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Abstract: We introduce a new family of distributions based on a generalized Burr 

III generator called Modified Burr III G family and study some of its mathematical 

properties. Its density function can be bell-shaped, left-skewed, right-skewed, 

bathtub, J or reversed-J. Its hazard rate can be increasing or decreasing, bathtub, 

upside-down bathtub, J and reversed-J. Some of its special models are presented. 

We illustrate the importance of the family with two applications to real data sets. 
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1. Introduction 

Burr (1942) developed a system of distributions for fitting cumulative frequency distributions. 

The system includes twelve types of cumulative distribution functions which accommodate a 

variety of density shapes. The attractiveness of this family of distributions for model fitting is 

that it combines a simple mathematical expression for the cumulative frequency function with 

wide coverage in the skewness-kurtosis plane. Many standard distributions, including the 

Weibull, exponential, logistic, generalized logistic, Gompertz, normal, extreme value and 

uniform distributions are special cases or limiting cases of the Burr system of distributions. 

Among the twelve distribution functions Burr type XII (BXII) and its inverse, type III (BIII) 

have gathered special attention in physics, actuarial studies, reliability and applied statistics. 

Nadarajah and Kotz (2007) applied it to fracture toughness and fracture stress data. Gove et al. 

(2008) fitted Burr III to data related to forestry. Mielke (1973) proposed it as a model for 

precipitation amounts in the meteorological data. Shao et al. (2008) proposed and fitted an 

extended Burr III distribution in low-flow frequency analysis where its lower tail was of main 

interest. 

During the last couple of decades new families of probability distributions have been defined 

to extend well-known families of distributions. The purpose behind is to provide greater 

flexibility in modeling practical data or the physical or statistical need to explain the mechanism 

of the generated data. One such approach was by Marshall and Olkin (1997) in which one 

parameter was added to the survival function of a baseline distribution. Later on Gupta et al. 

(1998), Gupta and Kundu (1999; 2001a; 2001b; 2002; 2003), Nadarajah and Kotz (2006) and 

Nadarajah (2011) to name a few who used this approach to generalize their distributions. In 

another generalization, pioneered by Eugene et al. (2002) and Jones (2004) the beta-generated 

class from the logit of the beta distribution was defined. Cordeiro and de Castro (2011), Cordeiro 
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et al. (2012) used the beta-generated class approach. Kumar (2016) derived new expressions for 

ratio and inverse moments of lower generalized order-statistics for the Marshall-Olkin extended 

Burr type xii distribution. Yousof et al.(2016) introduced a new Burr X-G family of distributions 

by adding a shape parameter. 

Gurvich et al. (1997) pioneered a class of extended Weibull distributions which has achieved 

a prominent position in lifetime models. Its cdf is defined by 

  ( ; , ) 1 exp , , , 0 ,        F x H x x
  (1.1) 

where H(x;ξ) is a non-negative monotonically increasing function which depends on the 

parameter vector ξ . The corresponding pdf is given by 

 
    ( ; , ) exp , , ,      f x H x h x

        (1.2) 

where h(x; ξ ) is the derivative of H(x; ξ ). 

In this class of distributions H(x; ξ) is taken to be the odds ratio of the baseline distribution.  

Another important class of univariate distributions were developed by Zografos and 

Balakrishnan (2009). They extended Stacy’s generalized gamma distribution by replacing x with 

–log[1-G(x)] and defined their family of distributions having cdf  

 

  ( ; ) { , log[1 ( )]}, , 0       F x G x x           (1.3) 

with pdf given by 
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where 
   1
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denotes the incomplete gamma function and G(.) is the gamma 

function. 

 Ristic and Balakrishnan (2012) defined a different type of Gamma-G family of distribution 

with pdf  given by 
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   (1.5) 

where G(x) is any baseline cdf and g(x)=dG(x) . 

Alzaatreh et al. (2013a) proposed a transformed-transformer (T-X) family of distributions. 

Under this family Gamma-Pareto, Weibull-Pareto and Gamma-Normal distributions were 

developed by Alzaatreh et al. (2013b), (2012) and (2014) respectively. 

In a recent work.  Ali et al. (2014) defined Modified Burr III as 

  

1
1( ) 1 , 0


   
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with distribution function given by 

           
( ) 1


 


   F x x

           (1.7) 

where , , 0     are shape parameters of the Modified Burr III distribution.  

Bourguignon et al. (2014) defined Weibull-G , Nascimento et al. (2014) proposed Gamma 

extended Weibull family, Santos-Neto et al. (2014) introduced Marshall-Olkin extended Weibull 

family , Alizadeh et al. (2015) defined Kumaraswamy odd log-logistic family , Tahir et al. (2015a) 

proposed a new Weibull-G family and Tahir et al.  (2015b) introduced the odd generalized 

exponential family of distributions. Korkmaz and Genç (2015) introduced a generalization of 

Weibull distribution based on transformation of the two-sided Power distributed random variate. 

