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Abstract: This paper discusses the coherent forecasting in two types of integer-

valued geometric autoregressive time series models of order one, viz., 

Geometric Integer-valued Autoregressive (GINAR(1)) model and New 

Geometric Integer-valued Autoregressive (NGINAR(1)) model. GINAR(1) 

model uses binomial thinning for the process generation, whereas, NGINAR(1) 

uses negative binomial thinning. The k-step ahead conditional probability mass 

function and the corresponding probability generating functions are derived. It 

is observed that for higher order lags, the conditional mean, variance and the 

probability generating functions of these two processes are close to each other, 

whereas, for lower order lags, they differ. The coherent forecasting performance 

of these models is studied with the help of simulated and real data sets. 
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1. Introduction 

Integer-valued autoregressive models are extensively used for modeling the time series 

of counts that arises in many areas of natural and social sciences. Over dispersion is an 

inherent phenomenon of many such count time series data. This fact lead McKenzie (1986) 

to propose a geometric integer-valued autoregressive process of order one, viz., GINAR(1). 

The process generation in this case uses a binomial thinning mechanism, which was originally 

introduced by Steutal and Van Harn (1979). Mckenzie (1986) studied various probabilistic 

aspects of GINAR(1) model. Subsequently, after about two decades, Risti ć et al. (2009) have 

introduced a new geometric integer-valued autoregressive time series model of order one viz., 

NGINAR(1) with negative binomial thinning. These authors have obtained the k-step ahead 

probability generating function along with its mean and variance. Yule-Walker, conditional 

least squares and conditional maximum likelihood methods were used for the estimation of 

parameters of the proposed model. However, no comparisons were made with the GINAR(1) 

model in terms of its forecasting ability, which has the similar geometric marginal distribution. 

Forecasting is an important issue (see Farrell et al. (2007) and Silva et al. (2009)), not 

exploited completely in GINAR(1) and NGINAR(1) models. Conditional mean, the 

traditional forecast, need not result as a count in the case of INAR models. However, the 

coherent forecasts do not violate this basic requirement. The coherent forecasts are usually 

obtained from the k-step ahead conditional distribution. The idea of coherent forecasting for 

INAR models was first proposed by Freeland and McCabe (2004). These authors have 

considered the coherent forecasting issues related to Poisson integer autoregressive model of 

order one proposed by Alosh and Alzaid (1987). Jung and Tremayne (2006) extended the 

idea of coherent forecasting to INAR(2) Poisson models and Bu and McCabe (2008) to 
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INAR(p) models. Kim and Park (2010) studied the coherent forecasting in binomial 

autoregressive model of order p. Maiti et al. (2015) considered the coherent forecasting in 

count time series, using Box and Jenkins’s AR(p) model. Recently, Maiti and Biswas (2015) 

have extended the coherent forecasting ideas to the over dispersed count time series data with 

GINAR(1) model. In their paper, the forecast values and measures have been compared with 

the Poisson INAR(1) forecasts. However, the over dispersed time series forecasts should be 

compared with forecasts obtained using over dispersed count time series models only. In this 

paper, we attempt to provide such a comparison of coherent forecasts using two geometric 

INAR(1) models. We also compare several other characteristics of these two integer-valued 

geometric time series models. 

Count regression and time series models have abundant applications in epidemiology. 

Researchers have used various models for the analysis of epidemiological count data.O  ̈zmen 

and Famoye (2007) used zero inflated count regression for modeling zoological data using 

zero inflated Poisson and generalized Poisson models. Lai (2005) used AR(1), ARMA(1,1) 

and ARIMA(0,1,0) for the modeling of Severe Acute Respiratory Syndrome (SARS) 

epidemic data from China. Ngatchou-Wandji and Paris (2011) analyzed the annual incidence 

data of rhinitis, dermatitis and allergic asthma using zero-inflated count models and estimated 

the proportion of excess of zeros in future months. Kashikar et al. (2013) studied INAR model 

with structural breaks for analyzing the H1N1 data from Pune, India. Osisiogu and Nwosu 

(2015) considered the prediction of CD4 cell count of HIV/AIDS patients using a non-

stationary Markov chain. In this paper, we dis- cuss two applications of geometric INAR 

models to epidemiological data related to measles and dengue from Germany. 

The paper is organized as follows. In Section 2, we describe both the GINAR(1) and 

NGINAR(1) models and discuss some of their properties which are not reported earlier. 

Section 3 deals with the coherent forecasting of these models. A simulation study is reported 

in Section 4, which essentially compare these two models on various aspects, including 

coherent forecasting. Section 5 deals with the analysis of two real data sets using these models. 

Concluding remarks are presented in Section 6. 

