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Abstract: A family of distribution is proposed by using Kumaraswamy-G ( GKw − ) 
distribution as the base line distribution in the generalized Marshall-Olkin 
(GMO) construction. By expanding the probability density function and the survival 
function as infinite series the proposed family is seen as infinite mixtures of the 

GKw − distribution. Series expansions of the density function for order statistics are also
obtained. Moments, moment generating function, Rényi entropy, quantile function, 
random sample generation, asymptotes, shapes and stochastic orderings are also 
investigated. Maximum likelihood estimation, their large sample standard error, 
confidence intervals and method of moment are presented. Three real life illustrations of 
comparative data modeling applications with some of the important sub models of the 
family reveals the superiority of the proposed generalization over its sub models.     
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1. Introduction
Generating new distributions starting with a base line distribution by adding one or more

additional parameters through various mechanisms is an area of research in the filed of the 
probability distribution which have seen lot of work of late. The basic motivation of these works 
is to bring in more flexibility in the modelling different type of data generated from real life 
situation. Recently, there is renewed activity in this area to propose and investigate new families 
of distributions. A review paper by Tahir et al. (2015) provides a detail account of important 
techniques of generating new families of univariate continuous distributions through introduction 
of additional parameters. Some  recent contributions since 2015 in this line include the 
Kumaraswamy Marshall-Olkin family proposed by Alizadeh et al. (2015),  the Kumaraswamy 
Transmuted-G family of distributions (Afify et al., 2016), the Weibull generalized flexible 
Weibull extension distribution (Abdelfattah et al., 2016), the exponentiated generalized extended 
exponential distribution (Thiago et al., 2016), the generalized class of exponentiated modified 
Weibull distribution (Shusen et al., 2016), and Marshall-Olkin Kumaraswamy-G family 
introduced by Handique et al. (2017), the Modified Burr III G family of distributions (Shahzadi 
et al., 2017), Marshall-Olkin extended generalized Gompertz distribution (Lazhar, 2017) among 
others.   

In this article we propose another family of continuous probability distribution as an 
extension of the Marshall-Olkin Kumaraswamy-G ( GMOKw − ) family (Handique et al., 2017)
and generalized Marshall-Olkin ( GMO ) family (Jayakumar and Mathew, 2008) by
incorporating the Kumaraswamy-G ( GKw − ) family of distributions (Cordeiro and de Castro,
2011) as the base line distribution in the GMO family. This new family is referred to as the
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Generalized Marshall-Olkin Kumaraswamy-G ( GGMOKw − ) family of distribution is
investigated for some its general properties, parameter estimation and real life applications. 

The rest of this article is organized in six sections. In section 2 we briefly introduce some 
important characteristics of probability distributions, the GMO and the GKw −  family of
distributions. The proposed new family is defined along with a genesis in section 3. In section 4 
we discuss some general results of the proposed family, while different methods of parameter 
estimation along with comparative data modelling examples are presented in section 5. The 
article ends with a conclusion in section 6 followed by appendices of various proofs and 
derivations.  
2. Formulas and notations

The different formulas to be used in the subsequent sections of this article are as 

follows: 

If T  is a continuous random variable with pdf, )(tf  and cdf ][)( tTPtF ≤= , then   

• Survival function (sf): )(1][)( tFtTPtF −=>= ,

• Hazard rate function (hrf): )()()( tF/tfth = ,

• Reverse hazard rate function (rhrf): )()/()( tFtftr = ,

• Cumulative hazard rate function (chrf): )]([log)( tFtH −= ,

• th)( rq,p, Power Weighted Moment (PWM): dttftFtFtΓ )(])(1[])([ rqp
rq,p, −= ∫

∞

∞−

, 

• Rényi entropy: ∫
∞

∞−

−−= dttfI δ1
R )(logδ)(1)(δ . 

2.1 Generalized Marshall-Olkin Extended (GMO ) family of distribution 

Jayakumar and Mathew (2008) proposed a generalization of the Marshall-Olkin (MO) family 

of distributions (Marshall and Olkin, 1997) by using the Lehman second alternative (Lehmann 1953) 

to obtain the sf )(GMO tF  of the GMO  family of distributions by exponentiation the sf of MO

family of distributions 

)(GMO tF 0,0,,])}(1/{)}({[ >>∞<<∞−−= αθαα θ ttFtF ; αα −= 1       (1) 

where )(tF  is the base line sf, θ  and α are additional shape parameters. When ,1=θ   

)()( MOGMO tFtF = and for ,1==αθ )()(GMO tFtF = . The cdf and pdf of the GMO

distribution are respectively )(GMO tF θαα ])}(1/{)}({[1 tFtF −−=

and                     )(GMO tf 11 )](1/[})()({ +− −= θθθ ααθ tFtFtf         (2) 

Reliability measures like the hrf, rhrf and chrf associated with (1) are respectively given by 

)(GMO th )}(1){(/)( tFtFtf αθ −= )}(1{)( tFth αθ −=          

)(GMO tr  )]}(1[)()](1/{[})()({ 11 tFtFtFtFtf ααααθ θθθθθ −−−= +−      
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)(GMO tH ])}(1/{)([log)}](1/{)([log tFtFtFtF ααθαα θ −−=−−=  

where )(tf , )(tF , )(tF and )(th are respectively the pdf, cdf, sf and hrf of the baseline distribution. 

We denote the family of distribution having pdf in equation (2) as ),(GMO αθ  which for 1=θ , 

reduces to )(MO α .  

2.2 Kumaraswamy-G G)(Kw −  family of distribution 

The )(GKw ba,− family of distribution of Cordeiro and de Castro (2011) for a baseline cdf 

)(tG  with pdf )(tg  is defined with respective cdf and pdf  

                                   batGtF ])(1[1)(KwG −−= ,   ∞<<∞<< bat ,0,0                        (3)  

and                            11KwG ])(1[)()()( −− −= baa tGtGtgbatf .                      (4)  

where )()(,0 tGtgt ′=> and 0,0 >> ba  are the shape parameters in addition to those in the 

baseline distribution. The sf, hrf, rhrf and chrf of this distribution are respectively given by    

batGtF ])(1[)(KwG −= ,  =)(KwG th 11 ])(1[)()( −− − aa tGtGtgba                                                         

)(KwG tr 111 }])(1[1{])(1[)()( −−− −−−= babaa tGtGtGtgba and ])(1[log)(KwG atGbtH −−= . 

