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Abstract: We introduce a new class of continuous distributions called the Ku-
maraswamy transmuted-G family which extends the transmuted class defined by
Shaw and Buckley (2007). Some special models of the new family are provided.
Some of its mathematical properties including explicit expressions for the
ordinary and incomplete moments, generating function, Rényi and Shannon
entropies, order statistics and probability weighted moments are derived. The
maximum likelihood is used for estimating the model parameters. The flexibility
of the generated family is illustrated by means of two applications to real data sets.
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1. Introduction

The interest in developing more flexible statistical distributions remains strong nowadays.
Many generalized distributions have been developed over the past decades for modeling data in
several areas such as biological studies, environmental sciences, economics, engineering,
finance and medical sciences. Recently, there has been an increased interest in defining new
generated families of univariate continuous distributions by introducing additional shape
parameters to the baseline model. One example is the beta-generated family proposed by
Eugene et al. (2002). Another example is the generalized transmuted-G family definned by
Nofal et al. (2015). For more details about the recent development of generalized statistical
distributions, we refer the reader to Alzaatreh et al. (2013) and Lee et al. (2013). However, in
many applied areas, there is a clear need for extending forms of the classical models.

The generated distributions have attracted several statisticians to develop new models
because the computational and analytical facilities available in most symbolic computation
software platforms. Several mathematical properties of the extended distributions may be easily
explored using mixture forms of exponentiated-G (exp-G for short) distributions.

Consider a baseline cumulative distribution function (cdf) H(x; ¢)and probability density
function (pdf) h(x; ¢) with a parameter vector ¢, where ¢ = (¢y) = (¢4, P2, ...). Then, the
cdf and pdf of the transmuted class (TC) of distributions are defined by

Gz A ¢)=H(z¢p) 1+ A - AH (x; )] (1)
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and
glz A @) =h(z;¢)[1 + A —2)\H (z; ¢)], (2)
respectively.

Note that the TC is a mixture of the baseline and exp-G distributions, the last one with
power parameter equal to two. For A = 0, equation (2) gives the baseline distribution. Further
details can be found in Shaw and Buckley (2007).

In this paper, we de...ne and study a new family of distributions by adding two extra shape
parameters in equation (1) to provide more flexibility to the generated family. In fact, based on
the Kumaraswamy-generalized (Kw-G) class pioneered by Cordeiro and de Castro (2011), we
construct a new generator so-called the Kumaraswamy transmuted-G (Kw-TG) family and give
a comprehen-sive description of some of its mathematical properties. We hope that the new
model will attract wider applications in reliability, engineering and other areas of research.

For an arbitrary baseline cdf G(x), Cordeiro and de Castro (2011) defined the Kw-G
generator by the cdf and pdf given by

F(zab)=1-[1-G(z)" (3)
and
f(z;a,b) =abg(z) G(2)"" [1-G (=) (4)
respectively, where g(x) = dG(x)/dxand a and b are two additional positive shape parameters.
Clearly, for a = b = 1, we obtain the baseline distribution. The additional parameters a and b
aim to govern skewness and tail weight of the generated distribution. An attractive feature of
this family is that a and b can afford greater control over the weights in both tails and in the
center of the distribution.

The rest of the paper is outlined as follows. In Section 2, we de...ne the Kw-TG family and
provide some special models. In Section 3, we derive a very useful representation for the Kw-
TG density function. We obtain in Section 4 some general mathematical properties of the
proposed family including ordinary and incomplete moments, mean deviations, moment
generating function (mgf), Rényi, Shannon and g-entropies, order statistics and their moments
and probability weighted moments (PWMs). Four special models of this family are presented in
Section 5 corresponding to the baseline exponential, power, log-logistic and Burr X
distributions. Maximum likelihood estimation of the model parameters is investigated in
Section 6. In Section 7, we provide a simulation study to test the performance of the maximum
likelihood method in estimating the parameters of the Kumaraswamy transmuted-exponential
(Kw-TE) model and perform two applications to real data sets to illustrate the potentiality of
the new family. Finally, some concluding remarks are presented in Section 8.

2. The Kw-TG family

In this section, we generalize the TC by incorporating two additional shape parameters to
yield a more flexible generator. Then, the cdf of the Kw-TG family is defined by

F(z)=1-{1-[0 +)~}H(-x;¢)—AH(x;r_bﬂa}b. (5)
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The pdf corresponding of (5) is given by

flz) = abh(z;¢){1+X-2)\H (z;¢)}

{H (z;6)[1+ X — \H (=; ¢)]}*
b—1

{1-[0+ N H @) - 2H 07|} (6)

Henceforth, a random variable X having the density function (6) is denoted by X~Kw —
TG(A, a, b, @)
The hazard rate function (hrf) of X, say 7(x), is given by
r(z) = abh(z;¢) {1+A—2)\H (z;¢)}
{H (z;¢)[1+ A — AH (=z; (,b]]}a_1

{1-[a+YE @0 —AH(m;qﬂ»}ZT}_1.

