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Abstract: For the purpose of generalizing or extending an existing probability 

distribution, incorporation of additional parameter to it is very common in the 

statistical distribution theory and practice. In fact, in most of the times, such 

extensions provide better fit to the real life situations compared to the existing ones. 

In this article, we propose and study a two-parameter probability distribution, called 

quasi xgamma distribution, as an extension or generalization of xgamma 

distribution (Sen et al. 2016) for modeling lifetime data. Important distributional 

properties along with survival characteristics and distributions of order statistics are 

studied in detail. Method of maximum likelihood and method of moments are 

proposed and described for parameter estimation. A data generation algorithm is 

proposed supported by a Monte-Carlo simulation study to describe the mean square 

errors of estimates for different sample sizes. A bladder cancer survival data is used 

to illustrate the application and suitability of the proposed distribution as a potential 

survival model. 

 

Key words: Lifetime distributions, maximum likelihood estimation, order statistics, 

failure rate function. 

 

1. Introduction 

Modeling and analyzing lifetime data are crucial in many applied sciences such as biomedical 

sciences, reliability engineering and actuarial sciences, amongst others. Several lifetime 

distributions have been used to model such kinds of data. Relevant statistical methodologies and 

the quality of the procedures used in a statistical analysis depend heavily on the assumed 

probability model or distribution when parametric platform is utilized. However, there still 

remain many important problems where the real data does not follow any of the classical or 

standard probability models. 

Adding an extra parameter to an existing family of distributions is very common in the 

statistical distribution theory. Often introducing an extra parameter brings additional flexibility 

to a class of probability distributions, and, in turn, it can be very useful for data analysis purposes. 

Several authors in statistical literature have been introduced excellent methods in adding extra 

parameter(s) to existing distribution for added flexibility in terms of distributional properties, 

computations, statistical inferences and in describing uncertainties behind real world phenomena, 

see for more survey on methods of adding parameters to standard models Mudholkar and 
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Srivastava 1993, Azzalini 1995, Marshall and Olkin 1997, Eugene et al. 2002, Lee et al. 2013, 

Alzaatreh et al. 2013 and Jones 2014. 

Therefore, introducing new probability distributions and/or extending (or generalizing) 

existing probability distributions by adding extra parameters into its form has become a time-

honored device for obtaining more flexible new families of distributions.  

In this article, we incorporate an extra parameter to the one parameter xgamma distribution, 

which serves as a useful lifetime model introduced and studied by Sen et al. 2016, for more 

flexibility in describing data that might follow situations. 

A continuous random variable X is said to follow an xgamma distribution if its probability 

density function (PDF) is of the form 

 

               f(x) =
θ2

(1 + θ)
(1 +

θ

2
 x2) e−θx   ; x > 0, θ > 0                                                          (1) 

and is denoted by  X ~ xgamma(θ). The cumulative density function (CDF) of X is given by 

 

         F(x) = 1 −
(1 + θ + θx +

θ2x2

2 )

(1 + θ)
e−θx   ; x > 0 and θ > 0                                           (2) 

 

2. The quasi xgamma distribution 

A continuous random variable X, with support (0, ∞), is said to follow a quasi xgamma 

distribution with parameters α and θ if its probability density function (PDF) is of the form 

        f(x) =
θ

(1 + α)
(α +

θ2

2
 x2)e−θx   ; x > 0, θ > 0  and α > 0                                  (3) 

and is denoted by X~ QXD (α, θ). 

The cumulative distribution function (CDF) of quasi xgamma distribution is obtained as 

 

    F(x) = 1 −

(1 + α + θx +
θ2x2

2 )

(1 + α)
e−θx      ; x > 0 , θ > 0 and α > 0                        (4) 

It is to be noted that the quasi xgamma distribution such obtained includes xgamma distribution as a 

special case. 