3. Generalized Marshall-Olkin Kumaraswamy-G G)(GMOKw − family of distribution 

We now propose a new extension of the GMO family by considering the cdf and pdf of 

GKw − distribution in (3) and (4) as the )(and)( tFtf  respectively in the GMO formulation in (2) 

and call it GGMOKw − family of distribution and denote by ),,,(G-GMOKw baαθ . The 

resulting expression for the pdf of ),,,(G-GMOKw baαθ is given by    

             )(GMOKwG tf 111 ]])(1[1/[}])(1[)()({ +−− −−−= θθθ ααθ babaa tGtGtGtgba         (5)  

                                                                          , ∞<<>>∞<< bat ,0,0,0,0 αθ .    

The cdf, sf, hrf, rhrf and chrf of ),,,(G-GMOKw baαθ distribution are respectively given by   

)(GMOKwG tF
θ

α
α









−−

−
−= ba

ba

tG
tG

])(1[1
])(1[1  and  )(GMOKwG tF

θ

α
α









−−

−
= ba

ba

tG
tG

])(1[1
])(1[

        (6) 

hrf:       =)(GMOKwG th }])(1[1/{}])(1[)()({ 11 baaa tGtGtGtgba −−− −− αθ                     (7) 

rhrf:    =)(GMOKwG tr
]])(1[1[])(1[]])(1[1[

])(1[)()(
1

11

bababa

baa

tGtGtG
tGtGtgba

−−−−−−
−

+

−−

ααα
αθ

θθθ

θθ

 

chrf:      =)(GMOKwG tH }]])(1[1/{}])(1[log[{ baba tGtG −−−− ααθ  

We get for  

(i) 1=θ , the ),,(G-MOKw baα distribution of Handique et al. (2017) 



 
394 THE GENERALIZED MARSHALL-OLKIN-KUMARASWAMY-G FAMILY OF DISTRIBUTIONS 

(ii) 1=a , a new family with cdf     
θ

α
α













−
− b

b

tG
tG

)]([1
)]([1 is obtained. We refer to this 

family as the Generalized Marshall-Olkin exponentiated G-I in short as 

),,(I-G-GMOexp bαθ family. 

(iii) 1=b , a new family with cdf    
θ

α
α













−−
−

−
])(1[1

])(1[1 a

a

tG
tG

 is obtained. We refer to 

this as the Generalized Marshall-Olkin exponentiated G-II in sort as 

),,(I-G-GMOexp aαθ family. 

(iv) 1== ba , the ),(GMO αθ family of Jayakumar and Mathew (2008) 

3.1 Genesis of the distribution 
Here we provide a result to show how distributions from this proposed family may arise 

stochastically. 

Theorem1.  

For θ2,...,1,=i  where 1>θ  is an integer, if }...,,,{ iNi2i1 TTT  be a sequence of i.i.d. random 

variables with survival function batG ])(1[ − , and  

i. if N has a geometric distribution with parameter α ( 10 ≤<α ) independent of s'ijT , then 

)}...,,,{min(min iNi2i1
1

TTT
i θ≤≤

 is distributed as ),,,(G-GMOKw baαθ or  

ii. if N has a geometric distribution with parameter α/1 ( 1>α ) independent of s'ijT , then 

)}...,,,{max(min iNi2i1
1

TTT
i θ≤≤

is distributed as ),,,(G-GMOKw baαθ . (For proof see appendix 

A.1) 

3.2 Shape of the density and hazard function 
In this section we have plotted the pdf (in fig.1) and hrf (in fig. 2) of some members of 

E-GMOKw namely (a) ),,,,(E-GMOKw λαθ ba  (b) ),,,,,(W-GMOKw δλαθ ba  (c) 

),,,,,(L-GMOKw δβαθ ba and (d) ),,,,,(Fr-GMOKw δλαθ ba by taking Exponential )(λ , 

Weibull ),( δλ , Lomax ),( δβ  and Frechet ),( δλ as  the base line G in the GMOKw-G for some 

choices of the parameters to study the variety of shapes assumed by the family. 

From the plots in figure 1 and 2 it can be seen that the family is very flexible and can offer 

many different types of shapes. It offers IFR, DFR even bath tub shaped hazard rate. 
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Fig 1: Density plots 
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Fig 2: Hazard  plots 

4. General results for GGMOKw −  family 

Here some general results for the proposed ),,,(G-GMOKw baαθ family are obtained in 

a similar manner as was done in Barreto-Souza et al. (2013), Cordeiro et al. (2014), and Alizadeh et 

al. (2015) among others.    

4.1 Expansions   

We know that j

j

k z
jk
jkz ∑

∞

=

−

Γ
+Γ

=−
0 !)(

)()1(  ,  1<z  and 0>k                                        (8)  

where (.)Γ  is the gamma function.   

If )1,0(∈α  using (8) in (5), we can show that  

)(GMOKwG tf 11 ])(1[)()( −− −= θθαθ baa tGtGtgba )1(]])(1[1[ +−−− θα batG  

                   1

0

KwGKwG ]),;([),;( −+
∞

=
∑= θj

j
j batFAbatf                                                            (9) 

                   ∑
∞

=

+′−=
0

KwG ]),;([
j

j
j batF
dt
dA θ                                                                         (10) 

       ∑
∞

=

+′=
0

KwG ))(,;(
j

j jbatfA θ       

where θαα
θ

α j
jj j

j
ΑΑ )1(

1
)( −







 −+
=′=′ ,    jjj ΑjΑΑ ′+== )()( θα       

From this formulation the ),,,(G-GMOKw baαθ  can be called a non central GKw −  

distribution. Similarly an expansion for the survival function of ),,,(G-GMOKw baαθ  

[for )1,0(∈α ] can be derived as 
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   )(GMOKwG tF ∑
∞

=

+′=
0

KwG ))(,;(
j

j jbatFΑ θ    

Alternatively, we can also expand the pdf as  

)(GMOKwG tf ∑∑
∞

= =

−=
0 0

KwG
,

KwG ]),;([),;(
j

j

k

kj
kj batFΒbatf θ                                 (11) 

where j
kjkjj

kjkj A
k
j

k
j

j
jΒΒ 








−=








−−

+
== −− )1()1()1(

!!
!)()(,, α

θ
θαθα

θ

 

Another expansion of the density function in (5) can be obtained for 1>α  using (8) as 

)(GMOKwG tf j

j
j batFCbatf }),;({),;( KwG

0

KwG ∑
∞

=

= θ                                                            (12)                                                           

where jj

jj

jj A
j

jCC 1

1)1(11
!!

