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Abstract: The surrogate markers(SM) are the important factor for angiogenesis in 

cancer patients.In Metronomic Chemotherapy (MC) , physicians   administer 

subtoxic doses of  chemotherapy (without break) for long periods, to the target 

tumor angiogenesis. We propose a semiparametric approach, predictive risk 

modeling and time to control the level of surrogate marker to detect the perfect 

dose level of MC. It is based on the controlled level of surrogate marker, and the 

aim is to detect an Optimum Biological Dose (OBD) finding rather than a 

traditional Maximum Tolerated Dose (MTD) approach. The methods are 

illustrated with MC trial dataset to determine the best OBD and we investigate the 

performance of the model through simulation studies.  
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1. Introduction  

The doses of chemotherapy selected in clinical practice are routinely derived by the MTD 

approaches. It is believed that an increase in dose will lead to an increase in tumor response. 

The dose selected for phase 2 and further studies is one dose level below the MTD level in 

Phase I studies [Skipper 1970, Devita 2008, Briasoulis 2009].  However, this conventional 

dosing of chemotherapy has routinely compromised the QOL of patients and may lead to 

selection of chemo-resistant clones [Schmid 2005, Golfinopoulos 2007, Saltz 2008]. The MC 

has been suggested as an alternative strategy to overcome such effects. The strategy in MC is to 

administer sub-toxic doses of same chemotherapy drugs for long periods to target angiogenesis 

[Bhattacharjee 2016, Patil 2015,Kerbel 2002, Kerbel 2004,Scharovsky 2009].  The effect on  

angiogenesis is achieved by targeting CEC. The effect on CEC is restricted to an antiangiogenic 

window in tumor cell line studies [skipper 1970, Hobson 1984, Vacca 1999]. In tumor cell line 

studies a drug would start exerting an antiangiogenic effect at a low dose level and it would 

continue to exert it till an upper dose level. Drug levels below the lower dose level and above 

the upper dose level won't exert an antiangiogenic effect (Figure 1). The challenge is to 

establish the optimal  biological dose (OBD) of MC which would have maximized inhibiting 

effect on CEC. The aims of any phase I traditional clinical trial is to detect the MTD of 

chemotherapy. As when conventional chemotherapy is administered toxicity is a concern. 
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However, in case of MC the toxicity is not a concern. As the Metronomic doses are nearly 
1

10𝑡ℎ 

of MTD of conventional chemotherapy. Therefore the aims  of phase 1 MC clinical trial is to 

obtain OBD of a drug [Marshall2012].  

The simple phase I trial design is to obtain MTD of a cytotoxic agent through standard '3+3' 

design accrues patients in cohorts of three and escalates until a pre-defined DLT is observed 

[Rosemarie1993].  The Continual Reassessment Method (CRM), is an another dose-response 

finding model and recently gained popularity [O'Quigley2006]. But both the models directly 

failed to detect the aim of any MC i.e. OBD .  This paper is aimed to illustrate the application 

of OBD in MC. The OBD of MC is determined based on the performance of desired level of 

Surrogate Marker(SM). The serum creatinine (Scr) is considered as a choice of SM in this study. 

The OBD for dose-finding designs to search the perfect dose in MC has been proposed in this 

article. 

 

2. MC trial data set 

It is a partial data set considered from ongoing 7-years duration of a longitudinal study. 

This study is continuing under the supervision of the authors as principal investigator and is not 

matured enough to state more about it. This work is dedicated only on dose-response modeling 

section. It is expected that the full data will be matured enough by the end of the year 2020 in 

terms of completed follow-up of the patients with strong enough statistical power to serve the 

primary objective as the event of interest i.e. death. In this manuscript, we focused only on 

initial dose-response modeling of MC with cancer patients.  A total of 110 patients MC therapy 

data has been utilized in this paper. In MC the main goal is to find out the OBD among all 

different low dose levels. The serum creatinine (SCr) is considered as response of interest for 

OBD. A total of six doses-levels coded as  10mg/m2,15 mg/m2,20 mg/m2, 25 mg/m2,30 

mg/m2 and 35 mg/m2 of IV docetaxel are considered in this study. The data set is observed 

with individual-specific  information for patient 's with doses and corresponding marker levels. 

The Scr measurements are retrospectively observed for six different cycles of MC therapy.  

This study is focused on Scr data observed till end of first few weeks of MC Trial. 