For particular values of α, from (3) we obtain the following special cases: 

(i) When α = 0, we have gamma distribution with shape parameter 3 and scale parameter θ, i.e., 

X ~ G (θ, 3). 
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(ii) When α = 1, we obtain a new class of distributions with PDF 

f(x) =
θ

2
(1 +

θ2

2
 x2)e−θx   ; x > 0 and θ > 0                                                               

(iii) When α = θ, we have the xgamma distribution with PDF given in (1). 

Note: The quasi xgamma distribution characterized by the PDF given in (3) is a special mixture of 

exponential distribution with mean 1/ θ and gamma distribution with shape parameter 3 and scale 

parameter θ, with mixing proportions α/(1+ α) and 1/(1+ α) respectively. 

The xgamma distribution is also synthesized mixing exponential distribution with mean 1/ θ and 

gamma distribution with shape parameter 3 and scale parameter θ, with mixing proportions θ /(1+ θ) 

and 1/(1+ θ) respectively. The plots of the density functions of quasi xgamma distribution for fixed θ 

and varying α are shown in Fig. 1. The parameter α regulates the shape of the distribution for a fixed 

value of θ. 

 

3. Moments and related measures 

In this section we find moments and some related measures of quasi xgamma distribution 

with PDF given in (3). 

The rth order raw moments (about origin) of quasi xgamma distribution are 

μr
′ = E(Xr) = ∫ xr

∞

0

θ

(1 + α)
(α +

θ2

2
 x2)e−θxdx                                                

                      =
r!

θr(1 + α)
[α +

1

2
(r + 1)(r + 2)]  for r = 1, 2, 3, …                                           (5) 

In particular we have, 

μ1
′ = E(X) =

(3 + α)

θ(1 + α)
= μ(say), μ2

′ = E(X2) =
2(6 + α)

θ2(1 + α)
 

μ3
′ = E(X3) =

6(10 + α)

θ3(1 + α)
,                      μ4

′ = E(X4) =
24(15 + α)

θ4(1 + α)
 

The jth order central (about µ) moments are given by 

μj = E[(X − μ)j] = ∑(
j
r
) μr

′

j

r=0

(−μ)j−r, for j = 2, 3, 4, … 

In particular we have, 

μ2 = Var(X) =
α2 + 8α + 3

θ2(1 + α)2
= σ2(say),                μ3 =

2(α3 + 15α2 + 9α + 3)

θ3(1 + α)3
,

μ4 =
3(α4 + 88α3 + 310α2 + 288α + 177)

θ4(1 + α)4
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The coefficient of variation (γ), coefficient of skewness (√𝛽1) and coefficient of kurtosis (β2) are 

given by 

γ =
√Var(X)

E(X)
=

√(α2 + 8α + 3)

(3 + α)
, 

 

  

Figure 1: Density plots of quasi xgamma distribution for different parameter values 

√β1 =
μ3

μ2

3
2

=
2(α3 + 15α2 + 9α + 3)

(α2 + 8α + 3)
3
2

   and 

β2 =
μ4

μ2
2

=
3(α4 + 88α3 + 310α2 + 288α + 177)

(α2 + 8α + 3)2
, respectively. 
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The moment generating function (MGF), characteristic function (CF) and cumulant generating 

function (CGF) of X~ QXD (α, θ) are obtained as 

MX(t) = E(etX) =
1

(1 + α)
[α (1 −

t

θ
)
−1

+ (1 −
t

θ
)
−3

] ;  t ∈ ℝ                                               (6) 

ϕX(t) = E(eitX) =
1

(1 + α)
[α (1 − i

t

θ
)
−1

+ (1 − i
t

θ
)
−3

] ;  t ∈ ℝ, i = √−1                         (7) 

KX(t) = ln[MX(t)] = ln
θ

(1 + α)(θ − t)
+ ln [α +

θ2

(θ − t)2
] ;  t ∈ ℝ                                       (8) 

respectively. 

Theorem 1. For α > ½, the PDF, f(x) of  X~ QXD (α, θ) , as given in (3),  is decreasing in x. 

Proof: We have from (3) the first derivative of f(x) with respect to x as 

f ′(x) =
θ2

(1 + α)
(θx − α −

1

2
θ2x2) e−θx 

f ′(x) is negative in x when α > ½, and hence the proof. 