 

2. Models with geometric marginals 

2.1 Geometric INAR(1) model with binomial thinning 

The GINAR (1) process was first proposed by McKenzie (1986),who considered the 

binomial thinning to generate the process. The GINAR (1) process {Xt} is given by the 

equation 

𝑋𝑡 = 𝜙。𝑋𝑡−1 +𝑍𝑡 , 𝑡 ≥ 1 , 0 ≤ 𝜙 < 1   (1)  

where, ‘◦’ stands for the binomial thinning operator defined by 

 𝜙。X =∑𝑊𝑖

𝑋

𝑖=1

 

 

and 𝑊𝑖
′s are independent and identically distributed (i.i.d.) Bernoulli(𝜙) random variables. It 

is assumed that X0 is a geometric random variable with probability mass function (pmf) 

 

P [X0 = x] = (1 − θ)θx, x ≥ 0, 0 < θ < 1. 
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Here, Zt = Ut Mt, ∀ t, with Ut independent of Mt, P[Ut = 0] = 𝜙 = 1−P [Ut = 1], and {Mt} an 

i.i.d. geometric sequence with P[Mt = j] = (1−θ)θj , j ≥ 0. Then, the marginal distribution of 

{Xt} is given by 

P [Xt = x] = (1 − θ)θx, x ≥ 0, 0 < θ < 1. 

 

The probability distribution of Zt is 

𝑃(𝑍𝑡 = 𝑧) = {

(1 − 𝜃 + 𝜙𝜃), if 𝑧 = 0

(1 − 𝜃)(1 − 𝜙)𝜃𝑧, if 𝑧 ≥ 1
 

 

The marginal mean, variance and probability generating function (pgf) of {Xt} are E(Xt) 

= θ/(1−θ), V (Xt) = θ/(1−θ)2 and ΦXt(s) = (1−θ)/(1−sθ) respectively. The conditional mean 

and the variance are 

E(𝑋𝑡|𝑋𝑡−1) = ∅𝑋𝑡−1 + (1 − 𝜙)
𝜃

1 − 𝜃
 

and 

V(𝑋𝑡|𝑋𝑡−1) = 𝜙(1 − 𝜙)𝑋𝑡−1 + (1 − 𝜙)𝜃(1 + 𝜙𝜃)
1

(1 − 𝜃)2
 

 

The conditional pmf is given by 

 

P(𝑋𝑡 = y|𝑋𝑡−1 = x) 

= {
(1 − 𝜃)𝜃𝑦−𝑥 ∑ (𝑥

𝑟
)𝜃𝑥−𝑟𝜙𝑟(1 − ∅)𝑥−𝑟+1 + (𝑥

𝑦
)𝜙𝑦+1(1 − 𝜙)𝑥−𝑦

𝑦
𝑟=0

(1 − 𝜃)𝜃𝑦−𝑥(1 − ∅){𝜙 + (1 − 𝜙)𝜃}𝑥, 𝑖𝑓 𝑦 > 𝑥
, 𝑖𝑓 𝑦 ≤ 𝑥  (2)  

 

The k-step ahead conditional pgf of the process can be derived as, 

 

 Φ𝑋𝑡+𝑘|𝑋𝑡(𝑠) = 𝐸 (𝐸 (𝑠
𝜙。𝑋𝑡+𝑘−1+𝑍𝑡+𝑘) |𝑋𝑡) =  Φ𝑍(𝑠)𝐸(( Φ𝑊(𝑠)

𝑋𝑡+𝑘−1|𝑋𝑡) 

 =∏ Φ𝑧( Φ𝑊
(𝑖)(𝑠))

𝑘−1

𝑖=0

( Φ𝑊
(𝑘)(𝑠))𝑋𝑡 

 

But,  

 

 Φ𝑊
(𝑘)(𝑠) =  Φ𝑊 Φ𝑊

(𝑘−1)(𝑠) 𝑎𝑛𝑑  Φ𝑊
(0)(𝑠) = 𝑠 

 

Therefore using (1), 

 

 ΦZ (s) = ΦX (s)( ΦX ( ΦW (s)))−1 

Hence the k-step ahead conditional pgf becomes, 

 

 Φ𝑋𝑡+𝑘|𝑋𝑡(𝑠) =  Φ𝑋 (𝑠) ( Φ𝑋 ( Φ𝑊
(𝑘)(𝑠)))

−1

( Φ𝑊
(𝑘)(𝑠))

𝑋𝑡
  (3) 
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But,  Φ𝑤
(𝑘)

 (s) = 1 − ϕk + ϕks. Therefore, 

 

 Φ𝑋𝑡+𝑘|𝑋𝑡(𝑠) =  Φ𝑋 (𝑠) ( Φ𝑋(1 − ∅
𝑘 + ∅𝑘𝑠))

−1
(1 − ∅𝑘 + ∅𝑘𝑠)

𝑋𝑡
 (4) 

 

The auto correlation function is given by 𝜌𝑘 = 𝜙
𝑘, for k ≥ 0. The k-step ahead conditional 

pmf is 

 