 

3. Methods 

3.1 Data Exploration with Mixture Distribution 

The parametric model is assumed for dose-response curve preparation. The challenge is to 

specify the dose-response for the optimum biological response modeling. The literature for 

dose-response modeling is well established through different types of MLE assumptions 

[islam2016,Aghamohammadi2010,Schmoyer1984], and Kernel estimator [Muller1988].The 

non-parametric setup has been found suitable for dose-response through Dirichlet Process Prior 

[Mukhopadhyay 2000] and quantile response [Dette 2010].The application of semi-parametric 

through mixture of parametric and non-parametric explored for continuous variable [Einsporn 

1987].  This mixture approach for density estimation [Olkin 1987], hazard function [Kouassi 
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1997], robust regression [Mays2001] and the linear mixed model [Waterman 2007] are already 

established for repeated [Pickle 2008] and non-repeated measurement [Robinson 2010].  This 

work is extended with the application of semi-parametric estimates of the dose-response 

relation for the exploratory data analysis. The weight is used to reduce the bias balanced the 

adaptively borrowed across the two method, i.e. parametric and non-parametric The scenario of 

parametric model correctly specified, the weights  towards the parametric model will be more 

otherwise non-parametric portion will gain more weight. Let the response of interest is denoted 

as Y following the Bernoulli distribution with the probability f(x). The dose-response f(x) is 

estimated through the semi-parametric modeling. The effective dose-response is denoted as  

𝐸𝐷𝛼 = 𝑓−1(𝛼)for 0 < 𝛼 < 1$. The inverse functions f(x) is 𝑓−1(𝑥)$. The aim of any 

toxicology studies is to estimate 𝐸𝐷𝛼  for smaller values of𝛼. The dose-response relation is 

estimated through parametric and non-parametric modeling. The parametric model is assumed 

as 𝑓(𝑥, 𝜃)  for the dose - response curve and 𝜃 is the unknown parameter. Suppose the 

nonparametric and parametric estimates are  𝑓̅(𝑥) and 𝑓(𝑥, 𝜃) respectively. The estimated value 

of the parameter of interest is 𝜃 obtained by MLE .The dose is denoted as x and corresponding 

response as Y. The dose-response relation is observed through the mixture of parametric and 

non-parametric modeling.  

The equation is defined as 

                                         𝑓𝜔(𝑥, 𝜃) = (1 − 𝜔)𝑓̅(𝑥) + 𝜔𝑓(𝑥, 𝜃)                                (3.1) 

The weight (𝜔 ∈ [0,1])  factor is used to make balance between parametric and non-

parametric estimates. The equation (3.1) provides the option to incorporate the parametric and 

non-parametric both the options simultaneously. The estimates (either parametric or non-

parametric) fits more appropriately will gain more weight and complementary value of 𝜔 i.e 1-

 𝜔 will be gained by another one. The dose range is denoted as (𝑥𝑚𝑎𝑥, 𝑥𝑚𝑖𝑛). The estimated 

value of $\omega$ is obtained from the minimum estimated value of the mean integrated 

squared error(MISE) (Yuan2011)  

𝑀𝐼𝑆𝐸 (𝑝𝜔(𝑥, 𝜃)) = 𝐸 [∫ {𝑝(𝑥) − 𝑝𝜔(𝑥, 𝜃)}
2𝑥𝑚𝑎𝑥

𝑥𝑚𝑖𝑛
𝑑𝑥]                                                (3.2) 

The dose-response relation is explored through semi-parametric estimation. The function 

values of the above equation are defined as 

𝑃𝑟𝑜𝑏𝑖𝑡1: −𝑝(𝑥) = 𝜑(
𝑥−0.5

0.25
)                                                                                       (3.3) 

𝑃𝑟𝑜𝑏𝑖𝑡2: −𝑝(𝑥) = 𝜑(
𝑥−0.5

0.5
)                                                                                       (3.4) 

The optimum dose level is selected with 𝐸𝐷𝛼 =0.5.  

Further, x is defined as 𝑥 =
𝑑−1

5
 for d=1,2,….6.The Probit model in parametric portion and  

Kernel estimation for non-parametric portion assumed to perform the analysis. A total of 1000 

boot strapping has been carried to obtain the estimates of weight ω. The value of 𝐸𝐷𝛼has been 

observed through 0.05,0.1,0.15,0.20,0.25,0.30 to avoid the complicated estimation of 𝐸𝐷𝛼 Bias 
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and   MSE estimates of 𝐸𝐷𝛼 observed simulations of parametric and non-parametric estimates 

are detailed in Table 1 and Table 2 respectively. 

 

3.2 Predicted Risk Modeling for Optimum Biological Dose (OBD) of a Surrogate 

Marker (SM) 

The event is defined as the presence of a Surrogate Marker (SM) within the controlled limit. 

Let SM under consideration is Y. The objective is to reduce or induce the level of response Y 

through specific dose i.e. x. The target level of Y to be controlled by x is decided based on 

supportive literature of trial. Suppose patients  i is  having response value 𝑌𝑖  and if 𝑌𝑖=𝑗 ,  

patients has experienced the controlled level of SM in the jth interval of time,𝑡𝑗−1 < 𝑇𝑖 < 𝑡𝑗 for   

j=1,2,....C and the sequence of time denoted as 0 < 𝑡0 < 𝑡1 < ⋯ … < 𝑡𝑒 < ∞  where 

[𝑡0, 𝑡𝑒−1] = [0, 𝑡∗] is the maximum window of observation. 