So, we have from the above Theorem 1, for α ≤
1

2
 ,

d

dx
 f(x) = 0 implies that 

1+√1−2α

θ
 is the unique 

critical point at which f(x) is maximized. 

Hence, the mode of quasi xgamma distribution is given by 

Mode(X) =
1 + √1 − 2α

θ
 ;  when 0 < 𝛼 ≤

1

2
, and  is  0, elsewhere. 

It is easy to show that, for X~ QXD (α, θ), Mode (X) < Median(X) < Mean(X), which also holds for 

xgamma distribution. 

 

4. Entropies 

The concept of information is too broad to be captured completely by a single definition. However, 

for any probability distribution, we define a quantity called the entropy, which has many properties 

that agree with the intuitive notion of what a measure of information should be. The concept of 

entropy was introduced in thermodynamics to provide a statement of the second law of 

thermodynamics. Later, statistical mechanics provided a connection between thermodynamic entropy 

and the logarithm of the number of microstates in a macro state of the system. 

Therefore, entropy of a random variable X is a measure of variation of the uncertainty. A popular 

entropy measure is Renyi entropy (Renyi 1961). If non-negative random variable X has the probability 

density function f(x), then Renyi entropy is defined as 

HR(γ) =
1

1 − γ
ln [∫ fγ(x)dx

∞

0

] ;  γ > 0 𝑎𝑛𝑑 𝛾 ≠ 1 

When X~ QXD (α, θ), one can calculate
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∫ fγ(x)dx

∞

0

=
αγθγ−1

(1 + α)γ
∑(

γ

j
)
Γ(2j + 1)

2jαjγ2j+1

γ

j=0

 

to obtain Renyi entropy as 

HR(γ) =
1

1 − γ
[γlnα + (γ − 1)lnθ − γ ln(1 + α)] +

1

1 − γ
ln [∑(

γ

j
)
Γ(2j + 1)

2jαjγ2j+1

γ

j=0

]             (9) 

Shannon measure of entropy, which is a special case of Renyi entropy, is defined as 

H(f) = E[− ln f(x)] = −∫ ln f(x)f(x)dx

∞

0

 

If  X~ QXD (α, θ), the Shannon entropy is obtained as 

H(f) = (
3 + α

1 + α
) − ln (

αθ

1 + α
) −

1

(1 + α)
∑

(−1)j+1

j2jαj

∞

j=1

{αΓ(2j + 1) +
1

2
Γ(2j + 3)}            (10) 

 

5. Distributions of order statistics 

Let X1, X2, … , Xn be a random sample of size n drawn from QXD (α, θ). Denote  X1:n,  X2:n,

… , Xn:n as n order statistics. 

Then we have the PDF of jth order statistics,  Xj:n , for QXD (α, θ) as 

𝑓 𝑋𝑗:𝑛
(𝑥) =

𝑛!

(𝑗 − 1)! (𝑛 − 𝑗)!
{1

(1 + 𝛼 + 𝜃𝑥 +
𝜃2𝑥2

2 )

(1 + 𝛼)
𝑒−𝜃𝑥}

𝑗−1

                                                         

                                          {
(1 + 𝛼 + 𝜃𝑥 +

𝜃2𝑥2

2 )

(1 + 𝛼)
𝑒−𝜃𝑥}

𝑛−𝑗

𝜃

(1 + 𝛼)
(𝛼 +

𝜃2

2
 𝑥2)𝑒−𝜃𝑥     

                                            𝑓𝑜𝑟 0 < 𝑥 < ∞   , 𝜃 > 0 𝑎𝑛𝑑 𝛼 > 0                                                     (11)                                                                                                                                         

In particular, the PDF of the largest order statistic, Xn:n = Max(X1, X2, … , Xn) , is given by 

𝑓 𝑋𝑛:𝑛
(𝑥) =

𝑛𝜃

(1 + 𝛼)𝑛 [(1 + 𝛼)(1 − 𝑒−𝜃𝑥) − 𝜃𝑥 (1 +
𝜃𝑥

2
) 𝑒−𝜃𝑥]