P(𝑋𝑡 = y|𝑋𝑡−1 = 𝑥) =

{
 
 

 
 
(1 − 𝜃)𝜃𝑦−𝑥∑

(
𝑥

𝑟
)𝜃𝑥−𝑟∅𝑟(1 − ∅)𝑥−𝑟+1

+(
𝑥

𝑦
)∅𝑦+1(1 − ∅)𝑥−𝑦

𝑦

𝑟=0

, 𝑖𝑓 𝑦 ≤ 𝑥

(1 − 𝜃)𝜃𝑦−𝑥(1 − ∅){∅ + (1 − ∅)𝜃}𝑥,                   𝑖𝑓 𝑦 > 𝑥

 

(5) 

 

and the k-step ahead conditional mean and variance are respectively,and 

 

E(Xt+k |Xt) = ϕkXt + (1 − ϕk)     (6) 

 
and 

 

V(𝑋𝑡+𝑘|𝑋𝑡) = ∅
𝑘(1 − ∅𝑘)𝑋𝑡 +

∅

1−∅2
(1 − ∅𝑘−1 − ∅𝑘 + ∅2𝑘−1)𝜇𝑧 +

1−∅2𝑘

1−∅2
𝜎𝑧
2 (7) 

 

where, 

 
 

are the mean and variance od Zt. From the (4), (6) and (7), we observe that, as k → ∞ the 

conditional pgf, mean and variance converge to the marginal pgf, mean and variance 

respectively. 
 

2.2 New Geometric INAR(1) model with negative binomial thinning 

The NGINAR(1) process {Xt} introduced by Ristić et al. (2009) satisfies the equation 

 

X𝑡 = 𝛼 ∗ X𝑡−1 + 𝜖𝑡 ,     𝑡 ≥ 1    (8) 
 

where, 

α ∗ X = ∑ 𝑊𝑖
𝑋
𝑖=1 , 𝛼 ∈  [0, 1), 

{Wi} is sequence of i.i.d. random variables with 

 

P (Wi = w) = αw/(1 + α)w+1, 

 

𝜖𝑡 is independent of Wi and Xt-l for all l ≥ 1. The distribution of 𝜖𝑡 is, 
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P(𝜖𝑡 = z) = (1 −
𝛼𝜇

𝜇 − 𝛼
)

𝜇𝑧

(1 + 𝜇)𝑧+1
+

𝛼𝜇

𝜇 − 𝛼

𝛼𝑧

(1 + 𝛼)𝑧+1
 , 𝑧 = 0,1,2,… 

 

The process {Xt} is stationary with 

 

P (Xt = x) = µx/(1 + µ)x+1, x = 0, 1, 2, ..., 

 

where µ  > 0. The unconditional mean, variance and pgf of {Xt} are E(Xt) = µ , V(Xt) = µ(1 + 

µ) and ΦXt (s) = 1/(1 + µ  − sµ) respectively. The Conditional pmf is, 

 

P(𝑋𝑡 = y|𝑋𝑡−1 = x) = {
(1 −

𝛼𝜇

𝜇−𝛼
)

𝜇𝑦

(1+𝜇)𝑦+1
+

𝛼𝜇

𝜇−𝛼

𝛼𝑦

(1+𝛼)𝑦+1
 ,    𝑖𝑓 𝑥 = 0

𝜇𝛼𝑦

(𝜇−𝛼)(1+𝛼)𝑦+𝑥+1
(𝑦+𝑥
𝑦
) + 𝐷,                    𝑖𝑓 𝑥 ≥ 1 

  (9) 

where, 

 

D = (1 −
𝛼𝜇

(𝜇 − 𝛼)
)

𝜇𝑦

(1 + 𝛼)𝑥(1 + 𝜇)𝑦+1
∑(

𝑥 + 𝑟 − 1

𝑥 − 1
)

𝑦

𝑟=0

(
𝛼(1 + 𝜇)

𝜇(1 + 𝛼)
)𝑟 

 

For obtaining k-step ahead conditional pgf and pmf, we proceed as follows.  

We have Xt+1 = α ∗ Xt + 𝜖𝑡+𝑖. By repeated substitution 

 

Xt+k = α ∗ α ∗ ...α ∗ Xt + {α ∗ ..α ∗ 𝜖𝑡 + .. + α ∗ 𝜖𝑡+𝑘−1 + 𝜖𝑡+𝑘},  (10)  

 

which can be written as, 

𝑋𝑡+𝑘 = 𝛼
(𝑘) ∗ 𝑋𝑡 +∑𝛼(𝑗) ∗ 𝜖𝑡+𝑘−𝑗.