Korkmaz and Genç (2016)studied in detail Two-sided generalized Normal distribution. Maiti et 

al (2015) defined an Odds Exponential- Exponential distribution for modeling lifetime models. 

Afify et al. (2016) introduced as Kumaraswamy Transmuted-G Family of distributions, by 

replacing x of the cdf of Kumaraswamy distribution with the cdf of the Transmuted  Class of 

distributions. 

In this paper, we introduce and study in generality a family of Modified Burr III G 

distribution, using the Modified Burr III generator applied to the odds ratio of a baseline 

distribution. By the term “generator” we mean that for each baseline distribution G(x) we have a 

different distribution . The objective of writing this paper is to study a new family of distributions 

which is flexible because of its increasing, decreasing, bathtub, upside-down bathtub, J, reversed-

J shaped hazard rate function. With so many practical situations arising in different fields of 

applications one of these models may provide better fit in a specific practical situation. We also 

derive some of its mathematical properties and illustrate its usefulness as a better model. 

This paper is outlined as follows. In Section 2, we introduce the Modified Burr III G (MBIII 

G) family of distributions and in Section 3 some special models generated by MBIII G family 

are given. Section 4 relates to some general mathematical properties. In Section  5 estimation of 

parameters is performed by the method of maximum likelihood. Section 6 illustrates two 

applications based on real data sets. Finally concluding remarks are presented in Section7. 

 

2. Modified Burr III G (MBIII G) Family of Distributions 

Consider a continuous distribution G(x;ξ) with density g(x;ξ) and the cdf of Modified Burr 

III, given in (1.7). Based on this density we replace x with the odds ratio 

    ( ; ) ; / 1 ;   H x G x G x
 of a baseline distribution, where ξ is the parameter vector of this 

baseline distribution. Then the cdf of the Modified Burr III G Family is defined by 
( ; )

0

( ; , , , ) 1
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The pdf of the Modified Burr III G family reduces to 
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Here F(x;α,β,γ,ξ) and f(x;α,β,γ,ξ) denotes the cumulative distribution function and 

probability density function respectively of the Modified Burr III G family whereas G(x;ξ) , g(x;ξ) 

and H(x;ξ) are the cdf , pdf and odds ratio of the baseline distribution respectively . 

The survival function of Modified Burr III G family is defined as 

  ( ; , , , ) 1 1 ;


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            (2.3)  

and hazard rate function is 
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.        (2.4) 

Limiting cases of the family 

For γ®0 MBIII G family tends to Generalized Inverse Weibull G family. 

For β=1 and γ®0 MBIII G family tends to Generalized Inverse Exponential G family. 

When β=1, α=1, γ®0 MBIII G family approaches Inverse exponential G family of distributions. 

For α=1, γ®0 Inverse Weibull G family of distributions is a limiting case of MBIII G family. 

All of the above mentioned families of distributions are limiting case of Modified Burr III G 

family. Therefore the proposed family is a generalized family of distributions and all the limiting 

cases are new families of distributions 

3. Special Models of MBIII G distribution 

In this section we give some examples of Modified Burr III G family of distributions. These 

special models generalize several classical models, for example, log-logistic, Lomax, exponential, 

Uniform among other distributions. 

3.1 Modified Burr III Normal distribution 

First example refers to the Normal distribution. The Modified Burr III Normal (MBIII N) density 

is obtained from (2.1) by taking G(x) and g(x) to be the cdf and pdf of the normal N(µ,s2) 

distribution. The MBIII N distribution has cdf  

( ) 1 , ,
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where  , 0      and f(.) and F(.) are the pdf and cdf of the standard normal distribution 

respectively. Its corresponding pdf is  
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3.2 Modified Burr III Weibull Distribution 

The Weibull distribution has pdf 
   1 exp , 0    g x x x x

and cdf 

 ( ) 1 exp   G x x
  with odds ratio 

 ( ) exp 1. H x x
 Here λ is rate and ν is scale parameter. 

Then MB III Weibull distribution has cdf
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3.3 Modified Burr III Kumaraswamy Distribution 

Consider the Kumaraswamy distribution with pdf 
   

1
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Where a and b are its shape parameters. 

Then MB III Kumaraswamy distribution has cdf and pdf respectively as   
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3.4 Modified Burr III Burr XII distribution 

The pdf of Burr XII  is  
   
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 , where c and k are shape parameters. Its cdf 
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Then MBIII BXII is defined as 
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With corresponding cdf   
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The MBIII BXII distribution includes log-logistic when α=β=γ=1 and k=1 with pdf   

   
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
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. 