𝑛−1

(𝛼 +
𝜃2

2
 𝑥2)𝑒−𝜃𝑥     

                                           𝑓𝑜𝑟 0 < 𝑥 < ∞   , 𝜃 > 0 𝑎𝑛𝑑 𝛼 > 0                                                     (12) 

Similarly, the PDF of the smallest order statistic, X1:n = Min(X1, X2, … , Xn), is derived as 
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f X1:n
(x) =

nθ

(1 + α)n
[1 + 𝛼 + 𝜃𝑥 +

𝜃2𝑥2

2
]

n−1

(α +
θ2

2
 x2)e−nθx                                        

for 0 < x <∞   ,θ > 0 and α > 0                                           (13) 

6. Survival characteristics 

       An important notion in reliability theory (or survival analysis) is the concept of ‘aging’ which is 

an inherent property of a unit or system, may be a living organism or a system of components. Aging 

is usually characterized by the failure rate function, mean residual life function, mean time to failure, 

etc. 

In this section, we derive some such characteristics that are useful in the context of survival analysis 

and/or reliability analysis considering X as a random variable denoting lifetime (time-to an event) of 

a unit or a system. If X~ QXD (α, θ), the survival function (SF) of X is given by 

               S(x) =
(1 + α + θx +

θ2x2

2 )

(1 + α)
e−θx     ; x > 0 , θ > 0 and α > 0                             (14) 

The failure rate function or hazard rate function for a continuous distribution with PDF, f(x), CDF, 

F(x) and SF, S(x), is defined as  

    h(x) = lim
∆x→0

P(X < 𝑥 + ∆x|X > 𝑥)

∆x
=

f(x)

1 − F(x)
=

f(x)

S(x)
 

For quasi xgamma distribution, the failure rate function is given by 

               h(x) =
θ (α +

1
2 θ

2x2)

(1 + α + θx +
θ2x2

2
)
                                                                                           (15) 

Note: h(x) obtained in (15) is bounded, i.e.,  
αθ

(1 + α)
< h(x) < θ, moreover, h(0) = f(0) =

αθ

(1 + α)
. 

For a continuous random variable X with PDF f(x) and CDF F(x), the mean residual life (MRL) 

function is defined as 

m(x) = E(X − x|X > 𝑥) =
1

1 − F(x)
 ∫[1 − F(t)]dt

∞

x

 

For quasi xgamma distribution MRL function is obtained as 

   m(x) =
1

θ
+

(2 + θx)

θ (1 + α + θx +
1
2θ2x2)

                                                                                        (16) 

The MRL function of quasi xgamma distribution given in (16) has the following properties 

(i) m(0) = E(X) =
(3+α)

θ(1+α)
 

(ii) m(x) is decreasing in x with bounds  
1

θ
< 𝑚(x) <

(3+α)

θ(1+α)
 

The reverse hazard rate or reverse hazard function is defined as 



 
68  The quasi xgamma distribution with application in bladder cancer data 

 

    r(x) = lim
∆x→0

P(X < 𝑥 + ∆x|X ≤ 𝑥)

∆x
=

f(x)

F(x)
 

It could be interpreted as the conditional probability at the state change happening in an infinitesimal 

interval preceding x, given that the state change takes place at x, or before x. 

The reverse hazard rate for quasi xgamma lifetime distribution is obtained as 

        r(x) =
θ (α +

1
2 θ

2x2) e−θx

(1 + α)(1 − e−θx) − θx (1 +
θx
2

) e−θx
                                                                   (17) 

For a positive continuous random variable, stochastic ordering is an important tool for judging the 

comparative behavior. We recall some basic definitions: 

A random variable X is said to be smaller than a random variable Y in the  

(i) stochastic order (X ≤st Y) if FX(x) ≥ FY(x) for all x. 
(ii) hazard rate order (X ≤hr Y) if hX(x) ≥ hY(x) for all x.  