𝑘−1

𝑗=0

 

(11)  

 
Note that, α(i)≠αi, α(i) indicates the operation of negative binomial thinning i times, but α(1) = α 

and α(0) = 1. As 𝜖𝑡+𝑖 is independent of Xt for i=1,2,..., the pgf of the two terms in the last 

expression can be found by taking the product of pgfs. Thus, the k-step ahead conditional pgf 

is, 

 Φ𝑋𝑡+𝑘|𝑋𝑡(𝑠) =  Φ𝑋(𝑠) {(
1 − 𝛼 + 𝛼(1 − 𝛼𝑘−1)(1 − 𝑠)

1 − 𝛼 + 𝛼(1 − 𝛼𝑘)(1 − 𝑠)
)

𝑋𝑡

∗ (
1 − 𝛼 + (𝛼(1 − 𝛼𝑘) + (1 − 𝛼)𝛼𝑘𝜇)(1 − 𝑠)

1 − 𝛼 + (𝛼(1 − 𝛼𝑘))(1 − 𝑠)
)},                     

(12) 
 

From (11), the k-step ahead pmf can be obtained as, 
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𝑃 (𝑋𝑡+𝑘 = y|𝑋𝑡 = 𝑥) =∑𝑃(𝛼(𝑘) ∗ 𝑥 = 𝑟)𝑃(∑𝛼(𝑗)
𝑘−1

𝑗=0

∗ 𝜖𝑡+𝑘−𝑗 = 𝑦 − 𝑟)

y

𝑟=0

,   

(13) 
 

the probabilities in equation (13) are 

 

𝑃(𝛼(𝑘) ∗ x = r) = {

𝐴𝑘
𝑥 ,                                                          𝑖𝑓 𝑟 = 0

1

𝑟
∑𝑙 (

𝑟

𝑙
)𝐴𝑘

𝑥−1

𝑟

𝑙=1

𝐵𝑘
𝑙 𝐶𝑘

𝑟−1 (
𝑥

𝑙
) , 𝑖𝑓 𝑟 ≥ 1,

 

   (14) 

 

P(∑𝛼(𝑗) ∗ 𝜀𝑡+𝑘−𝑗

𝑘−1

𝑗=0

= y − r) = (
(𝛼𝑘 − 1)(𝛼 − 𝜇 + 𝛼𝜇)

𝛼𝑘+1 + 𝜇 − 𝛼(1 + 𝜇)
)

𝜇𝑦−𝑟

(1 + 𝜇)𝑦−𝑟+1
 

+
𝛼𝑘𝜇(1 − 𝛼)

𝛼𝑘+1 + 𝜇 − 𝛼(1 + 𝜇)
(
1 − 𝛼

1 − 𝛼𝑘+1
)(
𝛼(1 − 𝛼𝑘)

1 − 𝛼𝑘+1
)

𝑦−𝑟

, 

 

 

where,  𝐴𝑘 = (
1−𝛼𝑘

1−𝛼𝑘+1
) , 𝐵𝑘 = (

𝛼𝑘(1−𝛼)2

(1−𝛼𝑘+1)2
)  𝑎𝑛𝑑 𝐶𝑘 = (

𝛼(1−𝛼𝑘)

1−𝛼𝑘+1
) 

 

Using this, the k-step ahead conditional pmf can be obtained as 

 

𝑃(𝑋𝑡+𝑘 = 𝑦|Xt = 𝑥)

=

{
 
 
 
 
 

 
 
 
 
 

𝑃(∑𝛼(𝑗) ∗ 𝜖𝑡+𝑘−𝑗 = 𝑦

𝑘−1

𝑗=0

) , 𝑖𝑓 𝑥 = 0

𝑃(𝛼(𝑘) ∗ 𝑥 = 0)𝑃(∑𝛼(𝑗) ∗ 𝜖𝑡+𝑘−𝑗 = 𝑦

𝑘−1

𝑗=0

)

+∑𝑃(𝛼(𝑘) ∗ 𝑥 = 𝑟)𝑃 (∑𝛼(𝑗) ∗ 𝜖𝑡+𝑘−𝑗 = 𝑦 − 𝑟

𝑘−1

𝑗=0

)

𝑦

𝑟=1

, 𝑖𝑓 𝑥 ≥ 1.

                   

(15) 

The k-step ahead conditional mean and variance are, 

 

E(𝑋𝑡+𝑘|𝑋𝑘) = 𝛼
𝑘𝑋𝑡 +

1−𝛼𝑘

1−𝛼
𝜇𝜖     (16) 

 

 

 

and 
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V(𝑋𝑡+𝑘|𝑋𝑡) =
𝛼𝑘(1 + 𝛼)(1 − 𝛼𝑘)

1 − 𝛼
𝑋𝑡 +

1 − 𝛼2𝑘

1 − 𝛼2
𝜎𝜖
2 + 

{
𝛼(1+𝛼+2𝜇𝜖)

1−𝛼
(
1−𝛼2𝑘

1−𝛼2
) −

1−𝛼𝑘

1−𝛼
𝛼𝑘−1} 𝜇𝜖 + (

1−𝛼2𝑘

1−𝛼2
−
1−2𝛼𝑘+𝛼2𝑘

(1−𝛼)2
)𝜇𝜖¸ 
2  (17) 

 

where, 𝜇𝜖 = (1 − α)µ  and σ𝜖
2 = (1 + α)µ((1 + µ)(1 − α) − α) are the mean and variance of st. 

