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Abstract: A family of distribution is proposed by using Kumaraswamy-G (Kw -G )
distribution as the base line distribution in the generalized Marshall-Olkin
(GMO) construction. By expanding the probability density function and the survival

function as infinite series the proposed family is seen as infinite mixtures of the

Kw — G gistribution. Series expansions of the density function for order statistics are also
obtained. Moments, moment generating function, Rényi entropy, quantile function,
random sample generation, asymptotes, shapes and stochastic orderings are also
investigated. Maximum likelihood estimation, their large sample standard error,
confidence intervals and method of moment are presented. Three real life illustrations of
comparative data modeling applications with some of the important sub models of the
family reveals the superiority of the proposed generalization over its sub models.

Key words: Marshall - Olkin -Kumaraswamy-G family, Generalized Marshall-Olkin family,
Exponentiated family, Entropy, AIC and Power Weighted Moments.

1. Introduction

Generating new distributions starting with a base line distribution by adding one or more
additional parameters through various mechanisms is an area of research in the filed of the
probability distribution which have seen lot of work of late. The basic motivation of these works
is to bring in more flexibility in the modelling different type of data generated from real life
situation. Recently, there is renewed activity in this area to propose and investigate new families
of distributions. A review paper by Tahir et al. (2015) provides a detail account of important
techniques of generating new families of univariate continuous distributions through introduction
of additional parameters. Some recent contributions since 2015 in this line include the
Kumaraswamy Marshall-Olkin family proposed by Alizadeh et al. (2015), the Kumaraswamy
Transmuted-G family of distributions (Afify et al., 2016), the Weibull generalized flexible
Weibull extension distribution (Abdelfattah et al., 2016), the exponentiated generalized extended
exponential distribution (Thiago et al., 2016), the generalized class of exponentiated modified
Weibull distribution (Shusen et al., 2016), and Marshall-Olkin Kumaraswamy-G family
introduced by Handique et al. (2017), the Modified Burr 11l G family of distributions (Shahzadi
et al., 2017), Marshall-Olkin extended generalized Gompertz distribution (Lazhar, 2017) among
others.

In this article we propose another family of continuous probability distribution as an

extension of the Marshall-Olkin Kumaraswamy-G (MOKW - G) family (Handique et al., 2017)
and generalized Marshall-Olkin ( GMO ) family (Jayakumar and Mathew, 2008) by
incorporating the Kumaraswamy-G (KW —G) family of distributions (Cordeiro and de Castro,
2011) as the base line distribution in the GMO family. This new family is referred to as the
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Generalized Marshall-Olkin Kumaraswamy-G ( GMOKw -G ) family of distribution is
investigated for some its general properties, parameter estimation and real life applications.
The rest of this article is organized in six sections. In section 2 we briefly introduce some

important characteristics of probability distributions, the GMO gngd the Kw -G family of
distributions. The proposed new family is defined along with a genesis in section 3. In section 4
we discuss some general results of the proposed family, while different methods of parameter
estimation along with comparative data modelling examples are presented in section 5. The
article ends with a conclusion in section 6 followed by appendices of various proofs and
derivations.

2. Formulas and notations

The different formulas to be used in the subsequent sections of this article are as
follows:
If T isa continuous random variable with pdf, f (t) and cdf F(t) = P[T <t], then

e Survival function (sf): F(t)=P[T >t]=1-F(t),
e Hazard rate function (hrf): h(t) = f (t)/F (t),
e Reverse hazard rate function (rhrf): r(t) = f (t)/F(t),

e Cumulative hazard rate function (chrf): H(t) = —log [F (t)],

e (p.q,r)™" Power Weighted Moment (PWM): I, o, = Jtp[F(t)]q[l— F(0)]" f(t)dt,

e Rényi entropy: IR(§):(1—8)_1IogJ.f(t)sdt.

2.1 Generalized Marshall-Olkin Extended (GMO ) family of distribution
Jayakumar and Mathew (2008) proposed a generalization of the Marshall-Olkin (MO) family
of distributions (Marshall and Olkin, 1997) by using the Lehman second alternative (Lehmann 1953)

to obtain the sf IfGMO(t) of the GMO family of distributions by exponentiation the sf of MO
family of distributions

FOMOt) =[{a F(t)}{l-a F(1)}]’,—o<t<mw, 0>0,a>0:ad =1-a (1)
where F(t) is the base line sf, & and « are additional shape parameters. When @ =1,
FOMO(t)y = FMO(t) and for =a =1, F®™(t)=F(t) . The cdf and pdf of the GMO
distribution are respectively F®°(t) =1-[{a F (t)}{1l-a F ()}]¢
and fOVot) ={0a’ f()F(t)* }[L-a F ()]’ 2)
Reliability measures like the hrf, rhrf and chrf associated with (1) are respectively given by
heYot) =0 f(t)/ FO)fL-a F(t)} =oh(t)/{L-a F (1)}
reMow) ={0a’ fTOFQ)  I{L-aFO)]"" -a’FU)’L1-a F1)]}
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HEO(t) =—log[a F(t) [{l—a F(t)}]° =-Olog[a F (t) I{l— & F ()}]
where f (t), F (t), F (t)and h(t)are respectively the pdf, cdf, sf and hrf of the baseline distribution.
We denote the family of distribution having pdf in equation (2) as GMO(8, ) which for 6 =1,
reduces to MO(«) .
2.2 Kumaraswamy-G (Kw —G) family of distribution

The Kw — G (a,b) family of distribution of Cordeiro and de Castro (2011) for a baseline cdf
G (t) with pdf g (t) is defined with respective cdf and pdf

FX(t)=1-[L-G(t)*]°, O0<t<o, 0<ab<owo (3)

and (@) =abg(t)G(t)* ' [1-G(t)*]"". (4)
where t >0, g(t)=G'(t) and a>0,b >0 are the shape parameters in addition to those in the
baseline distribution. The sf, hrf, rhrf and chrf of this distribution are respectively given by
F8) =[1-G(®)"]", h*(t)=abg()G®*'[L-G1)*] ™
r'“¢(t) =abg(t)G(t)* '[1-G(t)*]" {1-[1-G(t)*1°} "and H*"®(t) = —blog[1-G(t)*].
3. Generalized Marshall-Olkin Kumaraswamy-G (GMOKw —G) family of distribution

We now propose a new extension of the GMO family by considering the cdf and pdf of

Kw — G distribution in (3) and (4) as the f (t) and F (t) respectively in the GMO formulation in (2)
and call it GMOKw —G family of distribution and denote by GMOKw -G (0, «,a,b) . The
resulting expression for the pdf of GMOKw - G (6, «,a,b) is given by
fNO(t) ={0a’abg () G [L-GM) 1" HL-a[1-G1) 11 ©
,0<t<o,6>0,0>0,0<a,b<w.
The cdf, sf, hrf, rhrf and chrf of GMOKw - G (€, «,a,b) distribution are respectively given by

[ OMOKWE (1) 1 a[l-G(t)*]° ’ and oMo (1) — a[1-G(1)°]° ’ (6)
1-a[1-G()%]° 1-a[1-G()*]"

hrf:  hSMOK"e (1) = f9abg(t) G(t) * 1 G(t)*] WL #[1- G(t)*]"} )

GMOKWG (1) Oa’abg(t)G(t)**[1-G(t)*]""*

rhrf: 1 = bq0+1 0 aqbo — ayb
L-a[1-G1)* '] —a"[1-GO) T [1-a[1-G(1)°]"]

chrf:  HOMOS(t) = —@log[{a[1- G (t)*]"M{l-a[1- G (1) *]"}]
We get for
(i) =1, the MOKw-G(«,a,b) distribution of Handique et al. (2017)
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a[G (1)1°

(ii) a=1, a new family with cdf 1-| ————————
L—a[e ®]°

} is obtained. We refer to this

family as the Generalized Marshall-Olkin exponentiated G-I in short as
GMOexp-G-1(6, a,b) family.

a[l-G(t)?]
1-@[1-G(t)?]