The quantile function (gf) of X, say Q(u) = F~1(u), can be obtained by inverting (5)
numerically and it is given by

2
y {14—/\—\/{14—)\) —4)\3} _
Qu)=G for A# 0,

2A

where B = [1 - (1 — u )*]*, otherwise Q(u) = Q;(u; ¢) . Some special cases of the new
family are listed in Table 1.

A physical interpretation of the Kw-TG family cdf is possible whenever a and b are
positive integers. Consider a device made of a series of b independent components that are
connected so that each component is made of a independent sub-components in a parallel
system. If the sub-component lifetimes have a common cdf, then the lifetime of the device
follows the Kw-TG family of distributions in (5). So, the system fails if any of the b
components fail. Also, each component fails if all of its a sub-components fail.

Moreover, suppose a system consists of b independent subsystems functioning
independently at a given time and that each sub-system consists of a independent components
that are connected in parallel. Further, suppose that each component consists of two units. The
overall system will follow the Kw-TG model with A = 1 if the two units are connected in series,
whereas the overall system will follow the Kw-TG distribution with A = —1 if the two units are

connected in parallel.
Table 1: Sub-models of the Kw-TG family

a & A Reduced Model Authors

a b 0 Kw-G Family Cordeiro and de Castro (2011)
1 & 0 -G Family New

a 1 0  exp-G Family Gupta et al. (1998)

1 & A GT-G Family New

a 1 A ET-G Family New

1 1 A T-C Family Shaw and Buckley (2007)

1 1 0 Hixz: ) -
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3. Mixture representation

In this section, we provide a useful representation for the Kw-TG pdf. Consider the power
series

o0

1= (=D T(R) :
(1—2=2) —Zmzk, (7)

which holds for |z| < 1 and b > 0 real non-integer.
After applying the power series (7) to equation (6), we obtain

- ‘ o= (—=1)% abT (b)
f@) = E@O4A-2HE@)S g
gl=) -

(k+1)a—1

[(1 F ) H(z) - AH (xﬂ

Gt’;t‘lllk—l]a—l

Further, we can write the last equation as
f) =) veg(2) G(x) M, (8)
k=0

where v, = (—1)*abI'(b)/[k!T(b — k)]
Finally, the pdf (8) can be expressed as a mixture of exp-G densities

flz) = wempena (), (9)
k=0

where wy = vy /(k + 1)a and 7, (x) = yg(x)G(x)Y~tis the exp-G pdf with power parameter
vy > 0.

Thus, several mathematical properties of the Kw-TG family can be deter-mined from those
properties of the exp-G family. For example, the ordinary and incomplete moments and mgf of
X can be obtained directly from those of the exp-G class. Equation (9) is the main result of this
section.

The cdf of the Kw-TG family can also be expressed as a mixture of exp-G densities. By
integrating (9), we obtain the same mixture representation

Flz) =Y wi Mgt (2),
k=0
where [] «+1a(X) the cdf of the exp-G family with power parameter (k + 1) a.

4. Mathematical properties

The formulae derived throughout the paper can be easily handled in most symbolic
computation software platforms such as Maple, Mathematica and Matlab because of their
ability to deal with analytic expressions of formidable size and complexity. Established explicit
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expressions to evaluate statistical measures can be more efficient than computing them directly
by numerical integration. We have noted that the infinity limit in these sums can be substituted
by a large positive integer such as 50 for most practical purposes.

41 Moments
Henceforth, Y+1). denotes the exp-G distribution with power parameter (k + 1) a. The rth
moment of X, say u;., follows from (9) as

pr=E(X")=) wi E (}}?ﬁ;+11a) :
k=0

The nth central moment of X, say u,, is given by

i

p, = E(X—u)" = (—uy)" T E(XT)

[]=

r

=0

"~ n—r n Hn—r rr
= .E_O kE_D{—U Wk (T) p" " E ()‘f.‘c—‘l]a) -
The cumulants (kn) of X follow recursively from

n—1 n—1
I T
hn = Hy ?z_;(?__-l)hff""ﬂ—r
where k; = pf, ky = pb — ui?, ks = us — 3upus + pi® , etc. The measures of skewness and
kurtosis can be calculated from the ordinary moments using well-known relationships

4.2  Generating function
Here, we provide two formulae for the mgf My (t) = E (e'*) of X. Clearly, the first one can
be derived from equation (9) as

My (t Zu-a Mg+1)a (2),
k=0
where Mg+1a (t) is the mgf of Yy+1a. Hence, Mx (t) can be determined from the exp-G
generating function.
A second formula for My (t) follows from (9) as

My (¢ Zw Tt k),

where t(t, k) = fol exp [tQy (W) ]u*+tVe=1dy and Qu (u) is the gf corresponding to H(x; ¢,
i.e, QH (u) = H 1(u; ¢).
4.3  Incomplete moments

The main applications of the first incomplete moment refer to the mean deviations and the
Bonferroni and Lorenz curves. These curves are very useful in economics, reliability,
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demography, insurance and medicine. The sth incomplete moment, ¢ (t) , of X can be
expressed from (9) as

t oo t
0= f@@=Yu[ Fraee 00
—oe k=0 —oo

The mean deviations about the mean [6; = E(|X— pi]|)] and about the median [6, =
E(|X — M|)] of X are given by 6; = 2ujF(u) — 2@, (ny) ands, = pj — 2¢, (M), respectively,
where p; = E(X), M = Median(X) = Q(0.5) is the median, F(u}) is easily evaluated from (5)
and @, (t) is the first incomplete moment given by (10) with s = 1.