Further, 𝑇𝑖
0 is the event of time or right censoring time. The indicator ∆𝑖= 1 if 𝑇𝑖

0 = 𝑇𝑖 and 

∆0= 0  if 𝑇𝑖
0 < 𝑇𝑖. The value of 𝑌𝑖

0is the current interval value for the ith  patients. Let dose 

under consideration denoted as 𝑑1 < 𝑑2 < ⋯ . 𝑑𝑚and  m=1,...M gives   the standard normal cdf 

of  Φ(. ). The binary-time event function is defined as  

𝛷(𝛽𝑗,𝑚) = 𝑃𝑟 (𝑌𝑖 = 𝑗/𝑑𝑚) = ∏ {1 − 𝛷(𝛽ℎ,𝑚) }
𝑗
ℎ=1                                                      (3.5) 

 

for 𝑗 ≤ 𝐶 − 1 . Let βj,m  is the effective dose k on the event in the jth interval. The 

probability of event for the jth interval is  

𝑃𝑟 (𝑌𝑖 = 𝑗/𝑑𝑚) = Φ(βj,m) ∏ {1 − Φ(βh,m) }
j−1
h=1                                                             (3.6) 

 

and not occurrence of event Pr(𝑌 ≥ 𝑗|𝑑𝑚) = ∏ { 1 − Φ(𝛽ℎ,𝑚)}
𝑗
ℎ=1 for 𝑗 ≤ C − 1  at any 

specific point of time, the binary data for the nth patients take the form  𝐷𝑛 =

{(𝑌𝑖
0, 𝑚(𝑖), 𝛿𝑖), 𝑖 = 1,2, … . 𝑛} and denoted as  𝛽 = (𝛽1,1, … . . 𝛽𝐶−1,𝑚. The likelihood is defined 

as 

𝐿(𝛽|𝐷𝑛) = ∏ Φ(𝛽𝑌𝑖
0, 𝑚(𝑖))𝛿𝑖𝑛

𝑖=1 ∏ {1 − Φ(βh,m(i))}  
𝑌𝑖

0−1

ℎ=1                                             (3.7) 

The conditional probability is defined as 

𝜋(𝛽, 𝑑𝑚, 𝑗) = 𝑃(𝑌 ≤ 𝐶 − 1|𝑌 ≥ 𝑗, 𝛽, 𝑑𝑚)for𝑗 = 1,2, … 𝐶 − 1 and m = 1, … . M           (3.8) 

Further, 𝜋(𝛽, 𝑑𝑚, 𝑌0) gives the probability that a patients who successes in 𝑌0 − 1 without 

event will expereinced by  𝑡∗ = 𝑡𝐶 − 1 at dose 𝑑𝑘. 

Let the window is [0, 𝑡∗] is 𝜋(𝛽, 𝑑𝑚, 1.The binary-time event is defined as   

𝜋(𝛽, 𝑑𝑚, 𝑗) = 1 − ∏ {1 − Φ(𝛽ℎ,𝑚)}𝐶−1
ℎ=1 and  𝜋(𝛽, 𝑑𝑚, 𝑗) = 1 − ∏ {1 − Φ(𝛽ℎ,𝑚)}𝐶

ℎ=1 . 
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For the patients i, the vector of latent variable 𝑍𝑖 = (𝑍𝑖,1, … . 𝑍𝐼,𝑌𝑖
0)  if 𝑌𝑖

0 =C, with 

𝑍𝐼,𝑗~𝑁(𝛽𝑗,𝑘 , 1) , if the ith patients received the dose 𝑑𝑚. Let 𝑁(𝜇, 𝜎2)shows the density by 

(𝑧; 𝜇, 𝜎2) . 

The likelihood is expressed as   

𝐿(𝛽|𝐷𝑛) = 

∏ {∫ 𝜑(𝛽 𝑌𝑖
0, 𝑚(𝑖)𝑍𝑖 , 𝑌𝑖

0, 1)𝑑𝑍𝑖,𝑌𝑖
0 , 1)𝑑𝑍𝑖,𝑌𝑖

0}
∞

−∞

𝛿𝑖
∏ ∫ 𝜙(𝑍𝑖,𝑗; 𝛽𝑗,𝑚(𝑖),1)𝑑𝑍𝑖,𝑗

∞

0

𝑌𝑖
0−1

𝑗=1
𝑛
𝑖=1     (3.9) 