0
(iii) b=1, a new family with cdf l—{ } is obtained. We refer to

this as the Generalized Marshall-Olkin exponentiated G-Il in sort as
GMOexp-G-1(6, a,a) family.
(iv) a=b=1, the GMO (0, ) family of Jayakumar and Mathew (2008)
3.1 Genesis of the distribution
Here we provide a result to show how distributions from this proposed family may arise
stochastically.

Theoreml.

For i=1,2,..,0 where 8>1 is an integer, if {T;;,T;»,...,Tin} be a sequence of i.i.d. random

variables with survival function[1—G(t)*]°, and

i. if N has a geometric distribution with parameter & (0<a <1) independent of T;'s, then

min{min(T;;,Tj,,...,Tin)} is distributed as GMOKw -G (0, «,a,b) or
1<i<6

ii. if N has a geometric distribution with parameter 1/« (@ >1) independent of T;'s, then

min{max(T;;,Tip,...,Tin)} is distributed as GMOKw -G (€, r,a,b) . (For proof see appendix
1<i<g

A1)
3.2 Shape of the density and hazard function

In this section we have plotted the pdf (in fig.1) and hrf (in fig. 2) of some members of
GMOKw -E namely (a) GMOKw-E(0,a,a,b,4) (b) GMOKw-W (0,,a,b,1,8) (c)
GMOKw -L (8,a,a,b, 3,6) and (d) GMOKw - Fr (@, a,a,b,1,5) by taking Exponential (1),
Weibull (4,0), Lomax(f,9) and Frechet (4,0) as the base line G in the GMOKw-G for some
choices of the parameters to study the variety of shapes assumed by the family.

From the plots in figure 1 and 2 it can be seen that the family is very flexible and can offer

many different types of shapes. It offers IFR, DFR even bath tub shaped hazard rate.
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Fig 2: Hazard plots
4. General results for GMOKw -G family

Here some general results for the proposed GMOKw - G (6, «,a,b) family are obtained in

a similar manner as was done in Barreto-Souza et al. (2013), Cordeiro et al. (2014), and Alizadeh et
al. (2015) among others.
4.1 Expansions

We know that (1—2z)™ = Zr(k+ 1), . |7/<1and k>0 (8)
j=0 F(k) '

where I'(.) is the gamma function.
If « €(0,1) using (8) in (5), we can show that

f OMOKWG (1) — 9 ¥ ab g (1) G (1) **[L— G(t) a]bé‘—l [1-&[l-G(t) a]b]—(€+1)

=T Ga)Y AF C (Gan)] ®
-0
— > A L Eeega b)) (10)
2 gt

:i A £K9 t:a,b(j + 0))

, , j+6-1 i ,
WhereAj:Aj(a):( J ](1 a)la?, A=4,(a)=(j+0)4,

From this formulation the GMOKw -G (¢, «,a,b) can be called a non central Kw-G
distribution. Similarly an expansion for the survival function of GMOKw -G (¢, «,a,b)

[for € (0,1) ] can be derived as
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FOMOe (1) =3 41 FX"° (t;a,b(j +6))
=0

Alternatively, we can also expand the pdf as

f EMOKWE (1) = fKWG(t;a,be)i Zj:Bj,k [F"°(t;a,b)]"™ (11)
j=0 k=0
0al(j+6)! ik [ ]
where B, =B, (a)=%(l—a)‘(—l)’ k(kJ:(—l)‘ k[ijj

Another expansion of the density function in (5) can be obtained for o >1 using (8) as

f GMOKIG, () _ £ K% (:2,b0) S C {F " (t;a,b)} (12)
j=0

o0(j+0)(, 1\ (-
where Cj :Cj (a): ﬁ(l—;j = (0{031'4-1 Aj

Corresponding expansion for the survival function of GMOKw -G (8, «,a,b) can be written as
F eMOKWe (1) :[IEKWG(t;a,bH)]Z C;[FKWG(t;a,b)] I where C’j =(a/j+06) Cj )
=0
4.2 Order statistics
Given a random sample T,,T,,..., T, fromany GMOKw - G (6, «,a,b) distribution the pdf

of T,., the i™ order statistics can be derived as (See Appendix A.2 for the derivation)

fi:n (t) = {n!/(i _1)! (n _ i)!}f GMOKwG (t)[l— [F GMOKwG (t)] i-1 [ GMOKwG (t) n—i

i-1 '_1 o )
={n|/(| _1)| (n _ I)l}f GMOKwG (t)z (_1)I [I I ] FGMOKWG (t) n+l—i

Now on using the general expansions of the pdf and sf of the GMOKw - G (¢, «,a,b) distribution,

we get the corresponding pdf of the i™ order statistics for of the GMOKw -G (0, «,a,b) for
a €(01)as

fin () = 1% ,0) XM, [F 0 (Ga,b)] o0+ 13)

j.p=0

= iM;’p f“(t;a,b(j+ p+O(+I1-i+1))]

j.p=0

n-1)i-1(i-1 _ _
where M j =nAjA’p(l_1jZ [ j(—l)lJrl,M},p =M p/(j+p+6(n+1-i+1) and 4,

o\ |

defined and A} are earlier.
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In particular for =1, equation (13) reduces to pdf of the i" order statistics for of the
MOKw -G («,a,b) (Handique et al., 2017) given by

fi, (O = f"°(t;a,b) Z Hi. [F "¢ (t;a,b)] e ,where

j,c=0
n-1)i-1(i-1 I+1 . ,— .
Hjc=nKjmn P4 |Z;‘) | (-1 andx; =x(a)=(j+Dall-a)’; n.=al-a)".
Further using the general expansion of the pdf and sf of the GMOKw - G (6, «,a,b) distribution we

get the pdf of the i™ order statistics for of the GMOKw - G (8, a,a,b) for a >1as

fi;n (t) — f KwG (t, a, b) [lfKWG (t, a, b)] O(n+l-i+1)-1 i ¢j'k{ F KwG (t, a, b)} j+k (14)

j.k=0

where ¢, =nC;d (In:ll]i: -1’ (i —Il] :

k
Ao =kic,2[h(n+| i-1)-KIC[d,.,,, ,and C, , C,defined in section 4.1
0 h=1

Remark1

From the equations in (9) to (14) we see that the density functions of the
GMOKw -G (0, «r,a,b) distribution and that of its order statistics can be expressed as different
Kw — G density multiplied by an infinite power series of cdf of and also as negative binomial
mixture of Kw — G distributions under Lehman alternatives. Thus explicit expressions for the
moments and moment generating function (mgf) of the GMOKw - G (€, «,a,b) distribution and

those of its order statistics in a general set up and for special models may be obtained using the

corresponding results of Kw —G distributions.

4.3 Moments of GMOKw -G
Greenwood et al. (1979) first proposed the probability weighted moments (PWMs), as

expectations of certain functions of a random variable whose mean exists. They defined the

(p,q,r)" PWMof T as

Dpgr = ]gtp[F(t)]q[l_ F(t)] f(t)dt

The PWM are useful in estimating parameters quantiles of generalized distributions and have

low variance and moderate biases, and comparable with the maximum likelihood estimators.
The s™ moment of T for & € (0,1) and « >1, can be obtained from equations (9), (11) and (12),

either as



Subrata Chakraborty 399

E(T) = [ tabg() G(t)a‘ltl—e(t)a]b‘li Aj [{1-G(t)*}°1 7 dt =i AT, je0s OF
—00 j=0 j=0

as E(T®) = jootsabg(t)G(t)a—1[1—e(t)a]b9-1i C; [l—[l—G(t)a]b]jdt=iCjFS’j’H
—o0 j=0 j=0

where I'p,qr = Ttp {1-[1-G(M) I"}{[1-G(H *1°} [abg(t) GO ' [1-G(1) '] ]dt

is the PWM of the Kw -G (a,b) distribution.