!)()( ++

−−
=






 −

+
== θαααθ

θθα  

Corresponding expansion for the survival function of ),,,(G-GMOKw baαθ can be written as 

)(GMOKwG tF j

j
j batFCbatF ]),;([)],;([ KwG

0

KwG ∑
∞

=

′= θ , where jj CjC )( θα +=′ .   

4.2 Order statistics 

Given a random sample nTTT ...,,, 21  from any ),,,(G-GMOKw baαθ distribution the pdf 

of niT :  the thi  order statistics can be derived as (See Appendix A.2 for the derivation)   

ini
ni tFtFtfinintf −−−−−= )()](1[)(})!()!1(!{)( GMOKwG1GMOKwGGMOKwG

:  

           iln
i

l

l tF
l

i
tfinin −+

−

=
∑ 







 −
−−−= )(

1
)1()(})!()!1(!{ GMOKwG

1

0

GMOKwG  

Now on using the general expansions of the pdf and sf of the ),,,(G-GMOKw baαθ distribution, 

we get the corresponding pdf of the thi order statistics for of the ),,,(G-GMOKw baαθ for 

)1,0(∈α as 

                  )(: tf ni ∑
∞

=

−+−+++=
0,

1)1(KwG
,

KwG )],;([),;(
pj

ilnpj
pj batFMbatf θ                                   (13)     

                             ∑
∞

=

+−+++′=
0,

KwG
, )))]1((,;(

pj
pj ilnpjbatfM θ                                        

where 11

0
, )1(

1
1
1 +

−

=
−







 −








−
−

′= ∑ li

l
pjpj l

i
i
n

AAnM , ))1(/(,, +−+++=′ ilnpjMM pjpj θ  and jΑ  

defined and jΑ′ are earlier. 
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In particular for 1=θ , equation (13) reduces to pdf of the thi  order statistics for of the   

),,(G-MOKw baα  (Handique et al., 2017) given by 

)(: tf ni ∑
∞

=

−+++=
0,

KwG
,

KwG )],;([),;(
cj

ilncj
cj batFHbatf ,where 

11

0
, )1(

1
1
1 +

−

=
−







 −








−
−

= ∑ li

l
cjcj l

i
i
n

nH ηκ  and j
jj j )1()1()( ααακκ −+== ;  c

c )1( ααη −= . 

Further using the general expansion of the pdf and sf of the ),,,(G-GMOKw baαθ distribution we 

get the pdf of the thi  order statistics for of the ),,,(G-GMOKw baαθ  for 1>α  as 

)(: tf ni
kj

kj
kj

iln batFbatFbatf +
∞

=

−+−+ ∑= }),;({)],;([),;( KwG

0,
,

1)1(KwGKwG φθ                                 (14) 

where   ∑
−

=
−+ 







 −
−








−
−

=
1

0
,,

1
)1(

1
1 i

l

l
kilnjkj l

i
i
n

dCnφ ,  

   ∑
=

−−+−+ ′−−−+
′

=
k

h
hkilnhkiln dCkilnh

Ck
d

1
,

0
, ])1([1 and jC , kC′ defined in section 4.1. 

Remark1  
From the equations in (9) to (14) we see that the density functions of the 

),,,(G-GMOKw baαθ distribution and that of its order statistics can be expressed as different 

GKw −  density multiplied by an infinite power series of cdf of and also as negative binomial 

mixture of GKw −  distributions under Lehman alternatives. Thus explicit expressions for the 

moments and moment generating function (mgf) of the ),,,(G-GMOKw baαθ distribution and 

those of its order statistics in a general set up and for special models may be obtained using the 

corresponding results of GKw −  distributions. 

 

4.3 Moments of GGMOKw −  

Greenwood et al. (1979) first proposed the probability weighted moments (PWMs), as 

expectations of certain functions of a random variable whose mean exists.  They defined the  
thrqp ),,(  PWM of  T  as  

 dttftFtFt rqp
rqp )(])(1[])([,, −=Γ ∫

∞

∞−

 

The PWM are useful in estimating parameters quantiles of generalized distributions and have 

low variance and moderate biases, and comparable with the maximum likelihood estimators.   

The ths  moment of T  for )1,0(∈α  and ,1>α  can be obtained from equations (9), (11) and (12), 

either as  
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∫ ∑
+∞

∞−

∞

=

−+−− −−=
0

111 ]})(1{[])(1[)()()(E
j

jba
j

baass dttGAtGtGtgbatT θ ∑
∞

=
−+Γ=

0
1,0,

j
jsjA θ or 

as ∫ ∑
+∞

∞−

∞

=

−− −−−=
0

11 ]])(1[1[])(1[)()()(E
j

jba
j

baass dttGCtGtGtgbatT θ ∑
∞

=
−Γ=

0
1,,

j
jsjC θ  

where dttGtGtgbatGtGt baarbaqbap
rqp ]])(1[)()([}])(1[{}])(1[1{ 11

,,
−−

∞

∞−

−−−−= ∫Γ  

is the PWM of the ),(G-Kw ba  distribution.   

Therefore the moments of the ),,,(G-GMOKw baαθ can be expressed in terms of the 

PWMs of ),(G-Kw ba .  