(iii) mean residual life order (X ≤mrl Y) if mX(x) ≤ mY(x) for all x. 
(iv) likelihood ratio order (X ≤lr Y) if (fX(x) fY(x))⁄ decreases in x. 
Theorem 2. Let X ~ QXD (α1, θ1) and Y ~ QXD (α2, θ2). If  α1 = α2 and θ1 ≥ θ2 (or, if  θ1 = θ2 and α1 

≥ α2), then X ≤ lr Y and hence X ≤ hr Y, X ≤ mrl Y and X ≤ st Y. 

Proof: Let us denote the PDF of X as fX(x) and that of Y be fY(x). 

We have then the ratio 

fX(x)

fY(x)
=

θ1(1 + α2)(2α1 + θ1
2x2)

θ2(1 + α1)(2α2 + θ2
2x2)

e−(θ1−θ2)x 

So, 

ln (
fX(x)

fY(x)
) = ln

θ1(1 + α2)

θ2(1 + α1)
+ ln(2α1 + θ1

2x2) − ln(2α2 + θ2
2x2) − (θ1 − θ2)x 

The first derivative with respect to x gives 

d

dx
ln (

fX(x)

fY(x)
) =

4x(θ1α2 − θ2α1)

(2α1 + θ1x
2)(2α2 + θ2x

2)
− (θ1 − θ2) 

Which is negative when α1 = α2 and θ1 ≥ θ2 (or when θ1 = θ2 and α1 ≥ α2) and so X ≤ lr Y, rest of the 

orderings are well justified (see Shaked and Shanthikumar 1994). Hence the proof. 

 

7. Estimation of parameters 
 

     In this section we discuss two classical methods of estimation, viz. method of moments (MM) and 

method of maximum likelihood (ML), in estimating the parameters of the quasi xgamma distribution 

under complete sample situation. Let 𝐱 = (x1, x2, … , xn)  be n observations or realizations on a 

random sample X1, X2, … , Xn of size n drawn from the quasi xgamma distribution given in (3). We 

consider MM estimators first for estimating α and θ. 

We equate  

μ1
′ =

(3 + α)

θ(1 + α)
= Sample Mean = m1

′ = X̅
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μ2
′ =

2(6 + α)

θ2(1 + α)
= m2

′ =
1

n
∑Xi

2

n

i=1

 

Let  

      b =
μ2

′

μ1
′2

=
2(6 + α)(1 + α)

(3 + α)2
 

⇒ (2 − b)α2 + (14 − 6b)α + (12 − 9b) = 0 

Which is a quadratic in α and gives an estimate of α, say α̂. 

The b can be easily estimated from the sample moments. The MM estimator of θ is then obtained as 

θ̂ =
1

X̅

(3 + �̂�)

(1 + �̂�)
 

Now, we obtain the maximum Likelihood estimators (MLEs) of the parameters. We have the 

likelihood function as 

L(α, θ|𝐱) = ∏
θ

(1 + α)
(α +

θ2

2
 xi

2)exp (−θxi)

n

i=1

 

The log-likelihood function is given by 

             lnL(α, θ|𝐱) = nln(θ) − nln(1 + α) + ∑ln(α +
θ2

2
 xi

2) −

n

i=1

θ∑xi

n

i=1

                      (18) 

To find out the maximum likelihood estimators (MLEs) of α and θ, we have two likelihood equations 

as 

                     
∂lnL(α, θ|𝐱)

∂α
= ∑

1

(α +
θ2

2
 xi

2)

n

i=1

−
n

(1 + α)
= 0                                                    (19) 

and 

                 
∂lnL(α, θ|𝐱)

∂θ
=

n

θ
+ ∑

θxi
2

(α +
θ2

2  xi
2)

n

i=1

− ∑xi

n

i=1

= 0                                                    (20) 

respectively. 

Though the values of α and θ cannot be obtained analytically, we can utilize any numerical method, 

such as Newton-Raphson, for solving the non-linear equations (19) and (20) to obtain those. 