Therefore the moments of the GMOKw - G (€, «,a,b) can be expressed in terms of the
PWMs of Kw -G (a,b) .

Similarly proceeding we can derive s" moment of the i" order statistic T, ,in a random
sample of size n from GMOKw -G (¢, «,a,b) for & € (0,1) and « >1, by using equations (13)
and (14) as

E(T%n) = j;OM ivp Ls0, jepronai-isn and E(T%in) = jk20¢j,k Ls, ik omer-isn—

where Aj ,Bj’k, Cj and Mj'p,¢jyk defined in section 4.1 and 4.2 respectively.

4.4 Moment generating function

Here the mgf of GMOKw - G (¢, «,a,b) family is expressed in terms of that of the

exponentiated Kw — G distribution utilizing the results of section 4.1. For example using equation
(10) we can show that
MT (S) = E[eST] — Iest f (t) dt =-— J'estz A; %[IfKWG (t,a,b)] j+6 dt

—® -0 j=0

') o0

-3 A Ie“%{?’% (tab)) dt=3 A M, (5)
i=0 - j=0

where M, (S)is the mgf of a Kw — G with parametersa and b(j+ &) distribution.

4.5 Entropy

In this subsection we present results on Rényi entropy and relative entropy.
4.5.1 Rényi entropy

The entropy of a random variable is a measure of uncertainty variation and has been used in
different situations in science and engineering. Here, we give the Rényi entropy for the

GMOKw -G (4, a,a,b) distribution. The Rényi entropy of a random variable with pdf f (t)is

defined as
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1.(8) = (1-5)™ Iog(Tf(tth] ,

where 6 >0 and ¢ # 1. For furthers details, see Song (2001).
When « € (0,1) using expansion (8), in (5) we can write

.I: GMOKwG (t)b — [{ea 6 a.b g (t)G(t) a-1 [1_ G(t) a ] bH—l}/[l_ 67[1_ G(t) a] b] 6‘+l]5
=[0a’abg(G®M) {1-G(1)}*"]° L-a[L-G(1)*]'] "™

_0°a”[abg(®)GM) " {I-GM I " & o [{1-G(®)"FY’
= 601 1] jz(;(l a) ' T[5O+1D) + j] i

Thus for @ € (0,1) , the Rényi entropy of GMOKw - G (6, «r,a,b) can be obtained as
1 () = (1—5)'1|09[ > I[abg(t)G(t) -G L-G ()] dt]
ji=0

where L; =L,(a) ={0°a”(1-a) ' T[5(@+1) + jI}{I[6(6 +1)] |}
Again the density function (5) can be expressed as
M (1)” = [{9abg(t)G(1) * “[L-G(1) *1"*/a} L —{(a ~D[L-[1-G()*] T} &] "]

S5

For « > 1, using expansion (8) we get,

= {0abg (GO [1-G(1) 1" /e}1-{(a ~D[1- - G®)* 1 T}/l ™}

_[0abg(®)G®)* ' [1-G(t)* 1]’ < o -I-6m°1°1
= a5+j1—~[5(0+1)] JZz(;r|:5(6""1)"'1](05 1) ¥

Thus for @ >1, the Rényi entropy of GMOKw -G (4, «,a,b) also can be derived as
Iz (8) = (1-6)"log [Z R, I[abg(t)G(t)a'l[l—G(t)a]b"‘ll5[1—[1—G(t)a]b] : dt]
=0 %

where R, =R (@) ={0°(a-1)'T[5(0+1)+ j[}/{’ ' T[5(0+1)] j}.

4.5.2 Relative entropy

Given two distributions with pdfs f (t) and f,(t) the relative entropy (RE) between them is

defined as

RE(f,, f,) = E, (log{f,(0)/ f,)})= [ (log{f, )/ £, (}) F,(®) dt.

This is also referred to as Kullback-Leibler divergence (distance) (Kullback, 1959).

RE is a measure of distance between f,(t) and f,(t) and measures inefficiency of selecting f,

for modeling when f, is the true distribution. We have estimated RE (GMOKw-G, f,) where

f, is a competing distribution for all the data fitting examples considered in section 5 in

Tables 1, 2, 3,4, 5 and 6.



Subrata Chakraborty 401

4.6 Quantile function, median and random sample generation

For GMOKw -G (6, @,a,b) the p"™ Quantile t, is derived by solving the equation
FGMOKWG (tp) — p as

t, =G [1-{[1- p]"" Ha+a[1- p]"" B 1"
Now a random number ‘t’ from GMOKw - G (€, «,a,b) can be easily generated starting with a
uniform random number “ u * using the formula
t=G[1-{[1-u]"" Ha+a[1-u]""}}" 1"
Median: t=G *[1-{[1-0.5]"? {a+a[1-0.5]"}}"" 1"
e.g. considering the exponential with parameter A > 0, as the base line distribution having pdf and
cdf as g(t: A) = Aexp(—At), t >0 and G(t: 1) =1—exp(—At), respectively, the p™ quantile t, of
GMOKw - E(8,a,a,b, 1) is seen as
t, ==/ 2)log [1-[1-{[1- p]"’ fa+a[1- p]""}}""1""].
4.7 Asymptotes and shapes

In this section we study the asymptotic shapes of the proposed family following the methods
followed in Alizadeh et al., (2015).

Proposition 2.
The asymptotes of pdf, cdf and hrf of GMOKw - G (€, «,a,b) in equations (5), (6) and (7)

as t — 0 are given by

f(t)~0abg(t)G(t)* ' /a as t—>0
F()~0 as t—>0
h(t) ~@abg(t)G(t)* '/« as t—0

Proposition 3.
The asymptotes of pdf, cdf and hrf of GMOKw - G (4, «,a,b) in equations (5), (6) and (7)
as t — oo are given by
f(t)~6a’abg(t)[1-G(t)*]** as t— o0
F(t) ~1-a’[1-G()*]" as t— oo
h(t) ~ @abg(t)[1-G(t)*]™ as t—>o
The shapes of the pdf and hrf can be studied analytically. The critical points of the pdf of
GMOKw -G (0, «r,a,b) are the roots of the equation.

dlog[ f ()]/dt = g'(1)/9(t) +{(a-D) g(}/G () +{aL-bO) g G®* F/{L-G()*}
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—{(6+) @abg®)GH)**[1-G(1)* 1" }{1-a[L-G(t)*]"}=0 (15)
The equation (15) may have more than one roots. If t =t;is a root of (15) then it corresponds

to either a local maximum, or a local minimum or a point of inflexion depending on whether