Similarly proceeding we can derive ths  moment of the thi  order statistic ,:niT in a random 

sample of size n from ),,,(G-GMOKw baαθ for )1,0(∈α  and ,1>α  by using equations (13) 

and (14) as      

 )( ,ni
sTE ∑

∞

=
−+−+++Γ=

0,
1)1(,0,,

pj
ilnpjspjM θ and 1)1(,,

0,
,, )( −+−++

∞

=

Γ= ∑ ilnkjs
kj

kjni
sTE θφ  

where    jj,kj CB,A ,  and pjM , , kj ,φ  defined in section 4.1 and 4.2 respectively. 

4.4 Moment generating function 

Here the mgf of ),,,(G-GMOKw baαθ family is expressed in terms of that of the 

exponentiated GKw −  distribution utilizing the results of section 4.1. For example using equation 

(10) we can show that  

dtbatF
dt
dAedttfeeEsM j

j

KwG
j
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T
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∞
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∑∫∫ ′−===

0
]),;([)(][)(  

{ } )(),;(
00

sMAdtbatF
dt
deA X

j
j

jKwGst

j
j ∑∫∑

∞

=

+
∞

∞−

∞

=

=′−=
θ

  

where )(sM X is the mgf of a GKw −  with parameters )(and θ+jba  distribution.   

4.5 Entropy 
In this subsection we present results on Rényi entropy and relative entropy. 

4.5.1 Rényi entropy 
The entropy of a random variable is a measure of uncertainty variation and has been used in 

different situations in science and engineering. Here, we give the Rényi entropy for the 

),,,(G-GMOKw baαθ  distribution. The Rényi entropy of a random variable with pdf )(tf is 

defined as
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where 0>δ  and 1≠δ . For furthers details, see Song (2001). 

When )1,0(∈α  using expansion (8), in (5) we can write 
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Thus for )1,0(∈α , the Rényi entropy of ),,,(G-GMOKw baαθ can be obtained as 
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where }!)]1([/{]})1([)1({)( jjLL j
jj +Γ++Γ−== θδθδααθα δθδ  

Again the density function (5) can be expressed as 

δ)(GMOKwG tf δθθ αααθ ]]/]}])(1[1[)1{(1[}])(1[)()([{ 111 +−− −−−−−= babaa tGtGtGtgba

For ,1>α  using expansion (8) we get, 
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Thus for ,1>α  the Rényi entropy of ),,,(G-GMOKw baαθ also can be derived as 









−−−−= ∫∑

∞

∞−

−−
∞

=

− dttGtGtGtgbaRI jbabaa

j
jR ]])(1[1[]])(1[)()([log)1()( 11

0
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where  }!)]1([{}])1([)1({)( jjRR jj
jj +Γ++Γ−== + θδαθδαθα δδ . 

4.5.2 Relative entropy 
Given two distributions with pdfs )(and)( 21 tftf the relative entropy (RE) between them is 

defined as 

( ) ( )∫== dttftftftftfEff f )(})()({log})()({log),(RE 1212121 1
. 

This is also referred to as Kullback-Leibler divergence (distance) (Kullback, 1959). 

RE is a measure of distance between )(and)( 21 tftf and measures inefficiency of selecting 2f  

for modeling when 1f is the true distribution. We have estimated ),(RE 2fGGMOKw−  where 

2f  is a competing distribution for all the data fitting examples considered in section 5 in 

Tables 1, 2, 3, 4, 5 and 6. 
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4.6 Quantile function, median and random sample generation 

For ),,,(G-GMOKw baαθ  the thp  Quantile pt is derived by solving the equation 

ptF p =)(GMOKwG  as  

ab
p ppGt /1/1/1/11 ]}}]1[{]1[{1[ θθ αα −+−−= −

Now a random number ‘ t ’ from ),,,(G-GMOKw baαθ  can be easily generated starting with a 

uniform random number ‘ u ’ using the formula  
abuuGt /1/1/1/11 ]}}]1[{]1[{1[ θθ αα −+−−= −        

Median:     abGt /1/1/1/11 ]}}]5.01[{]5.01[{1[ θθ αα −+−−= −

e.g. considering the exponential with parameter ,0>λ  as the base line distribution having pdf and

cdf as 0),exp():( >−= tttg λλλ  and ),exp(1):( ttG λλ −−=  respectively, the thp  quantile pt of

),,,,( λαθ baEGMOKw − is seen as

]]}}]1[{]1[{1[1[log)/1( /1/1/1/1 ab
p ppt θθ ααλ −+−−−−= .

4.7 Asymptotes and shapes
In this section we study the asymptotic shapes of the proposed family following the methods 

followed in Alizadeh et al., (2015).  

Proposition 2.  

The asymptotes of pdf, cdf and hrf of ),,,(G-GMOKw baαθ  in equations (5), (6) and (7) 

as 0→t  are given by 

αθ /)()(~)( 1−atGtgbatf           as  0→t  

0~)(tF   as  0→t  

αθ /)()(~)( 1−atGtgbath      as  0→t  

Proposition 3.  

The asymptotes of pdf, cdf and hrf of ),,,(G-GMOKw baαθ  in equations (5), (6) and (7) 

as ∞→t  are given by 
1])(1)[(~)( −− θθαθ batGtgbatf       as  ∞→t

θθα batGtF ])(1[1~)( −−             as  ∞→t

 1])(1)[(~)( −− atGtgbath θ                as  ∞→t

The shapes of the pdf and hrf can be studied analytically. The critical points of the pdf of 

),,,(G-GMOKw baαθ  are the roots of the equation. 

dttfd )]([log })(1{})()()1({)()}()1{()()( 1 aa tGtGtgbatGtgatgtg −−+−+′= −θ
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The equation (15) may have more than one roots. If 0tt = is a root of (15) then it corresponds 
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The critical points of hrf are the roots of the equation 
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Here also the equation (16) may have more than one root. If 0tt = is a root of (16) then it 

corresponds to either a local maximum, or a local minimum or a point of inflexion depending on 

whether 

0)(0)(,0)( 000 =>< tortt γγγ , where 22 /)]([log)( dtthdt =γ . Here 
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4.8 Stochastic orderings 
Here we use the concept of stochastic ordering (Shaked and Shanthikumar, 2007) to derive 

different ordering conditions on parameters for random variables following  

),,,(G-GMOKw baαθ distributions.  