Moreover, we can apply fisher’s scoring method for getting the MLEs of α and θ. We have the second 

order derivatives as, 

          
∂2lnL(α, θ|𝐱)

∂α2
=

n

(1 + α)2
− ∑

1

(α +
θ2

2
 xi

2)
2

n

i=1

                                                                (21) 

           
∂2lnL(α, θ|𝐱)

∂θ2
= ∑

αxi
2 −

θ2

2 xi
4

(α +
θ2

2  xi
2)

2

n

i=1

−
n

θ2
                                                                           (22) 
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∂2lnL(α, θ|𝐱)

∂α ∂θ
=

∂2lnL(α, θ|𝐱)

∂θ ∂α
= −∑

θxi
2

(α +
θ2

2
 xi

2)
2

n

i=1

                                                  (23) 

Letting α ̂  and θ ̂ as the MLEs of α and θ, respectively, we solve the following equation 

[
 
 
 
∂2lnL(α, θ|𝐱)

∂θ2

∂2lnL(α, θ|𝐱)

∂θ ∂α
∂2lnL(α, θ|𝐱)

∂α ∂θ

∂2lnL(α, θ|𝐱)

∂α2 ]
 
 
 

θ̂=θ0,   α̂=α0

[
θ̂ − θ0

α̂ − α0
] = [

∂lnL(α, θ|𝐱)

∂θ

  
∂lnL(α, θ|𝐱)

∂α

]

θ̂=θ0,   α̂=α0

           (24) 

Method of successive iteration can be applied for initial values α0 and θ0 for α and θ, respectively. 

 

8. Simulation study 
 

     In this section, we propose method of generating random samples of specific sizes from quasi 

xgamma distribution. A Monte-Carlo simulation study, which is also discussed in this section, was 

also conducted to assess the maximum likelihood estimates of the parameters in terms on mean square 

errors (MSEs) for different sample sizes. 

The inversion method for generating random data from the quasi xgamma distribution fails because 

the equation F(x) = u, where u is an observation from the uniform distribution on (0, 1), cannot be 

explicitly solved in x. However, as already mentioned at the note in section 2, we can use the fact that 

the quasi xgamma distribution is a special mixture of exponential(θ) and gamma(3, θ) distributions 

with mixing proportions α/(1+ α) and 1/(1+ α) respectively. 

To generate random data Xi, i = 1, 2, … , n from quasi xgamma distribution with parameters α and θ, 

we can use the following algorithm: 

1. Generate Ui~uniform(0, 1), i = 1, 2,… , n. 
2. Generate Vi~exponential(θ), i = 1, 2, … , n. 
3. Generate Wi~gamma(3, θ ), i = 1, 2,… , n. 
4. If Ui ≤ α (1 + α)⁄ , then set  Xi = Vi, otherwise, set  Xi = Wi . 

A Monte-Carlo simulation study was carried out considering N=10, 000 times for selected values of 

n, α and θ. Samples of sizes 20, 30, 50, 80 and 100 were considered and values of (α , θ) were taken 

as (0.5,0.5), (1.5, 2.0) and (3.0, 4.0). The method of maximum likelihood was applied to obtain the 

estimates. Along with the maximum likelihood estimates the following measures were computed: 

(i) Average mean square error (MSE) of the simulated estimates α̂i, i = 1, 2, … , N:  

1

N
∑(α̂i − α)2.

N

i=1

 

(ii) Average mean square error (MSE) of the simulated estimates θ̂i, i = 1, 2, … , N:  

1

N
∑(θ̂i − θ)

2
.

N

i=1

 

The results of the simulation study have been tabulated in Table 1 below. 
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It is clear from Table 1 that the MSEs for the estimates of α decrease as the sample size, n, increases 

and the estimate gets closer to the given value. The similar trend is observed in case of the estimates 

of θ and its MSE values for different sample sizes. 