A(t,) <0, A(t,) >0 or A(t,) =0 where A(t)=d?®/dt*log[f (t)] . Here

) ={g®9"® -[g' 1%} 9®) > +{(a-1) Gt g'(t) - 9(t) 3/G(t)
+a(l-bO{L-GM) I gMGH)* " +(@a-1)g(t)*G(t)* > +ag(t) *G(t) * {1 - G(t)*} ']
_(@+Daab[g' ()G ' [1-G1)*1""] (9+Daabl(a-)gt)*GM)**[1-G(t)*1" "]
1-a[1-G(t)?*]° 1-a[1-G(t)?*]°
+(6?+1)§ab[a(b—1)_g(t)ZG(t)Zab‘z[l—G(t)a]b‘z]+(0+1)[Eabg(t)G_(t)a‘l[l—Gb(t)a]b‘l}z
1-a[1-G(t)%] 1-a[1-G(t)%]
—{9®) 9"®) -[g' 1%} 92 +{(a-1) G1) g'(t) - 9 (t) >}/G(t)
+a(l-bo)| gOGM ™ @-Dg®’e®™*  ag®’ G 2“]
1-G(t)? 1-G(t)° [1-G(t)*]
_(@+)ag'(t), a1b | GMOKWG (0+1)
290 [1-G()*]°h (t) —
+{(0+1)/0Yxra(b-1) g(t)G(t) () {1- G(t) *}° T h MOC )

a(@a-1g)G(t) "[1-G(1) 1" h®*e (1)

+H{(0+2)/0°HI1-G(1)*1°@ h°MOK"C (1)}
The critical points of hrf are the roots of the equation

dlog[h(t)] _ g'(t) +(a-1) 9@ ag(t)G()™" aabg(t)GH)""[1-G(1)°]"" _
dt g(t) G(t) 1-G(t)* 1-a[1-G(t)*]°

0 (16)

Here also the equation (16) may have more than one root. If t =t;is a root of (16) then it

corresponds to either a local maximum, or a local minimum or a point of inflexion depending on

whether
7(t,) <0, y(t,)>0 or y(t,) =0, where y(t) =d?log[h(t)]/dt*. Here
y® ={g®)g"® -[g' 11?3 9®) 2 +{(a-D G(t)g'() - g(t) 2}/G(t)

a[ IO @-DIO*CM**  agt)*6H*”
1-G(t)° 1-G(t)° [1-G(t)*]?

]

_ @ab[g'()GM)*'[1-G(M) 1" @ab[(a-)g(t) *GH)**[1-G()*]""]

1-a[l-G()]° 1-a[1-G()°]°

+Mb[a(b—l)QJ(t)ZG(t)za’z[l—G(t)"‘]b’Z]+ Zabg®)GM [1-61° 1|
1-a[1-G(t)*]° 1-a[1-G(t)?]°

={g®g"(t)-[g'®1*}/ 9(t) > +{(@-1) G g'(t) - 9 (t) >}/G(1)
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+ap JOCO™  @-DgO°CO™* a0 GO TGO [y g )eqoporons
1-G(t)* 1-G(t)* [L1-G(t)] f9(t)

- (/o) (a-1)gt)G(t) () [1-G(t) *]° hEMOKYC 1)

T8z ab-1)g)G(1) * (1) {1-G(t) 2}* Th MOKWE 1) + (1/ 0 *){[1- G(t) *1° @ h®"*""° (1)}

4.8 Stochastic orderings

Here we use the concept of stochastic ordering (Shaked and Shanthikumar, 2007) to derive

different  ordering  conditions on  parameters for random  variables  following
GMOKw -G (0, «,a,b) distributions.
Let X and Y be two random variables with cfds F and G, respectively, survival functions

F=1-F andG =1-G, and corresponding pdf’s f, g. Then X is said to be smaller than Y in the

likelihood ratio order (X <. Y ) if f(t)/g(t) is decreasing int > 0; stochastic order (X <, Y) if
F (t)<G(t) forallt > 0; hazard rate order (X <, Y ) if F(t)/G(t) is decreasingint>0;

reversed hazard rate order (X <., Y ) if F(t)/G(t) isdecreasingint>0. These four stochastic

rhr

orders are related to each other,as X <y Y X < Y SI X < Y= X <Y

Theorem 2:

Let X ~GMOKw -G (6,4, a,b) and Y ~GMOKw -G(0,a,,a,b). If o, <«,,
then X <Y . (See Appendix A.3 for a proof).

—Ir

As a consequence it follows that X <p, Y, X <Y and X <Y



404 THE GENERALIZED MARSHALL-OLKIN-KUMARASWAMY-G FAMILY OF DISTRIBUTIONS

5. Estimation

5.1 Maximum likelihood method

The maximum likelihood method is the most widely use method of parameter estimation having many
desirable properties. This method provides ease of derivation of confidence intervals using
asymptotic normality and also likelihood ratio test to discriminate nested models. Here we consider

the estimation of the unknown parameters by maximum likelihood.

Lett= (tl,tz,...,tn)T be a random sample of size n from GMOKw -G (4, «,a,b) with parameter

vectorn = (6’,0{,a,b,|3T)T , Where B = (ﬂl,ﬁz,...,ﬂq)T corresponds to the parameter vector of the

baseline distribution G. Then the log-likelihood function for n is given by

?=1(n) = nloge+nHloga+nIog(ab)+anlog[g(ti,[i)]+(a—1)zn: log[G (t;,B)]
+(00-1 Y l0g[1-G(,B)'T-(0+1) Y log[1-@[1-G (¢, ) ]'] @

The normal equations can be obtained by taking the first derivatives of the log-likelihood function

with respect to 8, «,a,bandp and equating them to zeros as follows:

The components of the score vector Un =(U,U,U,U,, UﬁT )T

_ot_n o 10alL_ G (t B T— S loalL— 2 1- G (t. §)21°
U9_89_9+nloga+bélog[l G (t;,B)°] élog[l @[1-G(t.B) °1"]
_ol _no [1-G(t.B)]1°
U“_aa_ a O+ )Z a [1-G(t,B)°]°
_ot _n G (t,,B)* log[G (t;,B)]
Ua—aa—a+;log[G(t,,B)]+(1 be); L G.p)
_(0 1)Zba[1 G(;-HB) ]blG(tUB) Iog[G(tHB)]
a[1-G(,.p)°1°
or_n a[1-G(t,B)"1° log[1-G (t;.B) ]
U, = ab_b+9,z(;log[1 G(t,,B)]+(6’+1)Z L Al G.p) T
ol g‘ﬁ)(t.,li) G (t.B) CbO)S aG(t,B)* 'GP (t,.B)
g‘ g (t,.B) - )g G(t,B) + )Zo: 1-G(t.B)°
ba[l- G(t,B) “1""aG(t,.B) 'GP (1,.B)
_ 9 1 i i i
6+ )Z a [1-G(t.p)°]°

Setting these equations to zero U,l =U,U,U,Vu, UﬁT )T =0 and solving them simultaneously

yields the maximum likelihood estimate (MLE) 7= (0,&, &b, p7)" of n=(0,a.a,b,p")
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Because of its complex form the log likelihood is maximized numerically by employing global
optimization methods available with software’s like R, SAS, Mathematica.
5.2 Asymptotic standard error and confidence interval for the mles

The asymptotic variance-covariance matrix of the MLEs of the parameters can obtained by

inverting the Fisher information matrix 1(n) which can be derived using the second partial
derivatives of the log-likelihood function with respect to each parameter. The i j " elements of I, (m)
aregivenby I, =—-E[0°I(m)/on,0n,1, i, j=12--3+q

While the exact derivation of the above expectations may not be tractable, one can estimate

I, (n) by the observed Fisher’s information matrix in (m) = (iij) , Where

Iijz(—aZI(n)/ﬁniénj)”:ﬁ .0, j=12--3+q
Under certain regularity conditions on the parameters as n — co the asymptotic distribution

of \/F(ﬁ—n) is N, (O,V,) whereV, =(v;) = I-*(n) . The result remains valid if V, is replaced
by\7n =17 (1) . An approximate standard error and (1—y/2)100% confidence interval for the mle of

j" parameter n ; are respectively given by \/ﬁ andﬁj iZy/Z\/ﬁ , Where Z_, is the y/2
point of standard normal distribution. We provide the MLE method its large sample standard errors,
confidence interval in the case of GMOKw — E(8,«,a,b, 4) in Appendix A.4.
5.3 Estimation by method of moments