Let X and Y be two random variables with cfds F and G, respectively, survival functions 

FF −=1  and GG −=1 , and corresponding pdf’s f, g. Then X is said to be smaller than Y in the 

likelihood ratio order ( YX lr≤ ) if )()( tgtf  is decreasing in 0≥t ; stochastic order ( YX st≤ ) if 

)()( tGtF ≤  for all 0≥t ; hazard rate order ( YX hr≤ ) if )()( tGtF  is decreasing in 0≥t ; 

reversed hazard rate order ( YX rhr≤ ) if )()( tGtF is decreasing in 0≥t . These four stochastic 

orders are related to each other, as  YXYXYXYX sthrlrrhr ≤⇒≤⇒≤⇐≤   

Theorem 2:  

Let ),,,(G-GMOKwand),,,(G-GMOKw 21 ba~Yba~X αθαθ . If 21 αα < , 

then YX lr≤ . (See Appendix A.3 for a proof). 

As a consequence it follows that YXYXYX strhrhr ≤≤≤ and,
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5. Estimation   

5.1 Maximum likelihood method 
The maximum likelihood method is the most widely use method of parameter estimation having many 

desirable properties.  This method provides ease of derivation of confidence intervals using 

asymptotic normality and also likelihood ratio test to discriminate nested models. Here we consider 

the estimation of the unknown parameters by maximum likelihood. 

Let T
ntttt ),...,,( 21= be a random sample of size n  from ),,,(G-GMOKw baαθ with parameter 

vector TTba ),,,,( βη αθ= , where T
q ),,...,( 21 βββ=β corresponds to the parameter vector of the 

baseline distribution G. Then the log-likelihood function for η  is given by  

)(η = ∑∑
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The normal equations can be obtained by taking the first derivatives of the log-likelihood function 

with respect to ba,,,αθ andβ  and equating them to zeros as follows: 
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Setting these equations to zero  0),,,,( == T
ba TUUUUUU

βαθη  and solving them simultaneously 

yields the maximum likelihood estimate (MLE) TTba )ˆ,ˆ,ˆ,ˆ,ˆ(ˆ βη αθ=  of TTba ),,,,( βη αθ= . 
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Because of its complex form the log likelihood is maximized numerically by employing global 

optimization methods available with software’s like R, SAS, Mathematica. 

5.2 Asymptotic standard error and confidence interval for the mles  
The asymptotic variance-covariance matrix of the MLEs of the parameters can obtained by 

inverting the Fisher information matrix )(I η  which can be derived using the second partial 

derivatives of the log-likelihood function with respect to each parameter. The thji elements of )(I ηn  

are given by qjilE jiji +=∂∂∂−= 3,,2,1,,]/)([I 2 ηηη  

While the exact derivation of the above expectations may not be tractable, one can estimate 

)(I ηn by the observed Fisher’s information matrix )Î()ˆ(Î jin =η , where  

                                   ( ) qjil jiji +=∂∂∂−≈
=

3,,2,1,,/)(Î
ˆ

2 
ηη

ηηη  

Under certain regularity conditions on the parameters as ∞→n the asymptotic distribution 

of )ˆ( ηη −n  is ),0( nk VN  where )(I)( 1 η−== njjn vV . The result remains valid if nV  is replaced 

by )ˆ(Îˆ 1 η−=nV . An approximate standard error and %100)2/1( γ−  confidence interval for the mle of 

jth parameter jη  are respectively given by jjv̂  and jjj vZ ˆˆ 2/γη ±  , where 2/γZ  is the 2/γ  

point of standard normal distribution. We provide the MLE method its large sample standard errors, 

confidence interval in the case of ),,,,(EGMOKw λαθ ba−  in Appendix A.4.   

5.3 Estimation by method of moments 
Here moments are not in closed form, so we use the PWMs following (Barreto-Souzai et al., 

2013) to provide an alternative estimation method. Now 
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In particular we get the following result for the ),,(G-MOKw baα  (Handique et al., 2017) by 

putting 1=θ . 
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For 1=θ  we get the corresponding result of ),,(G-MOKw baα  
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 (18)           

Given a random sample nttt ,...,, 21  from a population with survival function (6), the parameters can 

then be estimated by solving the following equations       
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5.4 Real life applications  
We consider the following three real life data sets to illustrate the suitability of the proposed 

),,,(G-GMOKw baαθ distribution distributions considering Weibull and exponential as our G.  

Data Set I: The first data set is a subset of data reported Bekker et al. (2000) which corresponds to the 

survival times (in years) of a group of patients given chemotherapy treatment alone. This data consists 

of survival times (in years) for 46 patients. 

Data Set II: In this application, we work with the survival times (in days) of 72 guinea pigs infected 

with virulent tubercle bacilli, observed and reported by Bjerkedal (1960).  

Data Set III: This data set consists of 100 observations of breaking stress of carbon fibres (in Gba) 

given by Nichols and Padgett (2006).      

Here we have compared the proposed ),,,(G-GMOKw baαθ distribution with it some of 

its sub models namely the Marshall-Olkin Kumaraswamy-G ( GMOKw − ), Kumaraswamy-G 

( GKw − ) and Marshall-Olkin-G ( GMO − ) and also with beta-G )(B G− model considering G as 

Weibull and Exponential.  The mles of the parameters are estimated through numerical maximization 

of log likelihood function. We have also provided their standard errors and 95% confidence intervals 

using large sample approach (see appendix A.4). The model with lowest AIC (Akaike Information 

Criterion) is selected as the best in the lot. lk 22AIC −= , where k  is the number of parameters in 

the statistical model and l  is the maximized value of the log-likelihood function under the considered 

model.  

Likelihood Ratio Test for nested models:   

The ),,,(G-GMOKw baαθ distribution reduces to ),,(G-MOKw baα  

when 1=θ , to ),(G-Kw ba if 1==θα , to )(G-MO α for 1,1,1 === θba . 

Here we have employed likelihood ratio criterion to test the following null hypothesis: 

(i) 1:0 =θH , that is the sample is from ),,(G-MOKw baα  

1:1 ≠θH , that is the sample is ),,,(G-GMOKw baαθ . 

(ii) 1:0 ==αθH , that is the sample is from ),(G-Kw ba  

11:1 ≠≠ αθH , that is the sample is ),,,(G-GMOKw baαθ . 