From (12), (16) and (17) we can see that the k-step ahead pgf, mean and variance converge to 

the unconditional pgf, mean and variance respectively as k → ∞. The auto-correlation 

coefficient is 𝜌𝑘 = αk, k ≥ 0. 

 
2.3 Comparison of two geometric INAR models 

Ristić et al. (2009) have proposed the NGINAR(1) model after twenty three years of 

McKenzie’s (1986) proposal of GINAR(1). Risti ć et al. (2009) have discussed the estimation 

of parameters and other properties in detail. However, McKenzie (1986) did not give much 

emphasis on estimation of the parameters. In a recent paper, Maity and Biswas (2015) studied 

the conditional least squares estimation in GINAR(1) model. An obvious question is about 

the preference between these two models, when the overdispersion is present in the count 

time series data. As per our knowledge, no attempt has been made to compare these two time 

series models in terms of their properties and forecasting ability. In this section we attempt 

to do this. 

From the expressions of k-step ahead mean , variance and pgf of the two models, we see 

that they coincide as the lag k → ∞ and for 𝜇 = 𝜃 (1 − 𝜃)⁄  and α = ϕ. Thus, it can be seen 

that these two models behave almost similarly after few lags for most of the parameter 

combinations, except when the parameter values are very small. Figure 1 represents the one-

step ahead pmfs of GINAR(1) and NGINAR(1) models for same parameter combination, i.e., 

µ  = θ/(1 − θ) and α = ϕ. From this figure it can be seen that the conditional pmfs do differ for 

initial lags for same parameters. Figure 2 represents the k-step ahead conditional variance 

assuming same parameters for GINAR (1) and NGINAR(1). It can be seen that there is 

significant difference in the variability of the two processes for initial lags even after keeping 

parameter values same. Hence, this difference in the two processes with same marginals 

needs to be taken into account while modeling such data. 
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Figure 1: Comparison of conditional one step ahead pmf for various combinations of parameters,(a) 

𝜙 = 0.1, µ = 5, n = 50; (b) 𝜙 = 0.5, µ  = 5; (c) 𝜙 = 0.5, µ  = 10; (d) 𝜙 = 0.9, µ  = 10 and for Xt−1 = 0. 

Red dashed spikes indicate the NGINAR(1) model and Green spikes indicate GINAR(1) model. 
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Figure 2: Comparison of k-step ahead conditional variances for various choice of parameters, (a) 𝜙 = 

0.5, µ = 5, Xt−1 = 2; (b) 𝜙 = 0.9, µ = 10, Xt−1 = 2; (c) 𝜙 = 0.5, µ = 5, Xt−1 = 10; (d) 𝜙 = 0.9, µ = 10, 

Xt−1 = 15. Red dashed line indicates the NGINAR(1) model and Green line indicates GINAR(1) 

model. 

 

In order to study these two models, we have simulated 1000 data series, each of size 100, 

300, 500 and 1000 from both the models with various combinations of the parameter values. 

The estimation results are presented in Table 1. The estimates are obtained using method of 

maximum likelihood. The last column of the Table 1 represents the percentage of the time 

the true model is selected using AIC criterion. If a series is generated using the NGINAR(1) 

model, then the AIC for NGINAR(1) model is expected to be smaller than that of the other 

model and vice-versa. From the last two columns of Table 1, it may be concluded that the 

correct model is selected majority of the times, except when the parameter values are very 

small. As the number of parameters in both models are same, BIC also gives same conclusion 

and hence not quoted here. 
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Table 1: Two geometric INAR models: Estimation and model selection results 

 
 

Remark 2.1: 

Suppose P1 and P2 denote the k-step transition probabilities of GINAR(1) and NGINAR(1) 

processes respectively. Then, the absolute difference between P1 and P2 is given by, 

 

|P1(Xt+k = y|Xt = x) → P2 (Xt+k = y| Xt = x)|= d(x,y,k,α,μ) 