Here moments are not in closed form, so we use the PWMs following (Barreto-Souzai et al.,
2013) to provide an alternative estimation method. Now

a’0abg(t)G(t)* [1-G ()]

— bq6+1 dt
[1-a[1-G(1)°]]

E[1-2[l-G®)°I] = [{[ 1-a[L-Gt)' ]}

= [{a?0abg®G®* -G 1)1 Y 1-a1-6(1)*1°1 dt

—00

Let, u=1-a [1-G(t)*]" then du=aabg(t)G(t)*'[1-G(t)*]"dt
1 1
- (Oa‘g/ﬁ)j((l—u)/ﬁ)(9_1)/u9 du=6 (a/a)eju—" @-u)?du

1
- O(a/ﬁ)‘g_[u_l @/u-1)°" du

a

Suppose 1/u—1=v = —du = u’dv
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~ a 0 (Ua)-1 ool ~ a 0 (U a)-1 . i
= Q(EJ .(l)- (l+ V) \' dv — 0{5) ; .(l)' ( 1) dv
=0(a] ;( 1) |:9‘L:'|Ij| =9(—a/67)9 ;[(_CT/Q)HH/(Q‘F')]

= ()0 [(~a/a) (0+D)] , a>1/2

i>0
In particular we get the following result for the MOKw - G(«,a,b) (Handique et al., 2017) by
putting @ =1.
E[1-a[1-G(t)*]’]

(2l ol 2] R o)) e

Again

a’0abg(t)G(t)*[1-G(t)*]"*

— bq6+1 dt
[1-a[1-G(t)"]]

E{[ 1-2[1-G®)' T} = [{[ 1-a-G®)' T

= [{a”0abg(GH)* ' 1-6 ()1 Y/ [1-Z[1-6(1) *1° 1" dt

—00

Substituting u =1—-a [L-G(t)*]° weget du=aabg(t)G(t)**[1-G(t)*]"*dt

j (- U)/a ) 4 —9( jju““(l u)’* du :e(g B, (v-0,0)
a

1
fora<1,v>6 where B (m,n)= Iu ™1 (1—u)"du is the incomplete beta function.

For & =1 we get the corresponding result of MOKw - G(«, a,b)
E{{1-a[1-GWU)*TI¥ =al-a" N a(v-1).
Therefore we have

0’0 [(-ala)' /(@+1)] forO<la>1/2,v=1
E[L-a[1-G®)T]']= (18)
O(ala)’B,(v-6,0) , fora<lv>0,v=23,..

Given a random sample t;,t,,...,t,, from a population with survival function (6), the parameters can
then be estimated by solving the following equations

1 D)0 [(-ala) /(@+D)] forO<la>1/2,v=1
HZ[[l—ﬁ[l—G(ti)a]b]VF i20
i=L 0(ala)’B,(v-6,0) , fora<lv>6,v=23,.
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5.4 Real life applications
We consider the following three real life data sets to illustrate the suitability of the proposed

GMOKw -G (4, a,a,b) distribution distributions considering Weibull and exponential as our G.
Data Set I: The first data set is a subset of data reported Bekker et al. (2000) which corresponds to the

survival times (in years) of a group of patients given chemotherapy treatment alone. This data consists
of survival times (in years) for 46 patients.
Data Set I1: In this application, we work with the survival times (in days) of 72 guinea pigs infected
with virulent tubercle bacilli, observed and reported by Bjerkedal (1960).
Data Set I11: This data set consists of 100 observations of breaking stress of carbon fibres (in Gba)
given by Nichols and Padgett (2006).

Here we have compared the proposed GMOKw - G (€, «,a,b) distribution with it some of
its sub models namely the Marshall-Olkin Kumaraswamy-G ( MOKw — G ), Kumaraswamy-G
(Kw —G) and Marshall-Olkin-G (MO — G) and also with beta-G (B —G) model considering G as

Weibull and Exponential. The mles of the parameters are estimated through numerical maximization
of log likelihood function. We have also provided their standard errors and 95% confidence intervals
using large sample approach (see appendix A.4). The model with lowest AIC (Akaike Information

Criterion) is selected as the best in the lot. AIC =2k — 21, where k is the number of parameters in
the statistical model and | is the maximized value of the log-likelihood function under the considered
model.
Likelihood Ratio Test for nested models:
The GMOKw - G (0, «,a,b) distribution reduces to MOKw - G («, a,b)
when #=1,t0 Kw-G(a,b) if a =6=1,t0 MO-G(«) for a=1b=16=1.
Here we have employed likelihood ratio criterion to test the following null hypothesis:
(i) Hg:0=1, that is the sample is from MOKw -G («,a,b)
Hy:0+#1, that is the sample isGMOKw -G (0, «,a,b) .
(i) Hgy:0=a =1, that is the sample is from Kw -G (a,b)
H;:0#1la #1, that is the sample isGMOKw - G (¢, «,a,b) .
(iii) Hy: 6= a=1b =1, that is the sample is from MO -G (&)
Hi:0#lLa=1b=1,, that is the sample isGMOKw - G (6, «,a,b) .
Writing = (6,a,a,b,p")" the likelihood ratio test statistic is given by LR =—2In(L(")/L(%)),
where 1" is the restricted ML estimates under the null hypothesis H,and 7jis the unrestricted ML

estimates under the alternative hypothesis H,. Under the null hypothesis H, the LR criterion follows
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Chi-square distribution with degrees of freedom (df) (df 5;; —df ,,;1) - The null hypothesis is rejected

for p-value less than 0.05. Here ™ = (1,5) when our G is Weibull (1,8) and B’ = (4) when our G
is Exponential (1).

MLEs and standard errors and 95% confidence intervals (in parentheses) of the parameters for
the fitted model along with the AIC values and Likelihood ratio statistic are presented in Table 1, 2, 3,
4, 5 and 6. The distributions belonging to GMOKw - G (€, «,a,b) family generated the lowest
values of the AIC in all the examples. Moreover LR test rejects all the sub models in favour of the
GMOKw -G (4, «r,a,b) except in one case for data set 111 (see table 5) when MO - W (a,4,0) is
chosen ahead of GMOKw - W (4, «,a,b, 4,0) .

Plots of the fitted densities and fitted cdf’s along with the observed ones presented Figure 3, 4,
5, 6, 7 and 8 also show that the GMOKw - G (8, r,a,b) family closest fit to all the data sets

considered here.

Table 1: MLEs, standard errors, confidence intervals (in parentheses) along with AIC, R.E. and LR(P-value)

values for the data set I.

Models 2] a a b A ) AIC RE LR
(P-value)

MO-W 0.449 0.418 1.229 121.74 1.62 8.10

(e, 2,6) (0.451) (0.308) (0.247) (0.04)
(0,1.33) (0, 1.02) (0.74,1.71)

Kw-W 2.160 0.208 4521 0.836 123.44 1.06 7.80

(a,b,2,6) (1.584) (0.204) (3.900) (0.196) (0.02)
(0,5.26)  (0,0.61)  (0,12.16) (0.45,1.22)

MOKw-W 0.240 0.737 0.322 0.562 1.598 125.62 1.56 7.98
(er,a,b,1,6) (0.367) (0.938) (0.504) (2.102) (1.658) (0.004)
(0,0.95) 0,257)  (0,1.31) (0, 4.68) (0, 4.84)

GMOKw-W 0.004 0.518 0.244 0.111 4,112 119.64
(6,c,a,b,4,06) (0.059) (0.002) (0.012) (0.113) (0.004) (0.005)
(0.12,0.35) (0.00008,0.0079) (0.49,0.53) (0.02,0.46) (0.10,0.11) (4.10,4.12)
B-W 2.024 0.467 0.695 124.14 1.62
0,a,4,5) (2.856) (0.807) (0.555)
(0,7.62) (0, 2.04) (0,1.78)
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Fig: 3 Plots of the (a) observed histogram and estimated pdf’s and (b) observed ogive and estimated cdf’s for the
MO -W, Kw-W, B-W, MOKw — W and GMOKw — W models for the data set I.