For α=β=γ=1 and c=1 we obtain Lomax distribution with pdf  
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 
k

f x k x
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And when all the Modified Burr III parameters are one we get Burr XII distribution with pdf  

   
1

1 1
 

 
k

c cf x ckx x
. 

To study the shape of the Modified Burr III G family of distributions we take some selected 

values of the parameters of the above mentioned special models to plot their densities and hazard 

rate function. 
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Figure 1: Plots of the densities of (a) MBIII Normal (b) MBIII Weibull (c) MBIII  Kumaraswamy and (d) 

MBIII Burr XII distributions for various values of the parameters.  

Figure 1 indicates that the proposed Modified Burr III G family generates distributions with 

various shapes such as bell-shaped, left-skewed, right-skewed, bathtub, J and reversed-J. It is a 

clear indication that the MBIII G family is very flexible and can be used appropriately to fit 

different datasets having various shapes. 
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Figure 2: Plots of the hazard rate of (a) MBIII Normal (b) MBIII Weibull (c) MBIII Kumaraswamy and 

(d) MBIII Burr XII distributions for various values of the parameters.  

Figure 2 shows that the hazard rate of Modified Burr III G family of distributions can be 

monotonic or non-monotonic. The shapes of hazard rate can be increasing, decreasing, bathtub, 

upside-down bathtub, J and reversed-J. This is indicative of its usefulness in survival analysis, 

biomedical, engineering and social sciences. 

 

4. Mathematical Properties 

We now derive some of the general mathematical properties of Modified Burr III G 

distribution. 

4.1  Expansion for the Modified Burr III G family of distributions 

Expansion for the pdf of MBIII G family can be derived by using the binomial  series 

expansion in (2.2). Let f(x;α,β,γ;ξ)=f(x) 
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 (4.1.1) 

Using binomial expansion for the second term in the above equation we have 
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As 
      / 1 H x G x G x

  equation (4.1.1) becomes 
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Using binomial series again in (4.1.3) 
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and substituting in (4.1.3) we get 
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The above equation can be rewritten as 
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    

    
,

1 1 1

! ! 1 1 1 1


 





 



  
      

 


 
           
 

k j k

j k

k k

w

k j k j j k

 
and 
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
a

ah x ag x G x
. 

In other words we can write the  MBIII G  family density as  a linear combination of 

exponentiated-G density (exp-G) function with weights ,j kw
. Therefore some mathematical 

properties of the proposed family can be derived from (4.1.5) similar to those of exp-G properties 

such as the ordinary and incomplete moments and moment generating function. For mathematical 

properties of the exp-G distributions the reader is referred to Gupta and Kundu (2001), Gupta et 

al. (1998) and Nadarajah and Kotz(2006) among others.  

 

4.2 Moments 

The sth moment of Modified Burr III G family of distributions can be obtained from (4.1.5) 

as it can be expressed as an infinite linear combination of the exponentiated-G density functions 
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where ,j kZ
 denotes the exponentiated-G distribution with power parameter 

 1 1  j k
. 

The inner quantities in (4.1.5) are absolutely integrable. 

The incomplete moments and moment generating function can be evaluated as 
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4.3 Quantile function and Random Number Generation 

The Modified Burr III G family of distributions can easily be simulated from (2.6) as follows. 

If ‘q’ has a uniform distribution U(0,1) , the solution     
 1 / ( 1) X G S S

has the MB III G 

distribution where 

1/

/ ( 1)




 

  
 

S q

. For q=0.5 we get median of MB III G distribution and 

random number generator if q is taken as uniform. 

5. Maximum Likelihood Estimation 

Now we find the maximum likelihood estimates (MLEs) of the unknown parameters of the 

Modified Burr III G family of distributions. Let x1, x2 , …,xn be a sample of size n from MBIII 

G family given by (2.2) with parameters α, β, γ and ξ . Let Q=(α, β, γ, ξ)T 

be the p x 1 parameter vector. Then log-likelihood function can be expressed as  
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Where H(x; ξ) = G(x; ξ)/(1-G(x; ξ)) . The components of the score function  

U(Q)=(Uα, Uβ, Uγ, Uξk) are given by  
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Setting these score equations equal to zero and solving them simultaneously yields the MLE 
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 .These equations cannot be solved analytically and recourse 

to iterative procedure such as Newton-Raphson algorithm is suggested. For interval estimation 

of the model parameters, we need the observed information matrix 
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 and 
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 denotes first and second derivative of xi with respect to ξ. 

6. Applications 

In this section, we provide two applications to real data to illustrate the importance of the 

Modified Burr III G family by means of Modified Burr III Weibull (MBIII Wei) and Modified 

Burr III Burr XII (MBIII BXII) models presented in Section 3.  