(iii) 1,1,1:0 === baH θ , that is the sample is from )(G-MO α  

,1,1,1:1 ≠≠≠ baH θ , that is the sample is ),,,(G-GMOKw baαθ . 

Writing TTba ),,,,( βη αθ=  the likelihood ratio test statistic is given by LR = ))ˆ(/)ˆ((ln2 * ηη LL− , 

where *η̂ is the restricted ML estimates under the null hypothesis 0H and η̂ is the unrestricted ML 

estimates under the alternative hypothesis 1H . Under the null hypothesis 0H the LR criterion follows 
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Chi-square distribution with degrees of freedom (df) )( nullalt dfdf − . The null hypothesis is rejected 

for p-value less than 0.05. Here ),( δλ=Tβ when our G is Weibull ),( δλ  and )(λ=Tβ when our G 

is Exponential )(λ . 

MLEs and standard errors and 95% confidence intervals (in parentheses) of the parameters for 

the fitted model along with the AIC values and Likelihood ratio statistic are presented in Table 1, 2, 3, 

4, 5 and 6. The distributions belonging to ),,,(G-GMOKw baαθ family generated the lowest 

values of the AIC in all the examples. Moreover LR test rejects all the sub models in favour of the 

),,,(G-GMOKw baαθ except in one case for data set III (see table 5) when ),,(W-MO δλα  is 

chosen ahead of ),,,,,(W-GMOKw δλαθ ba .   

Plots of the fitted densities and fitted cdf’s along with the observed ones presented Figure 3, 4, 

5, 6, 7 and 8 also show that the ),,,(G-GMOKw baαθ  family closest fit to all the data sets 

considered here.    

 
Table 1: MLEs, standard errors, confidence intervals (in parentheses) along with AIC, R.E. and LR(P-value) 

values for the data set I.   

Models                    θ̂                     α̂                 â                 b̂                  λ̂                    δ̂               AIC          RE          LR 
                                                                                                                                           (P-value)       
   MO-W                     ---                    0.449                 ---                  ---                0.418                  1.229             121.74        1.62         8.10 

),,( δλα                                         (0.451)                                                         (0.308)               (0.247)                                             (0.04) 
                                                         (0,1.33)                                                        (0, 1.02)           (0.74,1.71)            
 
   Kw-W                      ---                      ---                 2.160            0.208              4.521                  0.836              123.44        1.06         7.80 

),,,( δλba                                                            (1.584)          (0.204)           (3.900)               (0.196)                                               (0.02) 
                                                                                (0, 5.26)        (0, 0.61)        (0,12.16)            (0.45,1.22) 
 
 MOKw-W                                        0.240                0.737            0.322              0.562                  1.598              125.62        1.56        7.98 

),,,,( δλα ba                               (0.367)              (0.938)          (0.504)           (2.102)                (1.658)                                            (0.004) 
                                                        (0, 0.95)            (0, 2.57)       (0, 1.31)          (0, 4.68)             (0, 4.84)             
  
GMOKw-W             0.239                0.004              0.518             0.244             0.111                  4.112               119.64         ---           --- 

),,,,,( δλαθ ba   (0.059)             (0.002)            (0.011)          (0.113)          (0.004)                (0.005)               
                               (0.12,0.35) (0.00008,0.0079) (0.49,0.53)   (0.02,0.46)     (0.10,0.11)          (4.10,4.12)    
 
   B-W                        3.418               2.024                 ---                  ---                0.467                 0.695               124.14        1.62          --- 

),,,( δλαθ            (6.538)            (2.856)                                                         (0.807)              (0.555)                               
                               (0, 15.87)          (0,7.62)                                                       (0, 2.04)              (0,1.78)                                                                                                 
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                                  (a)                                                                            (b) 
Fig: 3 Plots of the (a) observed histogram and estimated pdf’s and (b) observed ogive and estimated cdf’s for the 

W-BW,KwW,MO −− , WMOKw − and WGMOKw −  models for the data set I.      

 

Table 2: MLEs, standard errors, confidence intervals (in parentheses) along with AIC, R.E. and LR (P-value) 

values for the data set I.   

Models                 θ̂                     α̂                      â                      b̂                        λ̂                   AIC            RE              LR 
                                                                                                                                                                                         (P-value)       
 MO-E                      ---                    1.022                      ---                       ---                        0.752                 120.54           2.11              7.92 

),( λα                                            (0.511)                                                                          (0.213)                                                         (0.04) 
                                                      (0.02,2.02)                                                                   (0.33,1.16) 
 
  Kw-E                     ---                       ---                      2.163                   0.082                    9.001                  121.86           2.71              7.24 

),,( λba                                                                     (0.539)                (0.012)                 (0.002)                                                           (0.03) 
                                                                                  (1.10,3.21)          (0.05, 0.11)        (8.99,9.004) 
 
 MOKw-E                ---                     0.851                  2.218                   0.083                    8.811                   122.64            1.51             6.02 

),,,( λα ba                                    (0.501)               (0.550)                 (0.026)                 (2.364)                                                           (0.01) 
                                                        (0,1.83)             (1.14,3.29)          (0.03,0.13)          (4.17,13.44)             
 
GMOKw-E           0.559                  0.382                  1.427                   0.852                    1.331                   118.62             ---                --- 

),,,,( λαθ ba     (0.494)               (0.408)               (0.666)                 (0.652)                 (0.992)                    
                             (0,1.52)               (0,1.18)            (0.12,2.73)             (0,2.12)                (0,3.27)                   
 
   B-E                     0.119                  5.110                      ---                       ---                       7.384                   120.54            1.74              --- 

),,( λαθ             (0.019)               (8.449)                                                                         (3.814)                                    
                           (0.08,0.16)           (0, 21.67)                                                                    (0,14.85)                 
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              (a)                                                                         (b) 
Fig: 4 Plots of the (a) observed histogram and estimated pdf’s and (b) observed ogive and estimated cdf’s for the 

E-BE,KwE,MO −− , EMOKw − and EGMOKw −  models for the data set I.          