Now, we provide two ways to determine §; and &,. First, a general equation for ¢, (t) can
be derived from (10) as

o
7 (E) = z;,;,'k; Jik+13a (E),

k=0

where Jxi1)a (D) = f_too XT(k+1)a (X)dx is the first incomplete moment of the exp-G distribution.
A second general formula for ¢, (t) is given by

=
o1 (t) =) wive(t),
k=0

where vy (t) = (k + 1)a fOH(t) Qu(w)uK*+Da-14y can be computed numerically.

These equations for ¢ (t) can be applied to construct Bonferroni and Lorenz curves
defined for a given probability 1t by B(m) = ¢,(q)/(mu;) andL(m) = ¢4(q)/u3, respectively,
where p; = E(X) and q = Q(m) is the gf of X at 1.

4.4  Entropies
The Rényi entropy of a random variable X represents a measure of variation of the

uncertainty. The Rényi entropy is defined by

]0g [ flz a‘x) >0and §+1.

]og [ f x‘ﬂdx) > 0and § 1.
Using the pdf (6), we can write
Fla) = (ab)h(x)® {1 +2—22H (2)}*
x {H (z)[1 + A — \H (z)]}P Y

Ip(X) =

Using the pdf (6), we can write

I X)=

x {1 - :(1 +AJH(I]—AH(_I}E]&}BHD v

Applying the power series (7) to the last term, we obtain
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flz)®

= (a(b—1) _
[CI:EJ'_IQZ[_—]]-’( ' . ')Q(IIFG(&CJ&M+9{L‘|—L
k=0

oo
¢ +f{a—1)
— ngQLI‘]EG(I]nk fia 1__
k=0

Then, the Rényi entropy of the Kw-TG family is given by

{zm#f g .I} Cf 1nk—ﬁ'fc¢—1_:d‘r}_

my = (— (ab} ( [bk_ 1]).

The 6-entropy, say Ha(X), can be obtained, for 6 >0, 6 = 1, as

log {] — Z-mk/ g fx)e G {:r)ak-l_efa_”d;r} )
k=0 —

The Shannon entropy of a random variable X, say Sl, is defined by

SI = E{-[logf (XD},
which follows by taking the limit of I (X) as 6 tends to 1.

IX)=

where

1
Hg(_X):H_

4.5 Order statistics
Order statistics make their appearance in many areas of statistical theory and practice. Let
) ST ,Xn be a random sample from the Kw-TG family The pdf of Xi., can be written as

f{x +i—1
fim @) = 5t Zf v ("7 E e, an
where B( - ; - ) is the beta function. Based on equatlon (5),We have
i1y _m o f1+e—1 _ . g1a7 1
F {x)_gq—l)( ; ){1—[{1+/\)H(1)—)\H(x)] b
(12)

Using (6) and (12) and after a power series expansion, we can write

ff ‘?_H 1(l Z ki T(k+1)a (1'), “3)

= (=) TFab i1\ (b(1+1) =1
i =D ue+na( z )( K )

Substituting (13) in equation (11), the pdf of Xi'n can be expressed as
oo n—1 J ( - )
fin (z) ZZB{i n—z+]]d"“3‘—rk+1la(')~

k=0 j=0
where m(k+1)a (x) is the exp-G density with power parameter (k + 1) a.

where
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Then, the density function of the Kw-TG order statistics is a mixture of exp-G densities.
Based on the last equation, we note that the properties of Xi:n follow from those properties of
Y (k+1)a. For example, the moments of Xi:n can be expressed as

iﬂz ’ (7) ———1 4, . E (Yies1)a) (14)
£—0 j=0 an—z+) J (k+1)a ) -

The L-moments are analogous to the ordinary moments but can be estimated by linear
combinations of order statistics. They exist whenever the mean of the distribution exists, even
though some higher moments may not exist, and are relatively robust to the effects of outliers.
Based upon the moments in equation (14), we can derive explicit expressions for the L-
moments of X as in...nite weighted linear combinations of the means of suitable Kw-TG order
statistics.

We have

r—1
1 d [T — 1 -
Ap = — -1 E(Xe_gr), r=1
P () B
The first four L-moments are given by:A; = E(X;.1), A, = %E(Xz:2 —X1.2),A3 = gE(X_o,:3 -
1
2X53 + Xy3) and A, = ZE(X4:4 —3X3.4 + 3X2.4 — X1.4).
One simply can obtain the A’s for X from (14) with g=1

4.6 Probability weighted moments
The (s, r)th PWM of X following the Kw-TG distribution, say ps,, is formally defined by

p.,=E{X°F(X)'} = / 2°f (z) F(X)" dz.