Table 2: MLEs, standard errors, confidence intervals (in parentheses) along with AIC, R.E. and LR (P-value)

values for the data set I.

Models o a a b A AIC RE LR
(P-value)
MO-E 1.022 0.752 120,54 2.11 7.92
(a, A) (0.511) (0.213) (0.04)
(0.02,2.02) (0.33,1.16)
Kw-E 2.163 0.082 9.001 121.86 2.71 7.24
(a,b, 1) (0.539) (0.012) (0.002) (0.03)
(1.10,3.21) (0.05,0.11)  (8.99,9.004)
MOKw-E 0.851 2.218 0.083 8.811 122.64 151 6.02
(a,a,b, 1) (0.501) (0.550) (0.026) (2.364) (0.01)
(0,1.83) (1.14,3.29) (0.03,0.13) (4.17,13.44)
GMOKw-E 0.559 0.382 1.427 0.852 1.331 118.62
(6,cx,a,b,1) (0.494) (0.408) (0.666) (0.652) (0.992)
(0,1.52) (0,1.18) (0.12,2.73) (0,2.12) (0,3.27)
B-E 0.119 5.110 --- -- 7.384 120.54 1.74 ---
0,a,1) (0.019) (8.449) (3.814)

(0.08,0.16) (0, 21.67) (0,14.85)
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Fig: 4 Plots of the (a) observed histogram and estimated pdf’s and (b) observed ogive and estimated cdf’s for the

MO -E, Kw—-E, B-E, MOKw — E and GMOKW — E models for the data set I.

Table 3: MLEs, standard errors, confidence intervals (in parentheses) along with AIC, R.E. and LR (P-value)

values for the data set II.

Models 6 a a b A ) AlC RE LR
(P-value)
MO-W - 0.032 0.009 2.783 203.96 1.84 7.84
(a,4,0) (0.025) (0.007) (0.264) (0.04)
(0, 0.08) (0,0.02) (2.26,3.30)
Kw-W 4,527 1.874 1.025 0.775 207.32 3.27 9.20
(a,b, 4,6) (5.481) (4.077) (0.591) (0.700) (0.01)
(0,15.26) (0, 9.86) (0,2.18) (0,2.14)
MOKw-W 0.111 2.553 0.994 0.299 1.278 207.62 1.64 7.50
(a,a,b,4,8) (0.187) (1.829) (1.389) (0.414) (0.703) (0.006)
(0,048)  (0,6.13) (0, 3.71) (0,1.11) (0, 2.65)
GMOKw-W 1.394 0.100 1.787 0.369 0.247 1.665 202.12
(6,a,a,b,4,5) (0.441) (0.026) (0.373) (0.628) (0.010) (1.654)
(052,2.25)  (0.04,0.15) (1.05251) (0, 1.59) (0.22,0.26) (0, 4.91)
B-W 0.712 3.253 - 1.271 1.041 207.38 3.28
0, a,1,6) (1.077) (2.227) (0.955) (0.424)
(0, 2.82) (0, 7.61) (0,3.14)  (0.20,1.87)
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Fig: 5 Plots of the (a) observed histogram and estimated pdf’s and (b) observed ogive and estimated cdf’s for the

MO -W, Kw-W, B-W, MOKw — W and GMOKw — W models for the data set I1.

Table 4: MLEs, standard errors, confidence intervals (in parentheses) along with AIC, R.E. and LR (P-value)

values for the data set II.

Models 2] a a b A AIC RE LR
(P-value)
MO-E 8.778 1.379 210.36 358 13.12
(a, 2) (3.555) (0.193) (0.004)
(1.81,15.74) (1.00,1.75)
Kw-E 3.304 1.00 1.037 209.42 2.05 10.18
(a,b, 1) (1.106) (0.764) (0.614) (0.006)
(1.13,5.47) (0, 2.49) (0,2.24)
MOKw-E 0.008 2.716 1.986 0.086 209.44 2.47 8.20
(a,a,b, 1) (0.002) (1.316) (0.784) (0.048) (0.004)
(0.004,0.01) (0.14,5.29)  (0.449, 3.52) (0,0.18)
GMOKw-E 1.616 0.005 2.855 1.386 0.075 203.24 ---
(6,c,a,b, 1) (1.086) (0.003) (0.504) (6.534) (0.151)
(0,3.74) (0,0.01) (1.86, 3.84) (0,14.19) (0,0.37)
B-E 0.807 3.461 --- -- 1.231 207.38 1.97 ---
0,a,1) (0.696) (1.003) (0.855)

(0, 2.17) (1.49,5.42) (0, 2.91)
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Fig: 6 Plots of the (a) observed histogram and estimated pdf’s and (b) observed ogive and estimated cdf’s for the

MO -E, Kw—-E, B-E, MOKw — E and GMOKwW — E models for the data set I1.
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Table 5: MLEs, standard errors, confidence intervals (in parentheses) along with AIC, R.E. and LR (P-value)

values for the data set Il1.

Models 2] a a b A ) AIC RE LR
(P-value)
MO-W 0.692 0.031 3.009 297.96 1.35 6.70
(e, 2,6) (0.677) (0.039) (0.601) (0.08)
(0,2.02) (0,0.10) (1.83,4.18)
Kw-W 2.426 3.359 0.168 1.522 299.42 1.45 6.16
(a,b,2,6) (1.297) (3.054) (0.148) (0.573) (0.04)
(0, 4.96) (0,9.34) (0,0.49)  (0.39, 2.64)
MOKw-W 1.564 1.219 0.177 0.528 2.466 299.74 1.98 4.48
(a,a,b,1,6) (0.550) (0.108) (0.031) (0.002) (0.003) (0.03)
(0.48,2.64) (1.01,1.43) (0.11,0.24) (0.52,0.53) (2.46, 2.47)
GMOKw-W 0.345 1.482 1.015 0.385 0.803 2.222 297.26 -
(6,a,a,b,A,06) (0.169) (0.440) (0.071) (0.168) (0.003) (0.004)
(0.01,067)  (0.62,2.35) (0.87,1.15) (0.05,0.71) (0.79,0.81) (2.21,2.23)
B-W 1.339 1.342 0.074 2.372 298.30 1.41
6,0, 1,0) (6.288) (0.757) (0.273) (0.850)
(0,13.66) (0,2.83) (0,0.61)  (0.71,4.04)
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Fig: 7 Plots of the (a) observed histogram and estimated pdf’s and (b) observed ogive and estimated cdf’s for the
MO -W, Kw-W, B-W, MOKw — W and GMOKw — W models for the data set I1I.

Table 6: MLEs, standard errors, confidence intervals (in parentheses) along with AIC, R.E. and LR (P-value)

values for the data set I11.