The extended function through consideration of latent variable is 

𝐿(𝛽|𝐷𝑛, 𝑍) = ∏ 𝜑(𝛽 𝑌𝑖
0, 𝑚(𝑖)𝑍𝑖 , 𝑌𝑖

0, 1){𝐼(𝑍𝑖 , 𝑌𝑖
0 < 0)} ∏ 𝜙(𝑍𝑖,𝑗; 𝛽𝑗,𝑚(𝑖),1)𝐼(𝑍𝑖,𝑗 > 0)

𝑌𝑖
0−1

𝑗=1
𝑛
𝑖=1    

(3.10) 

Patients safety also been considered to obtain the OBD controlled surrogate markers.  It is 

assumed that when a group of new patients entered in a trial and treated with specific dose but 

not fully followed then two scenario may occurs to them either all of them are having 

controlled surrogate markers or none of them have   controlled surrogate markers at time 𝑡∗. 

Since, none of the dose is having problem for occurrence of high toxicity level so six different 

desirable doses are  administered simultaneously to the randomly selected patient and level of 

surrogate markers observed in the follow-up visits.  The basic intention is to develop 

probability measures of either tiny or large surrogate markers levels observed at the specific 

dose $d_{k}$ to be fixed and OBD dose or move their dose to near  at dose 𝑑𝑚+1 or 𝑑𝑚−1. 

Let the random variable 𝛽(𝑎𝑚, 𝑏𝑘)  having the mean 𝐸{�̅�(𝛽, 𝑑𝑚|𝐷𝑛)}  and variance 

𝑉𝑎𝑟{(𝛽, 𝑑𝑚|𝐷𝑛)} . Suppose, 𝑣𝑚  is the number of patients treated with 𝑑𝑚  and not fully 

evaluated levels are as 𝑖1, 𝑖2 … . . 𝑖𝑣𝑚.. Further , the indicator  𝑊𝑖𝑟=I(𝑌𝑖𝑟 ≤ 𝐶 − 1) that   patients 

𝑖𝑟 have the controlled  surrogate level in the assessment period and total number of patients not 

𝑆(𝑊𝑚) = 𝑊𝑖1
+. . +𝑊𝑖𝑣𝑚

properly evaluated and failed to achieve controlled  surrogate markers 

is 𝑡∗ .  The prior probability is obtained from  𝛽(𝑎𝑚 + 𝑆(𝑊𝑚, 𝑏𝑚 + 𝑘𝑚 − 𝑆(𝑊𝑚))) .  The 

criteria is fixed with  

 

𝑃1𝑚(𝐷𝑛) = ∑ 𝐼[(Pr {𝑝𝑚(𝑤, 𝑣𝑚, 𝑎𝑚, 𝑏𝑚) > 𝜋∗} ≤ 𝜉]Pr (𝑊𝑛 = 𝑤|𝐷𝑛)𝑤                         (3.11) 

and 

𝑃2𝑚(𝐷𝑛) = ∑ 𝐼[(Pr {𝑝𝑘(𝑤, 𝑣𝑚, 𝑎𝑚, 𝑏𝑚) > 𝜋∗} ≤ 𝜉]Pr (𝑊𝑚 = 𝑤|𝐷𝑛)𝑤                         (3.12) 

The above equations gives the probability measures that 𝑑𝑘  with either tiny or large 

surrogate markers levels and 𝑃𝑚(𝐷𝑛) = 1 − 𝑃1𝑚(𝐷𝑛) − 𝑃2𝑚(𝐷𝑛) is measured probability with 

dose level 𝑑𝑚  . The marginal posterior of 𝛽  is defined as 𝑓(𝛽, 𝐷𝑛)  and  𝐸(𝑊𝑖𝑟|𝛽, 𝐷𝑛) =

�̅�(𝛽, 𝑑𝑚, 𝑌𝑖𝑟
0).  The summation over above equations is computed through MCMC and is 

defined as  
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Pr(𝑊𝑚 = 𝑤|𝐷𝑛) = ∫ ∏ {𝜋(𝛽, 𝑑𝑚, 𝑌𝑖𝑟
0)}

𝑤𝑟
{1 − 𝜋(𝛽, 𝑑𝑚, 𝑌𝑖𝑟

0)}1−𝑤𝑟𝑓(𝛽|𝐷𝑛)𝑑𝛽
𝑣𝑚
𝑟=1      (3.13) 

Further, suppose dose is mentioned as $m$, the total number of patients received the dose 

denoted as 𝑘𝑚, and partially evaluated patients for dose m is 𝑛𝑚 . Now  

�̅�1𝑚(𝐷𝑛) = {
1 𝑖𝑓 𝑘𝑚 = 0

𝑃1𝑚(𝐷𝑛)𝑖𝑓 𝑘𝑚 > 0
                                                                                  (3.14) 

�̅�2𝑚(𝐷𝑛) = {
1 𝑖𝑓 𝑘𝑚 = 0

𝑃2𝑚(𝐷𝑛)𝑖𝑓 𝑘𝑚 > 0
                                                                                 (3.15) 

Further �̅�1𝑚(𝐷𝑛) = 1  if all 𝑛𝑚 all patients fully evaluated, and �̅�2𝑚(𝐷𝑛) =
𝑃2𝑚(𝐷𝑛)otherwise. Here, we didn't check the de-escalation process and simultaneously applied 

different dose to the patients.  