From equation (13), we can write

Psr = Z bk.'rf IS:T:[‘k+‘l','c( {,IC) = Z bk.?‘ E [:}-_[\k+‘l}a) 1
k=0 k=0

— o0

= (D) T ab (7 (B(I+1) —1
ver =3 G ()Y,

=0

where

5. Special models

In this section, we provide four special models of the Kw-TG family, namely, Kw-T
exponential, Kw-T power, Kw-T log logistic and Kw-T Burr X distributions. These sub-models
generalize important existing distributions in the literature. Section 4 is used to obtain some
properties of the Kw-TE distribution.

5.1 The Kw-TE distribution
The exponential distribution with scale parameter > 0 has pdf and cdf given by
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h (X) = ae~** (for x > 0) and H (x) = 1 - e~**, respectively. Then, the Kw-TE density function
reduces to

F0) = aabem™ {1-2+ 2} {(1- ) [1+2) )

< [1= {(1-em) [14 2]}

The Kw-TE distribution reduces to the transmuted exponential (TE) distribution whena =b
= 1. Also, when = 0, it reduces to the Kw-E distribution. Figure 1 displays some possible
shapes of the density and hazard rate functions of this distribution. Figure 1 reveals that the pdf
of the Kw-TE can be reversed J-shape or right skewed. The hrf can be decreasing (DFR),
increasing (IFR) or constant (CFR) failure rate.

Next, some properties of the Kw-TE are obtained by using the general properties discussed
in Section 4.

(1) Moments: From Section 4.1, the rth moment of Kw-TE distribution can be written as

= l,_])r

Hy = E(X7)=) 5 (k+1)awy
k=0
XQB((;C—F‘J]_P—F‘I—{;C—F‘I)&) p=(k+1)a-

The nth central moment of the KW TE model is given by

ey
r=0 k=0

ap?‘B((k+U-.P+1 — (k+1)a) [p=(k+1)a-

(2) Moment generating function: From Section 4.2, the mgf for Kw-TE can be expressed as

X

el

Z (1) (k+1)al (k+ 1) wy

My () =
x (?) RN T (k+1)a—h)(h+1)"

—T(r+1), r> -1
k7, h=0

A second formula for MX (t) of the Kw-TE model (fort <A) is

My (¢ Z% (k+1)aB(1—£,(k+1)a)

k=0

(3) Incomplete moments: From Section 4.3, the sth incomplete moment of the Kw-TE model is

given by

) p h Y ]
(=1)" (k +1)aT ((k+1) a) wi A

S N (1T T (k+1)a—h)

where y(a, 2) =fozy"“1 e~ Ydy is the incomplete gamma function.

(4) Entropies: From Section 4.4, the Rényi entropy of the Kw-TE model is given by
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Iy (X) =

1 ==}
1—-46 log (Zk.f_j__szn mk'—”i) '

-21')\3'+j+29—1 (ab)ﬁ (_1)k+i+j—{ (3) <(b _ 1) 9)
(641)(1+ A}i+_j—al.'k—9) z k
X(ak—!— (_a—'l)ﬁ) (ak‘—l—ﬁ(a— 1]—0—'&—!—,})
J l '
The Shannon entropy of the Kw-TE distribution follows by taking the limit of 14(X)
when 6 goes to 1.
(5) Order statistics: From Section 4.5, the moments of order statistics for the Kw-TE
distribution can be written as

where

Mk ji

= (=179 (k+1)a (n—i)
E(X]) dy, .
kzog AMB(,n—a1+1) ]
q

8
xg—?ﬂB{(_kH) pH1—(k+1)a)|p=(k+1)a-

(6) Probability weighted moments: From Section 4.6 we have

5

83

{k+1}abkr B((k+1),p+1—(k+1)a)|p=(k+1)a-

5.2 The Kw-T power (Kw-TPo) distribution
The power (Po) distribution with shape parameter o > 0 and scale parameter $ > 0 has pdf
and cdf given by h (x) =af*x*~ (for 0 < x <B~1) and H (x) = (Bx)% , respectively. Then, the
Kw-TPo density is given by
f(z) = abaf®2® {14+ X—2X(82)"}{(B2)"[1 + A — A (B2)"]}*
x {1 [(82)" [1+ A= A(82)°°}" "

1

This distribution reduces to the transmuted power (TPo) distribution if a=b = 1. For A =0, we
obtain the Kw-Po distribution. For a = 1, it follows as a special case the uniform distribution
defined on the interval (0, 1/B ). Figure 2 displays plots of the density and hazard rate functions
for the Kw-TPo distribution for selected parameter values. These plots reveal that the pdf of the
Kw-TPo can be reversed J-shape, J-shape, concave up or concave down. The hrf can be
decreasing (DFR), increasing (IFR) or bathtub (BT) failure rate shapes.

