901.0434. 

[20] Yousof, H. M., Afify, A. Z., Alizadeh, M., Butt, N. S., Hamedani, G. G. and Ali, M. M. 

(2015). The transmuted exponentiated generalized-G family of distributions. Pak. J. Stat. 

Oper. Res., 11, 441-464. 

Appendix A: 

The elements of the observed information matrix are: 
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and 
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where ℎ′′(𝑥𝑖; 𝜙) = ∂2ℎ(𝑥𝑖; 𝜙) 𝜕𝜙𝑘
2⁄  and 𝐻′′(𝑥𝑖; 𝜙) = ∂2𝐻(𝑥𝑖; 𝜙) 𝜕𝜙𝑘

2⁄  
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