 

4. Probability Model for Surrogate Marker(SM) levels Distribution 

Let the duration between initiation of trial and evaluation of surrogate marker is $"t^{*}"$ 

about the decision of 𝑛∗, the number of patients enrolled up to "𝑡∗”,  the study duration when 

the patients enrolled is 𝑒𝑖 and i=1,2,... 𝑛∗ . Suppose 𝑇𝑖  the duration and possibly unobserved 

duration when patient 'i'   successes the controlled level of surrogate marker. The amount of 

time patients $i$ is observed that  

𝑌𝑖 = {
𝑇𝑖  if 𝑒𝑖 + 𝑇𝑖  ≤ 𝑡∗

𝑡∗ − 𝑒𝑖 if 𝑒𝑖 + 𝑇𝑖  > 𝑡∗                                                                                    (4.16) 

It is defined as Δi = 1 if 𝑌𝑖 = 𝑇𝑖  otherwise Δi = 0 . Let 𝑆𝑖 = {𝑠𝑖,1, … . 𝑠𝑖,𝑚𝑖
 }  gives the 

successive patient times at which the  ith patient receives the MC agent. This notation is useful 

to capture the actual patients administration time to deviate from his/her scheduled times. It is 

the provision that if the investigator wish to study m treatment i.e. 𝑆(1), 𝑆(2), … . . 𝑆(𝑞)where 

𝑠(𝑗) = (𝑠1, 𝑠2, … … . , 𝑠𝑞
𝑗
)  and that the jth  dose has a total of 𝑠(𝑗)  administration. Further, 

$q_{i}$ gives the index of the last  administration received by patient 'i' at the interim study 

time  𝑡∗. However, 𝑞(𝑗) administration are scheduled for any patient to schedule 𝑠(𝑗)at  𝑡∗it may 

be 𝑞𝑖 < 𝑞(𝑗) due to administrative reason.   

Let 𝜏 shows the maximum duration of follow-up of each patients decided by oncologist. A 

fixed target probability 𝑝𝜏  is decided from the medical oncologist  to define the targeted 

threshold changes of the surrogate marker for any time from enrollment to 𝜏. 

 

4.1 Monitoring 

Let the total number of patients are N, and each patient assigned to a treatment dose. Each 

patient is assumed to follow 𝜏days. Let the desired threshold value of surrogate marker is 𝑝𝜏 for 

𝐹(𝜏|𝜃, 𝑣(𝑗).Here, two criteria's  are selected 

𝐶1:- time 𝑡∗, for each j=1,2,...k calculate 𝜑𝑗(𝜏) =Pr {F(𝜏|v,𝑠(𝑗)>𝑝𝜏|𝐷∗}. 
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It follows that 𝜑1(𝜏) ≤ 𝜑2(𝜏) ≤ ⋯ . ≤ 𝜑𝑘(𝜏).. Further the best dose is defined as  

𝜑𝑗(𝜏), �̅�. 

𝐶2 time 𝑡∗, for each j=1,2,...k calculate 𝐹𝑗
∗(𝜏) = 𝐸{𝐹(𝜏|𝑣; 𝑠(𝑗))|𝐷∗}. 

The  best dose is defined as having 

𝐹𝑗
∗(𝜏) near to �̅�𝜏 , by minimizing |𝐹𝑗

∗(𝜏) − 𝑝𝜏| 

The processes are similar to the CRM criteria [O'Quigley 2006]. The best dose is assigned 

to the patients 𝑛∗ + 1. 

 

4.2 Surrogate Marker Distribution 

The patient index is i. It is assumed that same dose of MC has been administered in 

different visits. Let ℎ(𝜇|𝑣)  is the event of high CEC level (i.e. more than  166 cells/ml) 

attributes to a  single administration and parameter of interest is v. The event at time t for a 

patient treated with schedule s is defined as 

 

𝜆(𝑌|𝑣, 𝑠) = ∑ ℎ(𝑌 − 𝑠𝑙|𝑣)𝑚
𝑖=1                                                                                (4.17) 

 

with ℎ(𝜇|𝑣)=0  if 𝜇 <0 . The patient's i event i.e. surrogate failure is defined as (4.17) Y, 

the patient's time to study (2)The number of administrations  and received up to 𝑡∗  , Further the 

patients cumulative hazard function  at time 𝑡∗ is defined as  

 