 

for all x and y, α = ϕ and θ = µ/(1 + µ). Note that d(·) is a bounded function, 

which tends to zero as k → ∞. For example, when x and y are zero 

 

d(0,0, 𝑘, 𝛼, 𝜇) =
𝜇(1 − 𝛼)𝛼𝑘+1

(1 + 𝑘)(1 − 𝛼𝑘+1)
→ 0 𝑎𝑠 𝑘 → ∞  

but, d(0, 0, 1, α, µ) ƒ= 0. Similarly, for x = 1 and y = 0 

 

d(1,0, 𝑘, 𝛼, 𝜇) =
𝛼𝑘+1(1 − 𝛼𝑘)(1 − 𝛼𝑘+1 − 𝜇 + 2𝜇𝛼𝑘 − 𝜇𝛼2𝑘+1)

𝜇1 − 𝛼𝑘+1
2  

implies that d(1, 0, k, α, µ) → 0 as k → ∞ but d(1, 0, 1, α, µ) ƒ= 0 for k = 1. Along with this 

it can be shown that as k → ∞ 

 

P1(Xt+k = y|Xt = x) → P (Xt+k = y) = (1 +θ)y, y ≥ 0, 

and 

P2(Xt+k = y|Xt = x) → P (Xt+k = y) = µy /(1 + µ)y+1, y ≥ 0, 
 

where these two limiting pmfs are same under the condition θ = µ/(1 + µ). From this, it is 

clear that the difference in the two conditional probabilities goes to zero as k → ∞ but it is 

not zero for small values of k. 
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3. Coherent forecasting 

In this section, we consider the coherent forecasting of GINAR(1) and NGINAR(1) 

models. The coherent forecasts are obtained using the median or mode of k-step ahead 

conditional probability distribution. The forecast accuracy is measured using measures such 

as Predictive Root Mean Square Error (PRMSE), Prediction Mean Absolute Error (PMAE) 

and Percentage of True Prediction(PTP). If the observed data set {X1, ..., Xn, Xn+1, ..., Xn+m} 

partitioned into two sets. The first n observations are used for the estimation of the parameters 

of the model and rest m observations called the test set is used for the computation of these 

measures. These measures are defined as, 

PRMSE(k) =√
1

m-k+1
∑ (𝑋𝑖+𝑘 − �̂�𝑖+𝑘

𝑀𝑒𝑎𝑛)

𝑛+𝑚−𝑘

𝑖=1

 

𝑃𝑀𝐴𝐸(𝑘) =
1

𝑚 − 𝑘 + 1
∑ |𝑋𝑖+𝑘 − �̂�𝑖+𝑘

𝑀𝑒𝑑|

𝑛+𝑚−𝑘

𝑖=1

 

and  

𝑃𝑇𝑃 =
1

𝑚 − 𝑘 + 1
∑ 𝐼(𝑋𝑖+𝑘 = �̂�𝑖+𝑘)

𝑛+𝑚−1

𝑖=1

× 100%, 

where, I(·) is the indicator function. In PTP, we have used �̂�𝑡+𝑘 = �̂�𝑡+𝑘
𝑀𝑒𝑑  𝑜𝑟 �̂�𝑡+𝑘

𝑀𝑜𝑑𝑒 or the k-

step ahead conditional mean , after rounding it to the nearest integer. 

�̂�𝑡+𝑘
𝑀𝑜𝑑𝑒 , �̂�𝑡+𝑘

𝑀𝑒𝑑𝑖𝑎𝑛 , �̂�𝑡+𝑘
𝑀𝑒𝑎𝑛 are obtained from the k-step ahead conditional pmf. 

 The standard prediction intervals assume the predictive probability distribution to be 

symmetric . However, for these models, it is unimodal and positively skewed . Hence, we 

find the 100(1- γ )% highest predictive probability interval (HPP) for 𝑋𝑡+𝑘  as,  𝐶𝑘 =

(𝑋𝐿 , 𝑋𝑈), 𝑤𝑖𝑡ℎ 𝐶𝑘 = {𝑦: 𝑝𝑘(𝑦|𝑥) ≥ 𝐾𝛾} and𝐾𝛾  is the largest number such that, 

P(𝑋𝐿 ≤ 𝑋𝑡+𝑘 ≤ 𝑋𝑈|𝑋𝑡 = x) = ∑ 𝑝𝑘(𝑦|𝑥)≥(1−𝛾)

𝑋𝑈

𝑦=𝑋𝐿

, 

where 

pk(y|x) = P (Xt+k = y|Xt = x). 

 

Let �̂�𝑡 and µ̂𝑡 be the maximum likelihood (ML) estimates of α and µ  based on a sample 

of size t, then the ML estimate of the k-step ahead probability mass function is given by 

pk(y|Xt; �̂�𝑡, µ̂𝑡). Applying the δ-method, one can derive the asymptotic distribution of this 

probability estimate, see Theorem 2 of Freeland & McCabe (2004). Thus, the 95% confidence 

interval for pk(y|Xt; α0, µ0) is, pk(y|Xt; �̂�𝑡, µ̂𝑡) ± 2σ̂𝑘(y; �̂�𝑡, µ̂𝑡), where, σˆk2(y; �̂�𝑡, µ̂𝑡) is the 

estimated asymptotic variance of pk(y|Xt; �̂�𝑡, µ̂𝑡). 
 