Models 2] a a b A AIC RE LR
(P-value)
MO-E 75.663 1.535 299.04 251 18.78
(a, A) (33.464) (0.153) (0.0003)
(10.07, 141.25) (1.23,1.83)
Kw-E 3.439 48.150 0.129 296.64 1.23 14.38
(a,b, 1) (0.552) (14.213) (0.103) (0.0007)
(2.35,4.52) (20.29, 76.01) (0,0.33)
MOKw-E 2.566 3.226 9.065 0.295 290.18  1.08 5.92
(a,a,b, 1) (5.709) (2.177) (42.865) (0.834) (0.02)
(0, 13.76) (0, 7.49) (0, 93.08) (0,1.93)
GMOKw-E 1.614 6.891 3.524 3.363 0.549 286.26
(6,,a,b,4)  (1.215) (2.893) (2.167) (12.168) (1.217)
0,3.99)  (1.22,12.56) 0,7.77) (0,27.22) (0, 2.93)
B-E 16.575 5.926 -- 0.119 292.56 1.64 ---
0,a,1) (13.981) (0.825) (0.090)

(0, 43.97) (4.31,7.54) (0, 0.29)
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Fig: 8 Plots of the (a) observed histogram and estimated pdf’s and (b) observed ogive and estimated cdf’s for the
MO -E, Kw-E, B-E, MOKw — E and GMOKwW — E models for the data set I11.

6. Conclusion

A new family of distribution is introduced and its mathematical properties of including order
statistics, entropies, and explicit expansions for the order statistics, moments, quantile function,
generating function, stochastic ordering, asymptotes, shapes, parameter estimation and data fitting are
investigated. Numerical applications with three real life data sets have shown that the distributions
from GMOKw — G family provide improved fitting over its sub models.
Acknowledgment Both authors would like to thank the reviewers and the editor for their comments

and suggestions.
Appendices
A.1 Proof of Theorem 1

Let T,,T,.., T, be a sequence of i.i.d. random variables with survival function[1l—G(t)*]°, and
suppose N has a geometric distribution with parameter p independent of T; ’s. Then it can easily
shown that W,=min(T,,T;,...,T;y) and V,=max(T;,T;,...T,y) are distributed as
MOKw -G(p, a,b) and MOKw -G(p™, a,b) respectively.

i. For 0 < <1, if N has a geometric distribution with parameter « ,then

P[min{w,, W,,...,W_}>t]=P[W, >t] PW,>1t]..P[W, >1]

_ ﬁ PIW, >t] = [FYO% (t: ¢, a,b0)]” = [a[1-G(1) 2 ]°/1- @ [1-G(t) *]° 1%

This is the sf of GMOKw - G(8,,a,b) .

ii. Fora >1, if N has a geometric distribution with parametera’l, then
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P[mindV,, V,, .., V,}>t]=P[V, >t] P[V,>1]..P[V, > 1]

TTPIV, >0 =[F" (5 ,a,b))° =[a[1-G(0)*1° [i-a[1-G1) 1°1’ [+ (@) =]

i=1
A.2 Derivation of pdf and their expansions for order statistics

Suppose T,,T,,..T, is a random sample from any GMOKw - G distribution. Let T,
denote the i ™ order statistics. The pdf of T, can be expressed as
fi;n (t) :{n|/(| _1)| (n _ |)|}f GMOKwG (t) [1_ IfGMOKWG (t)] i-1 lfGMOKWG (t) n-i
={nY/(i —1)! (n— i)} f OMORWC (1) F OMOKWE () Ii {(-DYNGi -1 -1} [-FeVOC ()]’
1=0

:{nl/(l _1)| (n _ |)|}f GMOKwG (t)i (_1)I {(l _l)|/||(| _I _1)| } IfGMOKWG (t) n+l-i

Now using the general expansion of the GMOKw — G distribution pdf and sf we get the pdf

of the i "™ order statistics for of the GMOKw — G for a € (0,1) as

fin (©) ={nY/ (I -1t (n—D)BL £ (t;a,b)_i AF e (t;a,b)] ]

i-1 i _1 0 o )
x> (-1)' [ I j[z AL [F " (t;a,b)]P*""*'"V ] where 4; and A are defined earlier.
1=0

p=0

={nY/(i —1)! (n—i)!}ii [i _IlJ (D' e (t;a,b)ii A; A [F" " (t;a, by rpeont

j=0 p=0

— f KwG (t, a, b) Z M i [IfKWG (t, a, b)] j+p+o(n+l-i+1)-1

j.p=0

=— i [M ip /(J + p+0(n+ I—i +]_))] %[IEKWG(t;a,b)] j+p+O(n+l-i+l)

j.p=0

= SIMj, £ ab(j+ p+on+1-i+1)]

j.p=0

n-1\& (i-1 : _
WhereMj'p:nAjA'p(i_lJIZO:( | j(—l)' and M| =M, /(j+p+0(n+l-i+1))

For6 =1, it reduces to pdf of the i"" order statistics for of the MOKw — G(«,a,b) given by

o) = £ Ga,b) Y H [F " (ta,b)] o

j,c=0

where H; . =nk;, Uc{in__ll]ii (i IlJ(_l)l and x; = x;(a) = (] +Dal-a) ;i =al-a)f
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Again using the general expansion of the GMOKw — G distribution pdf and sf we get the pdf
of the i™ order statistics for of the GMOKw — G for  >1 as

f0 O ={G-D! (-DH TS (Gab0)Y. C AP Ga b} Y, (' {i-DYI (-1-DB
><{[IEKWG (t,a,b)]e i C|; [ FKWG (t;a,b)]k}n+l_i

={nl/(i -1 (n—i)B{ f KWG(t;a,be)i C{F"e (t;a,b)}i}ii =)' {i-DYI (i -1-1)B

> [IEKWG (t, a, b)] O(n+l-i) [i CIZ [ F KwG (t, a, b)]k ]n+l—i

where C; and C; defined in section 4.1

Now,  [Y CR[F"°(t:a )1 1™ = dy. i [F*"*(t:ab)]*  (Nadarajah et al
k=0 k=0

Kk
2015), where  dp i = (/kCp) D [N(n+1~i~1) ~KIC} dpyri k-
h=1

Therefore the density function of the i™ order statistics of GMOKw — G distribution can be
expressed as

fi:n (t)
={nY/(i —1)! (n—i)H{ f*"° (t;a,be)zw: C,{F"e (t;a,b)}i}ii D' {i-DYni-1-1%

% [IfKWG (t, a, b)] O(n+l-i) i dn+|_i'k [ F KwG (t, a, b)] k
k=0

— f KwG (t, a, b) [IwaG (t, a’ b)] O(n+l-i+1)-1 i ¢j,k { F KwG (t, a’ b)} j+k

k=0

i-1
where ¢, =nC;d,, {(-DY(-D'(n-DFY (D' {i-DYN[i-1-DF
1=0
A.3 Proof of Theorem 2
Let X ~GMOKw -G(0,a4,a,b) and Y ~GMOKw -G(0,a,,a,b). If o, <a,,
then X <. Y

—Ir

ft) _0a’abg®)GH)**[1-GH) " /[L-&[1-G(1)*]*] "
9(t) e, abg(®)G(M)*[L-G(1) ] /L~ &, [1-G()1°] "

= (a2 [L- 2 [1- G (1) 1° /{L- @ [1- G(t) *1° 3] 7+
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d /dt(f(t)/g(t)
=(0+1) (al/az)a(al_

){1—52 [1-G() 1"} ab[1-G(®) 1" G() " g(t)
2 {1—51[1—6(t)a]b}9+2

Now this is always less than 0 since o, <a, . Hence, f(t)/g(t) is decreasingint. Thatis X <Y .
A.4 MLE for GMOKw -E (0,«,a,b, 4)
The pdf of the GMOKw — E distribution is given by