 

Table 3: MLEs, standard errors, confidence intervals (in parentheses) along with AIC, R.E. and LR (P-value) 

values for the data set II. 

Models                    θ̂                     α̂                 â                 b̂                  λ̂                    δ̂               AIC          RE          LR 
                                                                                                                                           (P-value) 
   MO-W                     ---                      0.032               ---                 ---                  0.009                2.783             203.96        1.84         7.84 

),,( δλα                                            (0.025)                                                       (0.007)             (0.264)                                               (0.04) 
                                                            (0, 0.08)                                                    (0, 0.02)          (2.26,3.30)         
 
   Kw-W                      ---                        ---                4.527            1.874               1.025               0.775              207.32        3.27          9.20 

),,,( δλba                                                              (5.481)         (4.077)             (0.591)            (0.700)                                                (0.01) 
                                                                                 (0,15.26)       (0, 9.86)           (0,2.18)           (0,2.14) 
 
 MOKw-W                  ---                     0.111             2.553              0.994               0.299             1.278              207.62        1.64           7.50 

),,,,( δλα ba                                   (0.187)          (1.829)           (1.389)             (0.414)          (0.703)                                                (0.006) 
                                                            (0, 0.48)        (0,6.13)          (0, 3.71)           (0, 1.11)        (0, 2.65)            
 
GMOKw-W             1.394                  0.100              1.787             0.369                0.247             1.665             202.12          ---               --- 

),,,,,( δλαθ ba    (0.441)              (0.026)            (0.373)          (0.628)             (0.010)           (1.654)             
                               (0.52,2.25)        (0.04,0.15)     (1.05,2.51)       (0, 1.59)         (0.22,0.26)       (0, 4.91)         
 
   B-W                         0.712                3.253               ---                   ---                   1.271             1.041              207.38        3.28              --- 

),,,( δλαθ             (1.077)              (2.227)                                                          (0.955)          (0.424)             
                                  (0, 2.82)           (0, 7.61)                                                         (0,3.14)       (0.20,1.87)                                                                                    
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       (a)                                                                       (b) 
Fig: 5 Plots of the (a) observed histogram and estimated pdf’s and (b) observed ogive and estimated cdf’s for the 

W-BW,KwW,MO −− , WMOKw − and WGMOKw −  models for the data set II.      

 

Table 4: MLEs, standard errors, confidence intervals (in parentheses) along with AIC, R.E. and LR (P-value) 

values for the data set II. 

 

Models                 θ̂                     α̂                      â                      b̂                        λ̂                   AIC            RE            LR 
                                                                                                                                                                                         (P-value)       
 MO-E                    ---                     8.778                      ---                       ---                         1.379                 210.36          3.58              13.12 

),( λα                                           (3.555)                                                                            (0.193)                                                        (0.004) 
                                                    (1.81,15.74)                                                                   (1.00,1.75)           
 
  Kw-E                    ---                      ---                         3.304                  1.00                      1.037                  209.42          2.05              10.18 

),,( λba                                                                      (1.106)               (0.764)                  (0.614)                                                         (0.006) 
                                                                                   (1.13,5.47)          (0, 2.49)                 (0,2.24) 
 
 MOKw-E               ---                   0.008                     2.716                  1.986                     0.086                   209.44          2.47              8.20 

),,,( λα ba                                 (0.002)                  (1.316)                (0.784)                  (0.048)                                                         (0.004) 
                                                   (0.004,0.01)          (0.14, 5.29)        (0.449, 3.52)            (0, 0.18)             
 
GMOKw-E         1.616                 0.005                       2.855                  1.386                   0.075                   203.24            ---                 --- 

),,,,( λαθ ba  (1.086)               (0.003)                    (0.504)                (6.534)                (0.151)                
                           (0, 3.74)             (0, 0.01)               (1.86, 3.84)          (0, 14.19)             (0, 0.37)               
 
   B-E                     0.807                3.461                        ---                        ---                      1.231                   207.38         1.97                --- 

),,( λαθ             (0.696)             (1.003)                                                                           (0.855)                
                             (0, 2.17)          (1.49,5.42)                                                                      (0, 2.91)             
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                               (a)                                                                       (b) 
Fig: 6 Plots of the (a) observed histogram and estimated pdf’s and (b) observed ogive and estimated cdf’s for the 

E-BE,KwE,MO −− , EMOKw − and EGMOKw −  models for the data set II.      

 

Table 5: MLEs, standard errors, confidence intervals (in parentheses) along with AIC, R.E. and LR (P-value) 

values for the data set III. 

Models                    θ̂                     α̂                 â                 b̂                  λ̂                    δ̂               AIC          RE          LR 
                                                                                                                                           (P-value) 
   MO-W                    ---                     0.692                 ---                  ---                 0.031                3.009             297.96          1.35        6.70 

),,( δλα                                          (0.677)                                                         (0.039)             (0.601)                                               (0.08) 
                                                          (0,2.02)                                                        (0,0.10)         (1.83,4.18)           
 
   Kw-W                     ---                      ---                  2.426             3.359               0.168              1.522               299.42         1.45         6.16 

),,,( δλba                                                             (1.297)          (3.054)             (0.148)            (0.573)                                               (0.04) 
                                                                                (0, 4.96)         (0, 9.34)           (0, 0.49)        (0.39, 2.64) 
 
 MOKw-W                ---                    1.564                1.219            0.177                0.528               2.466             299.74         1.98          4.48 

),,,,( δλα ba                                (0.550)            (0.108)           (0.031)             (0.002)            (0.003)                                               (0.03) 
                                                       (0.48,2.64)    (1.01, 1.43)     (0.11, 0.24)       (0.52,0.53)     (2.46, 2.47)          
 
GMOKw-W           0.345                1.482                1.015             0.385               0.803               2.222              297.26            ---          --- 

),,,,,( δλαθ ba  (0.169)            (0.440)              (0.071)          (0.168)             (0.003)             (0.004)                  
                            (0.01,0.67)        (0.62,2.35)      (0.87, 1.15)      (0.05,0.71)     (0.79,0.81)      (2.21,2.23)           
 
   B-W                       1.339               1.342                  ---                  ----                 0.074              2.372               298.30        1.41          --- 

),,,( δλαθ            (6.288)            (0.757)                                                           (0.273)            (0.850)                  
                               (0,13.66)          (0,2.83)                                                           (0, 0.61)       (0.71,4.04)               
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           (a)                                                                    (b) 
Fig: 7 Plots of the (a) observed histogram and estimated pdf’s and (b) observed ogive and estimated cdf’s for the 

W-BW,KwW,MO −− , WMOKw − and WGMOKw −  models for the data set III.      