5.3 The Kw-T log logistic (Kw-TLL) distribution
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The log-logistic (LL) distribution with positive parameters o and 3 has pdf and cdf given
B2 Bt
by h(x) =Ba A xF-1 [1 + (g) ] (for x > 0) and H (x) =1 — [1 + (g) ] , respectively. Then,

the pdf of the Kw-TLL distribution is given by
f@) = abBa~fzh1 [”(E)G] —2{1 ) []_‘_(2)3}_]}&_1
L@ e @
(ol 0T T

The Kw-TLL model reduces to the transmuted log-logistic (TLL) distribution whena =b = 1.
For A = 0, we obtain the Kw-LL model. Plots of the density and hazard rate functions of the
Kw-TLL distribution are displayed in Figure 3 for some parameter values. These plots show
that the pdf of the Kw-TLL model can be reversed J-shape or concave down. The hrf can be
decreasing (DFR), increasing (IFR) or upside down bathtub (UBT) failure rate shapes.

54 The Kw-T Burr X (Kw-TBrX) distribution
The Burr X (also known as generalized Raleigh) distribution with positive parameters o

and B has pdf and cdf given by h (x) = 2aB2xe~ B (1 — e=(B0*1a=1 (for x > 0) and H (X)
=[1- e—(ﬂx)z]“, respectively. Then, the pdf of the Kw-TBrX distribution reduces to

f@) = 2abap?ee ) {1+,\—-2/\ [1_9—”“:] }

o Laqoa—] L2 a—1
x [1-em00=)] {1+A—A[l —e (0] }
aoay O ) 2o aa bh—1
x{‘l—(1+)x—)\{l—e_f-5‘"”] ) [l_e-iﬁxi] } _

The Kw-TBrX distribution includes the transmuted Burr X (TBrX) distribution whena=b = 1.
For A =0, we obtain the Kw-BrX distribution. The plots in Figure 4 show some possible shapes
of the density and hazard rate functions of the Kw-TBrX distribution. Figure 4 shows that the
pdf of the Kw-TBrX model is very fexible. It can be reversed J-shape, left skewed or right
skewed. The hrf can be decreasing (DFR), increasing (IFR) or bathtub (BT) failure rate shapes.
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Figure 1: (a) The Kw-TE density plots. (b) The Kw-TE hrf plots
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Figure 2: (a) Plots of the Kw-TPo pdf. (b) Plots of the Kw-TPo hrf.

6. Maximum likelihood estimation

Several approaches for parameter estimation were proposed in the litera-ture but the
maximum likelihood method is the most commonly employed. The maximum likelihood
estimators (MLEs) enjoy desirable properties and can be used when constructing con...dence
intervals and also in test statistics. The nor-mal approximation for these estimators in large
sample theory is easily handled either analytically or numerically.
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Figure 3: (a) The Kw-TLL density plots. (b) The Kw-TLL hrf plots
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Figure 4: (a) The Kw-TBrX density plots. (b) The Kw- TBrX hrf plots

So, we determine the MLEs of the parameters of the new family of distri-butions from
complete samples only. Let Xi,......X» be a random sample from the Kw-TG family with
parameters A,a,b and ¢ . Let 8 =(a, b, /1,¢T)T be the (px1) parameter vector. Then, the log-
likelihood function for 6, say I= | (0) , is given by

¢ = nloga+nlogh+ Zlogh (x5 @) +Zlogpi

i=1 i=1
Ha—1)> logg + (b —1)3 log(1—qy).
i=1 i=1

where pi=1+4-2AH (Xi; ¢),zi=1+ 1 -AH (Xi; ¢ ) and gi=zi H (Xi; ¢ ).
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Equation (15) can be maximized either directly by using the R (optim func-tion), SAS
(PROC NLMIXED) or Ox program (sub-routine MaxBFGS) or by solving the nonlinear
likelihood equations obtained by dizerentiating (15).

at _ ot at ot at

The score vector components, say U(6) = - = (5’%’5’5)T = (Uq, Up, Uy, Uy, )" are
k
given by
n b n T
Ua= 2+ logg, U=+ log(l—gy),
i=1 i=1
n . n o« H(x;oh)—H (,r:z-x,b]3
1—2H (z:: )
L'_".‘ — Z[ I:'Th(PJ]—‘-I:_ﬂ—]}Z{ }
i Py = s
; , ; 2]
n {H[.‘E{;tﬂ} — H [z, ) i
—:_b—1;|z - —
i=1
and
1 Iy . n ¥ :
Rz H' (x:; db)
Yo = h -'l: ey =oef)
= AT P) i=1 Ps
Ha—1) i H (zi ) {z: — \H (zi: )}

i q;

i=

— H' (z;¢) {z: — \H (z:;¢)}
-1 () '
where h'(x;; ) = oh(x;; $)/ Oh(x;; ¢) and H' (x;; ¢) = IH(xi; )/ 0
Setting the nonlinear system of equations Ua = U, = U; = Uy = 0 and solving them
simultaneously yields the MLE 8 = (a,b,1,$7) of 8 = (a, b, /1,¢T)T.These equations cannot
be solved analytically and statistical software can be used to solve them numerically using

iterative methods such as the Newton-Raphson type algorithms. For interval estimation of the
model parameters, we require the observed information matrix

i=1

U, aa U ab U, al I (’qu
[Jba (]bb l—]b,\ | Jg‘l’
JO@)=—1 J. Uwp Usn U,Iqb
Ve Jop Use Usg

whose elements are given in appendix A.