∆(𝑌|𝑣, 𝑠) = ∫ ∑ ℎ(𝜇 − 𝑠𝑙|𝑣)𝑑𝜇𝑚
𝑙=1

𝑌

0
                                                                      (4.18) 

 

∆(𝑌|𝑣, 𝑠) = ∫ ∑ 𝐻(𝑌 − 𝑠𝑙|𝑣)𝑑𝜇𝑚
𝑙=1

𝑌

0
                                                                     (4.19) 

where  

𝐻(𝑌 − 𝑠𝑙|𝑣) = ∫ ℎ(𝜇 − 𝑠𝑙|𝑣)𝑑𝜇
𝑌0

0
                                                                        (4.20) 

4.3 Specifying the Single-Administration to Control Surrogate Marker  

The single-administration's treatment failure ℎ(𝜇|𝑣) can be quite general, provided that it 

reasonably reflects the risk of toxicity for the agent under study and is  sufficiently tractable to 

facilitate the necessary computations. In general, because certain toxicities may be hard to 

identify before the trial, one can include in the definition of toxicity any adverse event 

sufficiently severe that it precludes further administration of the agent. We assume that the 

hazard of toxicity from a single administration has a finite duration and vanishes to zero within 

𝑣3days. In this trial, based on the physicians' experience, it is assumed that the hazard vanishes  

after 𝑣3 = 18 days. Because we assume that ℎ(. )has a finite duration, we cannot model ℎ(. )as 

the hazard of a typical parametric lifetime distribution, such as the gamma or Weibull,  unless 

ℎ(. ) is truncated appropriately. As a simple, practical alternative, we assume that $h$ increases 

linearly to a maximum and decreases linearly thereafter.  Therefore it is defined as, 
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ℎ(𝜇|𝑣) = {

𝑣2
𝜇

𝑣1
 0≤𝜇≤𝑣1

𝑣2
𝑣3−𝜇

𝑣3−𝑣1
 𝑣1≤𝜇≤𝑣3

0, 𝜇 > 𝑣3𝑜𝑟 𝜇 < 0

                                                                             (4.21) 

 

Thus, 𝑣(𝑣1, 𝑣2, 𝑣3) with 𝑣1the time at which ℎ(𝜇|𝑣) reaches its maximum, 𝑣2, and 𝑣3the 

time  when h(.) vanishes to zero. Figure 4 illustrates this function. Initially, we assumed that 

ℎ(. )had only the two parameters 𝑣1and  𝑣2, with  𝑣3  fixed and assumed known. However, we 

found that fixing 𝑣3 severely hindered the method's ability to locate the optimal schedule when 

the actual duration of ℎ.was much longer than the assumed value of 𝑣3. 

Other forms for ℎ(𝜇|𝑣)are possible, depending on the particular application. For example, 

the Weibull hazard ℎ1(𝜇|𝑣) = 𝑣1𝑣2(𝑣1𝜇)𝑣2−1  allows   the risk of toxicity to continue 

indefinitely, with the shape parameter 𝑣2 determining whether the risk increases, decreases, or 

remains constant over time. One also could vary the hazard of toxicity for each administration.  

 

4.4 Likelihood and Posterior 

The most recent data at study time 𝑡∗  collected on patient i for 𝑖 = 1,2, … 𝑛∗ , are 𝐷𝑖 =
(𝑠𝑖, 𝑌𝑖 , 𝛿𝑖).. The optimal treatment sequence  assigned to patient 𝑛∗ + 1$ who enters the trial at 

𝑡∗  is based on the posterior of v given the data available at 𝑡∗ , which we denote by 𝐷∗ =
(𝑡∗, 𝐷1, 𝐷2, … . 𝐷𝑛

∗). 

The likelihood at 𝐷∗ is 

 

𝐿(𝐷∗|𝑣) = ∏ { 𝑓(𝑌𝑖|𝑣, 𝑠𝑖)𝛿𝑖{1 − 𝐹(𝑌𝑖|𝑣, 𝑠𝑖)}1−𝛿𝑖𝑛
𝑖=1                                                       (4.23) 

 

through the prior of  p(v) , the posterior of  v is  

 

𝑔(𝑣|𝐷 ∗) =
𝐿(𝐷∗

|𝑣)𝑝(𝑣)

∫ 𝐿(𝐷∗
|𝑣)𝑝(𝑣)𝑑𝑣

                                                                                            (4.23) 

 

because the above integral cannot be obtained analytically under the assumed model, we 

compute posterior quantities via Markov chain Monte Carlo(MCMC). The simulation study 

results with semi-parametric approach are given in Figure 2. The Dose-Curve modeling 

simulation is shown Figure 3.  