 

9. Application: Bladder cancer data  
 

       In this section, we use a real data set to show that the quasi xgamma distribution can be a better 

model than some recently developed models where the particular data are utilized. The data set, given 

in Table 2, represents an uncensored data set corresponding to remission times (in months) of a 

random sample of 128 bladder cancer patients reported in Lee and Wang 2003.  
Table 1: Estimates of the parameters with corresponding MSE values 

𝛂 = 𝟎. 𝟓 ; 𝛉 = 𝟎. 𝟓 
Sample 

Size 
�̂� MSE of  �̂� 𝜃 MSE of  𝜃 

20 0.65563 0.64842 0.52574 0.01480 
30 0.61249 0.41696 0.51593 0.00873 
50 0.55139 0.24084 0.50952 0.00477 
80 0.53788 0.14125 0.50112 0.00297 

100 0.50544 0.12975 0.50135 0.00257 
𝛂 = 𝟏. 𝟓 ; 𝛉 = 𝟐. 𝟎 

Sample  

Size 
�̂� MSE of  �̂� 𝜃 MSE of  𝜃 

20 1.88951 1.53364 2.07156 0.24302 
30 1.73208 1.47211 2.04003 0.18286 
50 1.61201 1.18401 2.02723 0.12595 
80 1.55745 1.07344 2.00678 0.07996 

100 1.51757 0.73089 2.00165 0.06368 
𝛂 = 𝟑. 𝟎 ; 𝛉 = 𝟒. 𝟎 

Sample  

Size 
�̂� MSE of  �̂� 𝜃 MSE of  𝜃 

20 3.16671 1.27292 3.83684 0.13292 
30 3.14370 1.02392 3.84705 0.12729 
50 3.12033 0.96721 3.86446 0.09979 
80 3.09858 0.78974 3.88473 0.08507 

100 3.02271 0.72481 3.94853 0.07146 
 

Table 2: Remission times (in months) of 128 bladder cancer patients 

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 0.26, 0.31, 0.73, 0.52, 4.98, 6.97, 9.02, 
13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 11.98, 4.51, 2.07, 0.22, 13.8, 25.74, 0.50,2.46, 3.64, 5.09, 7.26, 
9.47, 14.24, 19.13, 6.54, 3.36, 0.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 1.76, 8.53, 
6.93, 0.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 3.25, 12.03, 8.65, 0.39, 10.34, 14.83, 
34.26, 0.90,2.69, 4.18, 5.34, 7.59, 10.66, 4.50, 20.28, 12.63, 0.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 
10.75, 16.62, 43.01, 6.25, 2.02, 22.69, 0.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 8.37, 
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3.36, 5.49, 0.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 12.02, 6.76, 0.40, 3.02, 4.34, 
5.71, 7.93, 11.79, 18.1, 1.46, 4.40, 5.85, 2.02, 12.07. 
The data set is positively skewed (skewness = 3.38) with mean remission time of 8.57 months, 

standard deviation of 10.56 months and unimodal (mode at 5 months). 

We consider here gamma, log-normal among standard lifetime models, in addition, lindley (Lindley 

1958), power lindley (PL) (Ghitany et al. 2013), transmuted lindley (TL) (Merovci 2013), 

exponentiated lindley (EL) (Bakouch et al. 2012), weighted lindley (WL) (Ghitany et al. 2011) and 

new generalized power lindley (NGPL) (Mansour and Hamed 2015) and xgamma (Sen et al. 2016) 

models among recently developed or popularized lifetime models, i.e., altogether nine lifetime 

models are considered to compare with quasi xgamma model for suitability of fit or goodness of fit 

for the above data. 

In order to compare the two distribution models, we consider criteria like, -Log-likelihood, AIC 

(Akaike information criterion, see Akaike 1974) and BIC (Bayesian information criterion, see 

Schwarz 1978), for the data set. The better distribution corresponds to smaller -Log-likelihood, AIC 

and BIC values. We use maximum likelihood method of estimation (MLE) for estimating the model 

parameters. Table 3 shows the estimates of the model parameter(s) with standard error(s) of estimates 

in parenthesis and model selection criteria. 

It is clear from Table 3 that the quasi xgamma distribution provides better fit to the bladder cancer 

data and, hence, the model acts as a strong competitor among the other models considered here for 

modeling such lifetime data. 