Under standard regularity conditions when n — oo, the distribution of 8 can be
approximated by a multivariate normal N,(0; J(8)~1) distribution to construct approximate
confidence intervals for the parameters. Here, J(@) is the total observed information matrix

evaluated at & . The method of the resampling bootstrap can be used for correcting the biases of
the MLEs of the model parameters. Interval estimates may also be obtained using the bootstrap
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percentile method. Likelihood ratio tests can be performed for the proposed family of
distributions in the usual way.

7. Applications

In this section, we illustrate the applicability of the Kw-TG family to real data sets. We
focus on the Kw-TE distribution presented in Section 5. The method of maximum likelihood is
used to estimate the model parameters. This section is divided into two subsections. The ...rst
subsection is devoted to study the performance of the MLEs for estimating the Kw-TE
parameters using Monte Carlo simulation for dicerent parameter values and various sample
sizes. In the second subsection, two data sets are used to prove empirically the applicability of
the Kw-TE distribution.

7.1 Monte Carlo simulation

A simulation study is conducted in order to test the performance of the MLEs for
estimating the Kw-TE parameters. We consider three dicerent sets of parameters: I: a=3, b =2,
A=05a=21l:a=2,b=3,A=08,a=3and lll:a=1,b=5 A=-0.7, a= 2. For each
parameter combination, we simulate data from the Kw-TE model with dizerent sample sizes, n
= 50, n =100, n = 150, n = 200, and calculate the MLEs by maximizing the log-likelihood
equation in (15), where h (X) =ae~%**. The process is repeated 1; 000 times and for each set of
parameters and each sample size, the average bias (estimate-actual) and the standard deviation
are evaluated. The results are presented in Table 2. From the results in Table 2, the biases and

standard deviations decrease as the sample size increases. Furthermore, @ and & are
overestimated and b is underestimated for the three sets of the parameters.

Whilst A is underestimated for sets I and Il and overestimated for group I11. In general, Table 2
indicates that the MLE method performs quite good for estimating the Kw-TE parameters.

7.2 Real data

In this section, the Kw-TE model is fitted to two data sets and compared with other existing
distributions. In order to compare the ...ts of the distri-butions, we consider various measures
of goodness-of-fit including the Akaike information criterion (AIC), Bayesian information
criterion (BIC), Hannan-Quinn information criterion (HQIC), consistent Akaike information
criterion (CAIC), maximized log-likelihood under the model ( -2#), Anderson-Darling (A*) and
Cramér-Von Mises (W*) statistics. The measures of goodness-of-fit measures are given by
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Table 2: Bias and standard deviation for yhe parameter estimates

) Actual values Biaz
(Standard deviation)
a b A fat a b A o
0 3 2 05 2 0.7149 -0.3479  -0.1002 0.8820
(1.2519) (1.2811) (0.4187) (1.1529)
100 3 2 05 2 0.4484 -0.3413  -0.0952 0.7944
(0.8483) (1.0106) (0.3439) (1.0066)
130 3 2 045 2 0.2437 -0.15812  -0.0305 0.6731
(0.7962) (0.9632) (0.3413) (1.0083)
200 3 2 05 2 0.1141 -0.1090  -0.0155 0.4657
(0.6740) (0.7185) (0.3137) (0.6734)
20 2 3 08 3 0.0676 -0.1147  -0.2365 1.1136
(0.3050) (1.4579) (0.3230) (1.3991)
w00 2 3 08 3 00722 -0.1105  -0.0831 0.7971
(0.2534) (1.3926) (0.3128) (1.3679)
130 2 3 08 3 0.0385 -0.0889  -0.0430 0.4021
(0.2513) (1.2794) (0.2564) (1.3183)
200 2 3 08 3 00024 -0.0611 -0.0014 0.16350
(0.2149) (1.1083) (0.2547) (0.9223)
a0 1 5 -07 2 01377 -1.6994 0.2057 1.2047
(0.3065) (2.1832) (0.4187) (1.4972)
1m0 1 5 -07 2 0.1323 -1.6320 0.1659 1.0894
(0.3052) (1.6012) (0.3789) (1.2530)
130 1 5 -0.7 2 0.0518 -0.9354 0.0871 0.8195
(0.2087) (1.1508) (0.2750) (1.0414)
20 1 5 -07 2 0.0454 -0.5060 0.0656 0.3960
(0.1614) (0.7658) (0.1953) (0.3134)

AIC = —27 + 2p,BIC = —2? + 2plog(n)
HQIC = —22 + 2plog(log(n)), CAIC = —22 + 2pn/(n —p — 1)