 

Table 6: MLEs, standard errors, confidence intervals (in parentheses) along with AIC, R.E. and LR (P-value) 

values for the data set III.   

Models                    θ̂                     α̂                      â                      b̂                        λ̂                   AIC            RE            LR 
                                                                                                                                                                                         (P-value)       
 MO-E                         ---                    75.663                    ---                       ---                        1.535                 299.04           2.51            18.78 

),( λα                                               (33.464)                                                                        (0.153)                                                      (0.0003) 
                                                       (10.07, 141.25)                                                             (1.23, 1.83)          
 
  Kw-E                        ---                      ---                      3.439                   48.150                   0.129                   296.64         1.23           14.38 

),,( λba                                                                      (0.552)                (14.213)                 (0.103)                                                      (0.0007) 
                                                                                  (2.35,4.52)         (20.29, 76.01)            (0,0.33)   
 
 MOKw-E                  ---                    2.566                     3.226                  9.065                     0.295                   290.18        1.08              5.92 

),,,( λα ba                                     (5.709)                  (2.177)              (42.865)                  (0.834)                                                        (0.02) 
                                                       (0, 13.76)               (0, 7.49)             (0, 93.08)                (0, 1.93)                 
 
GMOKw-E              1.614                6.891                    3.524                  3.363                      0.549                   286.26         ---                --- 

),,,,( λαθ ba        (1.215)             (2.893)                ( 2.167)              (12.168)                   (1.217)                   
                                (0, 3.99)       (1.22, 12.56)            (0, 7.77)            (0, 27.21)                  (0, 2.93)                                                                                                                                                            
 
    B-E                       16.575               5.926                     ---                      ---                          0.119                   292.56        1.64              --- 

),,( λαθ               (13.981)             (0.825)                                                                          (0.090)                   
                              (0, 43.97)          (4.31, 7.54)                                                                     (0, 0.29)              
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     (a)            (b) 
Fig: 8 Plots of the (a) observed histogram and estimated pdf’s and (b) observed ogive and estimated cdf’s for the 

E-BE,KwE,MO −− , EMOKw − and EGMOKw −  models for the data set III. 

6. Conclusion      
A new family of distribution is introduced and its mathematical properties of including order 

statistics, entropies, and explicit expansions for the order statistics, moments, quantile function, 

generating function, stochastic ordering, asymptotes, shapes, parameter estimation and data fitting are 

investigated. Numerical applications with three real life data sets have shown that the distributions 

from GGMOKw −  family provide improved fitting over its sub models. 

Acknowledgment   Both authors would like to thank the reviewers and the editor for their comments 
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Appendices 
A.1 Proof of Theorem 1  

Let iNi2i1 T...,T,T  be a sequence of i.i.d. random variables with survival function batG ])(1[ − , and 

suppose N has a geometric distribution with parameter p independent of ijT ’s. Then it can easily 

shown that )...,,min( 21 iNiii TTTW = and )...,,max( 21 iNiii TTTV = are distributed as 

),,(G-MOKw bap and ),,(G-MOKw 1 bap−  respectively.  

i. For 10 ≤<α , if N has a geometric distribution with parameter α ,then   

]},...,,[min{ 21 tWWWP >θ ][...][][ 21 tWPtWPtWP >>>= θ  

θ
θ

α )],,;([][ MOKwG

1

batFtWP
i

i =>=∏
=

θαα ]])(1[1])(1[[ baba tGtG −−−=   

This is the sf of ),,,(GGMOKw baαθ− . 

ii. For 1>α , if N has a geometric distribution with parameter 1−α , then  
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]},...,,[min{ 21 tVVVP >θ ][...][][ 21 tVPtVPtVP >>>= θ  

θ
θ

α )],,;([][ MOKwG

1

batFtVP
i

i =>=∏
=

θαα ]])(1[1])(1[[ baba tGtG −−−=  [ αα =−− 11)( ] 

A.2 Derivation of pdf and their expansions for order statistics   

Suppose  nTTT ...,, 21  is a random sample from any GGMOKw − distribution. Let niT :  

denote the thi  order statistics. The pdf of niT :  can be expressed as  

ini
ni tFtFtfinintf −−−−−= )()](1[)(})!()!1(!{)( GMOKwG1GMOKwGGMOKwG
:

l
i

l

in tFlilitFtfinin )]([})!1(!)!1({)()(})!()!1(!{ GMOKwG
1

0

GMOKwGGMOKwG −−−−−−= ∑
−

=

−

iln
i

l

l tFlilitfinin −+
−

=
∑ −−−−−−= )(})!1(!)!1({)1()(})!()!1(!{ GMOKwG

1

0

GMOKwG  

Now using the general expansion of the GGMOKw − distribution pdf and sf we get the pdf 

of the thi order statistics for of the GGMOKw − for )1,0(∈α as 

]]),;([),;(}[)!()!1(!{)( 1

0

KwGKwG
:

−+
∞

=
∑−−= θj

j
jni batFAbatfinintf  

  ])],;([[
1

)1( )(

0

1

0

ilnpKwG

p
p

i

l

l batFA
l

i −++
∞

=

−

=
∑∑ ′







 −
−× θ where jΑ  and pΑ′ are defined earlier. 
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∑
∞

=

+−++++−+++−=
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pj
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pj batF

dt
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KwG
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i
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  and  ))1(/(,, +−+++=′ ilnpjMM pjpj θ  

For 1=θ , it reduces to pdf of the thi  order statistics for of the ),,(GMOKw baα−  given by 

∑
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Again using the general expansion of the GGMOKw − distribution pdf and sf we get the pdf 
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where the elements of the information matrix can be derived using the following second partial 
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where (.)ψ ′  is the derivative of the digamma function.        
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