4. Simulation study 

We have carried out three simulation studies. In the first study, we compare the two 

models with respect to their general properties and coherent forecasting ability. To achieve 
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this, we have simulated 1000 series, each of size 700 from NGINAR(1) process with four 

sets of parameter values viz.; (a) α = 0.6, µ = 2, (b) α = 0.6, µ  = 2.5, (c) α = 0.4, µ  = 1.5 and 

(d) α = 0.4, µ  = 2. The data are then divided into two parts, the first part is used for the 

estimation of parame- ters and the second to measure the forecast accuracy. Four hundred 

observations are used for parameter estimation and three hundred for computing the forecast 

accuracy measures. From Table 2 it can be observed that the values of the performance 

measures PRMSE and PMAE for the NGINAR(1) model are relatively lower for most of the 

parameter combinations, supporting the fact that if the actual process is NGINAR(1), then it 

gives a better fit (less prediction error) than GINAR(1), even though the marginal distribution 

of the two processes is the same. It can be also seen that, as k increases, the values of the 

measures increases, indicating that the error in forecast increases as lag increases. 

In the second simulation study, the performance of the conditional median or mode 

forecast is compared with the integer part of the conditional mean forecast. 

 

Table 2: PRMSE and PMAE when the data are from NGINAR(1) model for 

k-step ahead forecasts 

 
 

Here we have used the same set up that of the first simulation study, except for the parameter 

values. The results of the study are reported in Table 3 for NGINAR(1) model. The values 

reported in Table 3 are the average PTP values over 1000 simulations, computed for each 

step. Here, we can see that the median and mode give better performance than the rounded 

Minimum Mean Square Error (MMSE) forecast. For the same data, the PTP values of mean, 

median and mode obtained using the GINAR(1) are presented in Table 4. In geometric case, 

the mode has high PTP value and hence it is preferred. Here, the PTP for mode using 

NGINAR(1) model is larger than GINAR(1) model. 

In the third simulation study, we have simulated 305 observations from NGI- NAR(1) 

model, out of which 300 were used for the estimation and last five for out of sample forecast 

comparison. Based on the 300 observations we have computed the 100(1 − γ)% HPP intervals 

discussed in Section 3. The test data are used to compare the prediction values such as mean, 

median and mode. These values are based on 1000 replications and are presented in Table 5 

for NGINAR(1) model and in Table 6 for GINAR(1) model. All the values in the table are 

the averages over 1000 simulations. One can easily see that, the length of the HPP interval 

increases as the k increases. The average of the actual simulated values are re- ported in the 
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second column. It may be noted that, the HPP intervals cover the average of the actual 

simulated values for all the parameter combinations. As NGINAR(1) model has more spread 

compared to GINAR(1), the HPP intervals 

 
Table 3: PTP values in the case of NGINAR(1) model for k-step ahead forecasts when data are from 

NGINAR(1) 

 
 

Table 4: PTP values in the case of GINAR(1) model for k-step ahead forecasts when data are from 

NGINAR(1) 

 
 

computed using NGINAR(1) are wider than that using GINAR(1). We employed the same 

parameter combination and data for the both the cases. From Tables 5 and 6 it can be seen that 

the estimated mean, median and mode using the GI- NAR(1) model are smaller than the 

NGINAR(1), indicating that the NGINAR(1) model can accommodate larger counts than the 

GINAR(1). 

 

 

 

Table 5: HPP intervals (80%) for the NGINAR(1) model for simulated data with average forecasted 

values for different sets of parameters when data are from NGINAR(1) 
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5. Real data analysis 

5.1 Dengue data 

Consider the weekly data on Dengue cases during the year 2010 to 2015, from Berlin, 

available at https://survstat.rki.de . The data consist of 339 observations. From the descriptive 

statistics given in Table 7, note that the sample variance is larger than the sample mean, which 

leads to an over dispersed situation. Thus, the usual Poisson INAR model is not expected to give 

a good fit and hence geometric INAR models are preferred. 