. 9 3 1o . )
Af = (EJFEH) n+;;(2j—1)1%[,,1(_1—,..,1_3_1)]

_ 1 - 2;—1\" 1
Wr=[—+1 2z — —_—
(2n+ ) {Z( 2n ) +12n}'

and

i=1
respectively, where zi = F (y; ), p is the number of parameters, n is the sample size and the
values y;s are the ordered observations. The smaller these statistics are, the better the fit is.
Upper tail percentiles of the asymptotic distributions of these goodness-of-fit statistics were
tabulated in Nichols and Padgett (2006).
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Data set I: Failure times of 84 aircraft windshield

The first data set was studied by Murthy et al. (2004), which repre-sents failure times for a
particular windshield device. The windshield on a large aircraft is a complex piece of
equipment, comprised basically of several layers of material, including a very strong outer skin
with a heated layer just beneath it, all laminated under high temperature and pressure. Failures
of these items are not structural failures. Instead, they typically involve damage or delami-
nation of the non-structural outer ply or failure of the heating system. These failures do not
result in damage to the aircraft but do result in replacement of the windshield. For further
details, see, for example, Murthy et al. (2004). The data consist of 84 observations. These data
were previously studied by Cordeiro et al. (2014) to compare the ...ts of the McDonald Weibull
(McW), beta Weibull (BW), Kumaraswamy Weibull (Kw-W) and Weibull distributions. Here,
we shall compare the ...ts of the Kw-TE model with other models: the McW (Cordeiro et al.,
2014), gamma Weibull (GW) (Provost et al., 2011), BW (Lee et al., 2007), modi...ed beta
Weibull (MBW) (Khan, 2015), transmuted modi...ed Weibull (TMW) (Khan and King, 2013)
and transmuted exponenti-ated generalized Weibull (TExGW) (Yousof et al., 2015)
distributions, whose pdf’s (for x > 0) are given by

3 ) a1a—1
MeW: f(z) = 82 461 o~(az) [1_e—m] }

Bla/c,b)
ey b1
% {1 — [1 — e lax) ] } :
GW- )= BaT/FTY g1 —aat.
@) = v € :

Ba® ... spe—l
BW: £ (z) = e lemted) [1— e

& —5 Y- V- !
MBW: f (z) = £17a"8-1e0(2) {1 _e(2) }

<{1-(1-9) [1 _e—b(%)“"} }_“_*’;
TMW: f () = (a_+ _1{_333—1) e—ms——,-a;s (] — A+ QAe_Q‘”—”.--re)

| E ) sb—1
TExGW: f (z) = abBalzf—le—alax) [1 — ealaz) }

s b
x{1+A—2A[1 _ e—alaz) ] }

The parameters of the above densities are all positive real numbers except for the TMW
and TExXGW distributions for which || < 1.

Data set I1: Breaking stress of carbon fibres

The second real data set consists of 100 observations from Nichols and Padgett (2006) on
breaking stress of carbon fibres (in Gba). Here, we use these data to compare the Kw-TE model
with other models, namely: Weibull Fréchet (WFr) (Afify et al., 2016), TLL, exponentiated
transmuted generalized Rayleigh (ETGR) (Afify et al. 2015), transmuted Marshall-Olkin
Fréchet (TMOFr) (Afify et al., 2015), transmuted Fréchet (TFr) (Mahmoud and Mandouh, 2013)
and Marshall-Olkin Fréchet (MOFr) (Krishna et al, 2013) distributions with pdf’s (for x > 0)
given by
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ulo

)_s] —b—1 e—a [e_(%)e -1}

ETGR: f (_1,} = QQO'.Ser—[_Sx}: {1 4+ A—2) |:] . e_[_3$)::| }

L L ad—1 e 0—1
x [1—e_"6x"_} {1+,\—/\[l—e—l3$" } _;

g8 p—(5+1) =

TMOFr: f(z) = 2

WFr: f(z) = abBalz—0-1e=0(2)’ [1 — e

TFr f(2) =2 (2)"e () [1+a- 2]

MOFr: f(z) =25 ()" e (2) [a +(1- o,-}e—(%)““’] ’

The parameters of the above densities are all positive real humbers except for the ETGR
and TFr distributions for which|A| < 1.

Tables 3 and 4 list the numerical values of 2°, AIC, BIC, HQIC, CAIC, W and A for the
models fitted to both data sets. The MLEs and their corre-sponding standard errors (in
parentheses) of the model parameters are given in Tables 5 and 6. These figures are obtained
using the MATH-CAD PROGRAM.

In Table 3, we compare the fits of the Kw-TE model with the McW, GW, BW, MBW,
TMW and TExGW models. The figures in this table indicate that the Kw-TE model has the
lowest values for all goodness-of-fit statistics (for failure times of Aircraft Windshield data)
among the fitted models. So, the Kw-TE model could be chosen as the best model. In Table 4,
we compare the fits of the Kw-TE, WFr, ETGR, TLL, TMOFr, TFr and MOFr models. It is
shown that the Kw-TE model has the lowest values for all goodness-of-fit statistics (for
breaking stress of carbon fibres data) among all fitted models. So, the Kw-TE model can be
chosen as the best model.