According to model selection criterion, viz., AIC, the following order of best fit observed: 

Best  Quasi Xgamma → Gamma → Lognormal → New Generalized Power Lindley  

    → Power Lindley → Transmuted Lindley → Exponentiated Lindley → Weighted  
           Lindley → Lindley → Xgamma  Worst 
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Table 3: MLEs of model parameters and model selection criteria for bladder cancer data 

 

Model 
Parameter estimates 

(Standard Error) 

-Log-

likelihood 
AIC BIC 

 
Gamma(α, β) 

 

α̂ = 0.9154(0.0910) 

β̂ = 0.1069(0.0153) 
402.624 809.249 814.953 

 
Lognormal(μ, σ) 

 

μ̂ = 1.5109(0.1133) 
σ̂ = 1.2819(0.0801) 

406.803 817.605 823.309 

 
Lindley(θ) 

 
θ̂ = 0.2129(0.0134) 417.924 837.848 840.610 

 
PL(θ, β) 

 

θ̂ = 0.2943(0.0371) 

β̂ = 0.8302(0.0472) 
413.353 830.707 836.410 

 
TL(λ, θ) 

 

λ̂ = 0.6169(0.1688) 
θ̂ = 0.1557(0.0150) 

415.155 834.310 840.014 

 
EL(α, θ) 

 

α̂ = 0.1648(0.0166) 
θ̂ = 0.7330(0.0912) 

416.285 836.572 842.274 

 
WL(α, θ) 

 

α̂ = 0.1595(0.0172) 
θ̂ = 0.6827(0.1115) 

416.442 836.885 842.588 

 
NGPL(λ, θ, β, δ, α) 

 

λ̂ = −0.858(0.0938) 

θ̂ = 2.5044(1.6547) 

β̂ = 0.3292(0.1341) 

δ̂ = 6.6798(2.6466) 
α̂ = 33.738(15.584) 

408.966 827.932 842.192 

 
Xgamma(θ) 

 
θ̂ = 0.2860(0.0159) 425.169 852.338 855.190 

 
Quasi Xgamma(α, θ) 

 

α̂ = 16.827(2.0453) 
θ̂ = 0.1298(0.0179) 

402.320 808.640 814.344 

 

Similarly, according to model selection criterion, viz., BIC, the following order of best fit observed: 

Best  Quasi Xgamma → Gamma → Lognormal → Power Lindley → Transmuted Lindley 

          → Lindley → Exponentiated Lindley → New generalized Power Lindley →
          Weighted Lindley → Xgamma  Worst 

 

10. Concluding remarks 
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      To facilitate better modeling of survival data there has been a great interest among statisticians 

and applied researchers in constructing flexible lifetime models. As a consequence, a significant 

progress has been made towards the generalization and/or extension of some well-known lifetime 

models and their successful application to data coming from diverse areas. In this paper, we introduce 

a new lifetime distribution, called quasi xgamma, as a generalization or extension of one parameter 

xgamma distribution that is recently developed by Sen et al. 2016.  

We study different mathematical and statistical properties along with some important survival 

properties of the new model. Explicit expressions for the moments, distributions of order statistics 

are also obtained. The model parameters are estimated by maximum likelihood and method of 

moments. A sample generation algorithm is proposed and a Monte –Carlo simulation study is also 

carried out to understand the mean square errors of the estimates for different sample sizes. The new 

model is compared with some other newly developed models and it is shown that our model provides 

better fit than other lifetime models while considering real dataset. We understand that a new lifetime 

distribution is proposed in this article and it would be interesting to study the distribution considering 

some datasets in view of different censored mechanisms when specific interest comes into survival 

or reliability aspects. The article also opens a scope for studying Bayesian estimators of the 

parameters under different loss functions. The work in this direction is taken as a future research.  We 

expect that the proposed distribution will serve as a potential alternative in modeling time-to-event in 

complete case situations and other types of data in comparison to the other models available in the 

literature. 
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