The AR(1) structure of the model can be justified from the partial autocorrelation function 

(PACF) plot in Figure 3. From Table 8, we see that the AIC for NGINAR(1) model is smaller 

than that of GINAR(1), and thus the data support the NGINAR(1) model. The forecast accuracy 

measures for NGINAR(1) 

 

Table 6: HPP intervals (80%) for the GINAR(1) model for simulated data with average forecasted 

values for different sets of parameters when data are from NGINAR(1) 

 

model are better than that of GINAR(1) model. The first 275 observations were used for the 

estimation of the parameters and remaining for testing, i.e., to compute the forecast measures. It 

can be seen that the NGINAR(1) model performs better than the GINAR(1), in terms of these 

measures. The point forecast of the probabilities for the Dengue data using NGINAR(1) model 

are given in Ta- ble 9. From this table, it can be observed that the transition probabilities from 0 

to 1 are increasing slowly as lag increases and become steady for higher lags and are less than 
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0.250. The transition probabilities from 0 to other values are decreasing for steps 1 to 5, indicating 

that, in future, disease will remain under control. These probabilities are obtained for steps 1 to 5 

and for values 0 to 5. The probabilities of the values beyond 5 are not given, as they are very small 

and are not going to add much information. It can be observed that the median and mode are also 

0 for all the steps of the forecast distribution, which indicates that, in future, the number of Dengue 

cases will be zero with high probability and one with moderate probability. The probability 

estimates reveal that there is nearly 90% chance that the number of cases in next step is less than 

or equal to 2. We have obtained the 95% confidence intervals for the probabilities and they are 

given in Table 10. It can be concluded from Table 10 that the probability of 0 case in the next 

period lies between 0.517 to 0.656 and probability of 1 case in the next period lies between 0.210 

and 0.236 with 95% confidence. From Table 9 we can see that the point estimate of probability 

for zero is around half and the probability is decreasing for higher values, implying that the chance 

of having value higher than one is quite less. Table 11 gives the HPP intervals (80%) for the 

forecast values. These intervals are obtained for all the five-step ahead forecasts. It may be noted 

that the median and mode forecasts are better than the mean forecasts. 

 
Figure 3: Time series, ACF and PACF plots of Dengue data 

 

5.2 Measles data 

These data consist of 234 observations on weekly cases of measles form the state 

Rhineland-Palatinate of Germany, during the period 2006 to 2010, the data are available from 

https://survstat.rki.de. The data appear to be clearly over dispersed from the descriptive 

statistics given in Table 12, and therefore the 

 
Table 7: Descriptive statistics of Dengue data 
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Table 8: Predictive analysis of Dengue data 

 
 

Table 9: Forecast probabilities for Dengue data using NGINAR(1) model 

 
 

Table 10: Confidence interval (95%) for the forecast probabilities from Dengue data using 

NGINAR(1) model 

 

 

Table 11: Prediction interval (80%) with actual and forecast values using the mean, median and 

mode of the conditional distribution for Dengue data using NGINAR(1) model 

 

Poisson INAR(1) model is not a good choice. The AR(1) structure of the data can be concluded 

from the PACF plot in Figure 4. The AIC and PRMSE support NGINAR(1) model for these data 
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(see Table 13). From Table 13, it can be observed that the forecast accuracy measures are close 

to each other. However, the AIC criterion supports the NGINAR(1) model and hence the same 

has been used for forecasting. Table 14 gives the point estimates of the probabilities and Table 15 

gives the 95%confidence intervals for the forecast probability. From Table 14, we see that the 

transition from 1 to 0 have probabilities increasing from 0.579 to 0.685, for steps 1 to 5, whereas, 

these probabilities are decreasing for all other states from 1, when lag increases. Here, we can see 

that the probability of getting zero as next forecast lies between 0.537 and 0.621, probability of 

getting one as next forecast lies between 0.261 and 0.292 with 95% confidence. Similar pattern 

appears for other steps as well. It can be seen from Table 15 that there is less chance of having 

value more than 1 in future, and the epidemic will be completely under control. HPP intervals 

(80%), predicted mean, median and mode are given in Table 16. It can be found that the median 

and mode of the k- step ahead probability distribution are very good forecasts. All the actual 

counts are within the interval (XL, XU). 

 

Table 12: Descriptive statistics of Measles data 

 

  
Figure 4: Time series , ACF and PACF plots of Measles data 
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Table 13: Predictive analysis of Measles data 

 
 

Table 14: Forecast probabilities for Measles data using NGINAR(1) model 

 
Table 15: Confidence intervals (95%) of the forecast probabilities for Measles data using 

NGINAR(1) model 

 
 

Table 16: Prediction interval (80%) with actual and forecast values using the mean, median and the 

mode of the conditional distribution for Measles data using NGINAR(1) model 

 

6. Conclusion 

From the detailed study of two models and the comparison of the forecast measures, it is 

observed that the NGINAR(1) model performs relatively better than the GINAR(1) when the 

count time series data are over dispersed. Two epidemiological time series data are analyzed 
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and both are found to be better modeled by NGINAR(1). As several characteristics of these 

two models are quite different for near lags, there is a need to select the appropriate geometric 

INAR model for applications, depending on the data at hand. Criteria such as AIC, PRMSE 

etc., will help in choosing one of the geometric INAR models. From the data sets analyzed in 

this paper, we found that the coherent forecasts using NGINAR(1) model are better than those 

from the GINAR(1) model. It is also revealed that the k-step ahead median and mode are 

better than the MMSE forecasts. 
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