Table 3: Goodness-of-fit statistics for failure times of aircraft windshield data

Model —2¢ AIc BIC  HQIC CAIC A w*

Kw-TE  257.396 265.396 275.32 269.505 266.103 0.3485 0.0578
McW 273.599 283.599 296.053 285.785 284669 1.5906 0.1956
GW T7.721 283.721 291.013 2§6.653 284.021 1.9489 0.2553
BW 207.028 305.028 314751 308.937 305534 32197 0.4652

MBW 200573 309.973 321.727 314459 310342 32606 0.4717
TMW 333.893 J341.893 351.616 345801 342399 11.2047 0.8065
TExGW 352594 362094 374748 367458 363363 62332 1.0079

Table 4: Goodness-of-fit statistics for breaking stress of carbon fibres data
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Model —2 Arc BIC  HQIC CAIC Ar we

Kw-TE 28644 29444 304561 293.657 294861 0.3402 0.0536
WEr 286.55 29455 30497 298767 294971 0.35156 0.05451
ETGR  292.046 300.046 310.5 304263 300.467 0.7413  0.1419
TLL 2949  300.573 305.689 304.036 301.123 0.9643  0.1539
TMOFr 301973 309.973 320393 31419 310394 1.2677 0.2376
TFr 344475 350475 355.20 353.635 350.725 3.1782  0.5559

MOFr 342,328 351.328 359.143 334491 331.578  3.3823 0.5927

Table 5: MLEs and their standard errors (in parentheses) for data set |

Model Estimates
_ a= 0.0965 A= —0.8971 a=1.6346
R LE (0.053) (0.129) (0.35)
b= 65.0082
(76.536)
W a=1.9401 '5'_= 0.306 a= 17.686
(1.011) (0.043) (6.222)
b= 33.6359 7= 16.7211
(19.994) (9.622)
, a=10.1502 3= 0.1632 a= 37.4167
MBW (15.697) (0.019) (14.063)
b= 19.3559 E=2.0043
(10.019) (0.662)
s a= 4.2567 3= 0.1532 A= 0.0978
TExGH (33.401) (0.017) (0.609)
a= 52313 b= 1173.3277
(9.792) (129.165)
BW a= 1.36 3= 0.2951 a= 34.1802
(1.002) (0.06) (14.838)
b= 11.4056
(6.73)
, a= 02722 3=1 A= 0.4685
T (0.014) (5.185 % 107%) (0.165)
F=45012 x 10°°
(1.927 x 107%)
cw a= 2.376973 3= 0.545004 F= 3.534401

(0.378) (5.296 x 107%) (0.665)
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Figure 7: The QQ plots of the Kw-TE model for data sets | (left panel) and for data sets Il (right panel)

Table 6: MLEs and their standard errors (in parentheses) for data set 11

Model Estimates
kwTp 0= 0.0955 A= 0.5369 a= 3.3634 b= 37.2397
(0.362) (7.052) (0.916) (29.423)
WE a= 0.6942 5= 06178 a= 0.0947 b= 3.5178
! (0.363) (0.284) (0.456) (2.942)
= — e = TE2 = E
crom 6=0123 5= 0.3041 8 - 41.3782 A=0.931
(0.088) (0.034) (50.268) (0.069)
3= 3.3041 = 0.6496 a= 101923 A= 0.2936
TMOF ! -
' (0.206) (0.068) (47.625) (0.27)
T 3= 1.7435 7= 1.9315 A= 0.0519
(0.076) (0.097) (0.195)
TLL o= 2.4602 3=4011 A= —0.0006
(0.6484) (0.333) (1.043)
a= 0.5933 5=1.5796 A= 2.3066
MOFr (0.3001) (0.16) (0.489)

It is clear from Tables 3 and 4 that the Kw-TE model provide the best fits to both data sets.
The histograms of the fitted distributions to data sets | and Il are displayed in Figure 5. The
plots support the results obtained from Tables 3 and 4. Figures 6 and 7 display the fitted cdf and
the QQ plots for the Kw-TE model to the two data sets. It is evident from these plots that the
Kw-TE provides good fit to the two data sets.

8. Conclusions
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There is a great interest among statisticians and practitioners in the past decade to generate
new extended families from classic ones. We present a new Ku-maraswamy transmuted-G
(Kw-TG) family of distributions, which extends the transmuted family by adding two extra
shape parameters. Many well-known distributions emerge as special cases of the Kw-TG
family by using special para-meter values. The mathematical properties of the new family
including explicit expansions for the ordinary and incomplete moments, generating function,
mean deviations, entropies, order statistics and probability weighted moments are pro-vided.
The model parameters are estimated by the maximum likelihood method and the observed
information matrix is determined. It is shown, by means of two real data sets, that special cases
of the Kw-TG family can give better ...ts than other models generated by well-known families.
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Appendix A:

The elements of the observed information matrix are;
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