Oa’abie [l-e P [1-[1-e #]*]°"
[1_5[1_[1_e—lt]a]b]6+1

f GMOKwWE (t) —

0>01>0,a>0,a>0b>0,t>0

For a random sample of size n from this distribution, the log-likelihood function for the

parameter vector 1 = (6, «,a,b, 1) is given by
0=1(n) =nlogd+néloga +nlog(ab) + nlog A—/Izn: t, +(a—1)i log(l—e™™)
i-0 i-0
+ (b@—l)zn: log[l—(1—e ™)?]-(0+1) z log[l-a[l-(1-e ")?]"]
i=0 i=0
The components of the score vector n = (8,c,a,b, A1) " are

_5220 = Z+nloga: +b 3 loglL-(L-e )] - log [L- @1 (L-e *)*]"]

at(m) _ ”_9 [L-@-e")7"
da )Zl—_[l Q-e)"

e ™) log(l-e ™)

ot _n ZIog(l e )+ (1-bo) Y &

da — 1-(1-e™)?
~ D ab[l-(1-e™)?]" ' A-e M) %log [(l—e ™) ]
(0+1)§ 1_5[1_(1_e71ti)a]b

olm) _ 1 py e L fl-(L-e )] log[Ll— (L—e )]
Fat E+9§|og[1—(1—e )]+(9+1)§ I ol (e ™)

aﬁ(n) n Zt (a— 1)Z/Ie*' L bH)Z a/ll(l__(f_;_);)fi

i

n Eab/i [1_ (1_e—/1ti ) a]b—l (1_e—/1ti)a—le—
_(0""1); 1_5[1_(1_e—iti)a]b

The asymptotic variance covariance matrix for mles of the unknown parameters

n=(6,a,a,b,1)" of GMOKw —E (8,,a,b,A) distribution is estimated
by, (@) =(-(*1/on,0n,) .
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where the elements of the information matrix can be derived using the following second partial
derivatives:

w: _L 0 E(n) n¢9 )Z [1-Q1- e—/11~)a]2b .
06°? 0% oa’ “{-_al-(l-e ™)y’
0 f(n) — n i Og (1 e—/lt

=0

~ n (1_e—/1ti)23|og(1_e—/1ti)2 ~ n (1_e—lti)a|og(1_e—iti)2
L T ey LT ey

n 672 b2 [1_(1_e—/1ti)a] 2(b-1) (1_e—lti)2a |Og (1_e—ﬂti)2
+(0+1) Z {1_67[1_(1_e—lti)a]b}2

b(b 1) [1_(1_e—iti)a]b—Z(l_e—ﬂti)Za |0g (1_e—iti)2
+(H 1) Z 1_(7[1_(1_efﬂti)a]b

ba[l-(1-e™)*]" '1-e™)%log (1-e™)*
~(O+ 1)2 l-a[l-(1-e?)]° ’

azz(?) _ +(9 1) Z _2[1_(1__ejt')i]2b_loqz[qlz (1b-2e-“i)a]2
ob = {1-a[l-1-e7)' 1}

L [L-(1-e )" log[l-(1-e™")"]* |
+((9+1) IZO: 1_5[1_(1_e—iti)a]b !
82““) 72/“,[2 ~ e—lttZ az (1_e—lti)2(a—l) eﬂt‘tiz
oAr +(a ) Z( L-e™)* 1- ] - b‘”;} {1-(1-e")*}

n a(a_l) (1_e—ﬂ.ti)a—2 efzuit_z n a (l_e—/lti)a—le—ﬂ.titiz

+(l—b0)§ ey i —(1—b9)§ ™)
0 Z2alh? et (e ) 2@ 1 (1—g ) 2] 20D tiz
O+ -al-0-¢ )Ty

n az ﬁb(b _1) efuti (1_efati)2(a71) [1_ (1_e—/ni)a]b72 ti 2
HO+D 2 l—a[l-(l—e ™)

~ n a(a—l)CTb e_ZMi (1_e—/1ti)a—2 [1_ (1_e—/1ti ) a]b—l ti 2
(8+1)Z 1_5[1_(1_e—/1t,)a]b

naba e—ﬂti (1_e—iti)a—1 [1_(1_e—/1ti)a]b—1ti2
+(0+1) |Z=o: l_a[l_(l_e—iti)a]b

o) _n _§ [-(-e )P
000 a Sl-a[l-(1-e™)]’
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d%(n) _ Z”: (1—-e ™) *log(l—e ™)
06oa — 1-(1-e™)?

Z”:b all-1-e™)?1"'1-e™)?log (1-e ™)
=0 l1-a[l-1-e™)%]" '

%) _ a a[l-(1-e*)*1°log[1-(1- e‘”)]
000b %"’9[1 A=e™)1+ ZO: 1-a[l-(1-e™)?]°

aZE(n) _ _bi a/l(l_e—lti)a—le—lti _anﬁabﬂ« [l_(l_e—ﬂti)a]b—l (l_efﬂti)a—le—iti -
0004 ~  1-(l-e™)® — 1-a[l-(1-e™)?]° ’

0. g SR T e )

b[l-(1-e™)?]"'(l-e™)?%log 1-e ™)
6+ 1)2 1-al-1-e™)?]° ’

A e SRl
adb = {-a[l-1-e™)1}

[1-(1-e)*]"log[1-(1- e‘l‘)]
-0+ 1)2 l1-al-1-e™)?]°

) _ (g 1)2“ Gabe ™ (1-e ) [1-(1-e )",
0ad = {l-a[l-(1-e ™)’}

n a&b e—lti(1_e—/1ti)a—1[1_(1_e—iti)a]b—1ti -
+(9+1) .Z:o: 1_67[1_(1_e—ﬂti)a]b ’

8%t(m) _ —6’2”: (1-e™)*log(1-e™)
dadb — 1-(1-e™)?

~ o (l-e M) [l-(1-e )] log(l-e )
(9+1)z 1_5[1_(1_e—ﬂti)a]b

(s3I ™) T log e ) logL-(L-e)"]
: {1_5[1_(1_e—/1ti)a]b}2

_(‘9+1)Z”:b5(1_e‘/“) [1-(1-e )] " log(l—e*)log[l—(1— e_M)]
! 1-al-@1-e™)%]°

=t

Zf(n) na M : a (1_e—/1ti)2a—1e—/ltit_ Iog(l_e—lti)
L -be '
daol ;1 C + )Z_O: {1-(1-e7*)*}?

1—¢e M) —1 /1t (1 be) z a (1_e—iti)a—le—ititi Iog(l_e—lli)

(
+(1- be)z0 e ): 1-(_e™)*
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n

B ba e’ (1_e—lti ) a1 [1- (1—87/1“ )] b-1 t
(9+1)Zo: 1_67[1_(1_e—1ti)a]b

+ (t9+1)i ab’a’e (1_e—/1ti)2a—1 [1- (1—e_iti)a] 2(b-1) t. log (1_e—/1ti)
Gl (_e )Ty

+(6+1) Zn: ab(b-Lae(@-e™)* [1-(1-e ™) "t log(l-e ™)
i—0 1-a[l-(1-e™)%]°

nabae(@l-e ™) [1-(1-e )"t logl-e )
_(0+1)§ 1_67[1_(1_e—lti)a]b !

m_ _i ae_Mi (1_e_/1ti) a—lti
oboA " 1-(l-e™)®

_ (04_1)2 aa e(l-e ™M) [1-(1-e )],

1-a[l-1-e ™))

—(0+1)Zn: aba’e(l-e™)" [1-(1-e )"t log [1-(1-e™)"]
i=0 {1-al-(1-e™)%1"}y

Labae i (l-e™)  [1-1-e)*1" "t log [1- (1—e)?]
_(9"‘1); l—a[l-(-e ™)’ :

where /'(.) is the derivative of the digamma function.
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