 

5. Application to MC trial data set 

The idea is to study the level of Scr to a restricted cycles of $m=6$ for duration of 

administration 1,3,5,7,9 and 11th weeks. The maximum days to monitor the  controlled level of 

SM is specified as 𝜏 = 80  days. However, during the MC therapy the schedule has been 

finalized for each patient. With individual specific prognostic function. The physician assumed 

that the event of controlled level of SM for a single administration will be achieved by 10 days, 
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with a range of 7 to 80 days. The therapy is assigned to administer with different dose level  

with 110 patients with parameter 𝜋𝑖
∗ = 0.30, 𝜀 = 0.05, 𝜉 = 0.30 and 𝜀̅ = 0.90.  It is assumed 

that patients will attend the clinic in 7 days intervals. It is assumed that the parameter 𝑣1 will be 

having the maximum value at the end of 7 days after the first administration. The derivation of  

𝑎3, 𝑏3, for 𝑝(𝑣3), and  𝑎1 and 𝑏1 for  𝑝(𝑣1/𝑣3) are computed. The probabilities of event for 

80days for each are detailed in Table6.  

The proposed method has been illustrated on MC therapy. The results are detailed in Table 

6 and corresponding data explored in Figure 4. It gives the dose-response estimation through 

parametric, non-parametric and semi-parametric methods. The estimation of dose-increases 

rapidly from 0.05 to 0.15, and thereafter slowly increases with dose. For doses, 0.20 and above 

response started to decrease. Parametric, non-parametric and semi-parametric fits are more or 

less identical with different doses. The weight assigned through semi-parametric method is 0.3 

and parametric close to 0.4 and non-parametric with 0.05. 

Criteria 1 and 2 are selected with 0.2< �̅� <0.6. It has been found that �̅�=0.60 performed best 

over others. The table is formulated for $\bar{p}=0.6$ for both the criteria. The parameter 𝑣1is 

assumed to be occurring at 7 days and  𝑣2 as 10 days to 40 days. The designs performed are 

observed for criteria 1 and criteria 2. In different scenarios, the value of  𝑣2 is varied to reflect 

which schedule is optimal for different values in Table1. The decision is obtained from  the 

Table of detailed value of 𝜂𝑚,𝑃1𝑚(𝐷𝑛), �̅�1𝑚(𝐷𝑛), and �̅�2𝑛+1(𝐷𝑛). The numerical values of the 

different states are also detailed in Table 3.  The Operating Characteristics of PRMOBD design 

based on the choice of six different doses choice for the maximum duration of 80 days are 

detailed in Table 4. The corresponding simulation result for the OBD design for the maximum 

duration of 80 on 𝑃1𝑚(𝐷𝑛), �̅�2𝑚(𝐷𝑛), and�̅�2𝑚+1(𝐷𝑛)  with the space of 5,10,20,40,60 and 80 

days are given in table 5.The PRMOBD model suggests deciding the OBD with $0.20mg$ for 

20days. It is expected that the trial with dose 0.35mg because it provides𝜉 = 0.20. It's the value 

of $\eta=1$, then there would be a fixed OBD decided based on particular observed all cases. 

Similarly, 𝜂 = 0 may influence to observe a less number of patients towards control the CEC 

and the decision about OBD.   

 

6. Discussion 

The trinomial continual reassessment method is found suitable for OBD through highest 

probability of but failed to consider the toxic effect  suitably [Zhang2006].  The two stage 

design is proposed on interim analysis for detecting the optimal dose [Polley 2008, Zang 2014] 

proposed dose-finding  designs to search for the OBD by three adaptive dose-finding designs 

on molecularly targeted agents. Low-dose chemotherapy drugs are more effective to suppress 

tumors by restraining tumor vessel growth and preventing the repair of damaged vascular 

endothelial cells [Shen 2010]. High dose chemotherapy drugs like Cisplatin contributes to 

serious side effects [Shen 2010]. The target of MC therapy is the vascular endothelial cells 

[Shaked 2006,Wu 2007].  The growth of new vessels for a long run survival time treated with 

traditional maximum tolerated dose (MTD) through high dose  chemotherapy has been 

confirmed [Lam 2007]. The anti-angiogenic plays the important role as clinical potential [Lu 
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2007]. The metastasis and the growth of tumor cells depends on neovascularization [Folkman 

2003]. The anti-tumor drugs could cause inhibition of tumor neovascularity [Moreira 2007]. 

The Scr have emerged as a promising candidate surrogate marker to assess the efficacy of 

antiangiogenic therapies [Malka 2011,Jubb 2006,Bhatt 2007,Bertolini 2006].The low-dose 

chemotherapy drugs, as one-tenth of the MTD, administered continuously and frequently, could 

selectively  suppress vessel growth in tumor tissues and prevent the repair of damaged vascular 

endothelial cells (VECs) [Shen 2010].This model is appropriate in dose-response modeling 

having the avoidable level of toxicity in any clinical trial. Based on our knowledge this is the 

first statistical methodological attempt that has been considered to deal with OBD in MC trial. 

It is expected that this above mentioned methods will be useful for OBD detection in MC trials 

in future as well. 
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Fig1. Antiangiogenic Distribution 
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Fig2. Results of a simulation study with 200 markers 

 

 Fig3. Results of a simulation study with 200 markers 
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Fig4. Single administration of surrogate marker's distribution 
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Table 1 Simulation Different Dose Levels with 10 subject per dose 

Model Different Dose Level 

 0.05 0.10 0.15 0.20 0.25 0.30 

Probit 1 0 1.2 0 0 0 0.02 

Probit 2 0 63.2 18.3 2.3 4.7 4.2 

 

 

Table 2 Different Dose Levels with 10 subject per dose 

Model Method Value of 𝐸𝐷𝛼 for 𝛼 

   0.1 0.20 0.3 0.4 0.5 

Probit 1 Kernal Bias(x10−3) 9 3 2 1 0 

  MSE(x10−3) 4 3 3 2 2 

Probit 2 Kernal Bias (x10−3) -8 -5 -3 0 1 

  MSE(x10−3) 30 15 6 4 3 

 

 

Table 3 Simulation Study Results of PRMOBD design 

                                                      True Probability 

 

Total                           

 

Duration 

 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6   

S1 0.05 0.10 0.15 0.20 0.25 0.30   

%Selected           0.10 0.20 0.13 0.06 0.26 0.31  60 days 

No. of 

Patients 

5 9 6 3 12 14 45  

No .of 

Successive 

Event 

3 8 5 4 2 8   

S2 0.10 0.15 0.20 0.25 0.30 0.35   

%Selected           0.07 0.11 0.16 0.19 0.23 0.21  60 days 

No. of 

Patients 

5 8 12 14 17 15 45  

No .of 

Successive 

Event 

4 5 3 5 7 6   

S3 0.10 0.12 0.17 0.20 0.22 0.25   

%Selected           0.26 0.22 0.12 0.16 0.16 0.08  60 days 

No. of 

Patients 

13 11 6 8 8 4 45  

No .of 

Successive 

Event 

5 4 4 7 6 3   
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Table4 Operating Characteristics of PRMOBD Design 

                                                      True Probability 

 

Total                           

 

Duration 

 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6   

 10 15 20 25 30 35   

PRMOBD  

%Selected           0.12 0.17 0.20 0.19 0.14 0.15  80 days 

No. of 

Patients 

8 11 13 12 9 10 63  

No .of 

Successive 

Event 

6 8 7 6 5 1   

 

 

Table5: Simulation Results for OBD Design 

 5 10 20 40 60 80 

𝜀1 0.12 0.14 0.06 0.32 0.25 0.49 

�̅�1𝑚(𝐷𝑛) 0.56 0.51 0.52 0.49 0.47 0.39 

�̅�2𝑚(𝐷𝑛) 0.32 0.36 0.29 0.31 0.35 0.33 

�̅�2𝑚+1(𝐷𝑛) 0.18 0.12 0.19 0.20 0.18 0.28 

 

 

Table6: Decision Table for OBD in Different Days 

 7 10 20 40 80 

𝜀1 0.15 0.12 0.03 0.85 0.36 

�̅�1𝑚(𝐷𝑛) 0.53 0.57 0.69 0.39 0.35 

�̅�2𝑚(𝐷𝑛) NA NA NA 0.02 0.03 

�̅�2𝑚+1(𝐷𝑛) NA NA 0.01 NA NA 

 

 

Table7: The surrogate Marker performance during MC Trial 

Scenario Duration 

of Event 

100𝑣2 Different Schedule in Weeks 

1(1)                2(3)             3(5)             4(7)               5(0)             6(11) 

1 7 3.32 0.4 0.46 0.49 0.53 0.59 0.61 

 40 4.09 0.4 0.46 0.49 0.53 0.59 0.61 

2 7 3.56 0.23 0.29 0.31 0.35 0.52 0.59 

 40 4.23 0.23 0.23 0.31 0.35 0.52 0.59 

3 7 3.89 0.17 0.23 0.33 0.39 0.52 0.57 

 40 4.38 0.17 0.23 0.33 0.39 0.43 0.57 

4 7 4.01 0.11 0.17 0.31 0.4 0.43 0.57 

 40 4.52 0.11 0.17 0.31 0.4 0.51 0.57 

5 7 3.95 0.09 0.11 0.17 0.29 0.51 0.49 

 40 4.49 0.09 0.11 0.17 0.23 0.45 0.49 

6 7 3.79 0.05 0.1 0.17 0.23 0.4 0.59 

 40 4.29 0.05 0.1 0.15 0.26 0.42 0.57 

 