 

Application 1 

The first data consists of 63 observations of the strengths of 1.5 cm glass fibers. It was 

originally obtained be workers at the UK National Physical Laboratory. These data have also 

been analyzed by Smith and Naylor (1987). The units of measurement are not given in the paper. 

The data are: 

0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 

1.42, 1.48, 1.48, 1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 1.58, 1.59, 1.60, 1.61, 

1.61, 1.61, 1.61, 1.62, 1.62, 1.63, 1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 1.73, 

1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 2.00, 2.01, 2.24. 

For this data we compare Modified Burr III Weibull distribution with Modified Burr III and 

Weibull model. 

Table 1: Summary statistics of strengths of 1.5 cm glass fibers data 

Data Mean Median S.D Variance Skewness Kurtosis 

Strength of glass fibers 1.359 1.59 1.19501 1.42805 -0.8999 3.9238 
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The required numerical calculations of MLEs, negative log-likelihood (W), Akaike 

Information Criterion (AIC), Cumulative Akaike Information Criterion (CAIC) and Bayesian 

Information Criterion (BIC) values are carried out using SAS through PROC NLMIXED 

command. Using several different initial values of the parameters we find the best fit for each 

model. The initial guess that gives the minimum value of the likelihood criterion is considered to 

be the best fit of parameter estimates. Following results were obtained. 

Table 2: MLEs of the parameters , their standard errors and various information criteria for the strengths of 

1.5 cm glass fibers dataset 

Model estimates S.E. 
Lower 

bound 

Upper 

bound 
W AIC CAIC BIC 

MBIII 

Weibull 

̂ =257.01 1360.65 -2462.04 2976.05 

22.6 32.6 33.7 43.3 

̂
=3.238 

5.59 -7.94 14.41 

̂
=660 3476.19 -6286.62 7606.6 1 

̂ =0.646 1.05 -1.45 2.7 4 

̂ =2.19 1.42 -0.64 5.03 

MBIII 

̂ =14400 25696 -36948 65749 

24.0 30.0 30.4 36.4 ̂
=19.046 

3.11 12.82 25.27 

̂
=59000 116854 -174514 292514 

Weibull 

̂ =0.059 0.02 0.02 0.10 

30.4 34.4 34.6 38.7 

̂ =5.78 0.58 4.63 6.93 

Negative log-likelihood criterion is smaller for MBIII  Wei than MBIII and Weibull therefore, it 

provides better fit than the rest. The CDF plot of these models is given below. 
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Figure 3: Cdf of MBIII W , MBIII, Weibull and empirical  data fitted on glass fiber data 

The above plot indicates that Modified Burr III Weibull model gives a close fit of the data 

than the other models. 

 

Application 2  

In the second application we compare Modified Burr III Burr XII (MBIII  BXII) with 

Modified Burr  III (MBIII) and Burr XII (BXII) distribution. We use fracture toughness data (in 

the units of MPa m1/2)  of Alumina (Al2O3) that Nadarajah and Kotz (2007) fit to Burr III (B 

III) and Burr XII (BXII) distributions. Ali et al. (2014) also applied this data.  The data are also 

available online at http://www.ceramics.nist.gov/srd/summary/ftmain.htm. 

Table 3: Summary statistics of Fracture toughness data of Alumina (Al2O3) 

Data Mean Median S.D Variance Skewness Kurtosis 

Fracture Toughness 

(in the unit MPa m1/2) 

4.33 4.38 1.013 1.026 -0.42 3.093 

The different information criteria computed are given as. 
Table 4: MLEs of the parameters , their standard errors and various information criteria for Fracture 

toughness data of Alumina (Al2O3) 

http://www.ceramics.nist.gov/srd/summary/ftmain.htm
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Model estimates S.E. 
Lower 

bound 

Upper 

bound 
W AIC CAIC BIC 

MBIII 

BXII 

̂ =141 50.87 40.26 241.74 

335.7 345.7 346.2 359.6 

̂
=210 

2024.88 -3799 4219.46 

̂
=500 128.39 245.78 754.2 2 

ĉ =0.07 0.69 -1.30 1.4 4 

k̂ =0.9 0.56 -0.17 2.06 

MBIII 

̂ =1111.23 460.94 198.52 2023.93 

373.4 379.4 379.6 387.7 ̂
=4.9484 

0.28 4.39 5.50 

̂
=770.7 398.83 -19.02 1560.41 

BXII 

ĉ =22.8 1997.73 -3933.9 3977.5 

664.2 668.2 668.3 673.8 

k̂ =0.03 2.04 -5.78 5.84 

Clearly MB III BXII distribution provides best fit among MB III and B XII distributions, because 

statistic value in all criteria are smaller for MB III BXII distribution. To illustrate the fit of these 

models we plot the cdfs of these distributions and the empirical data. 
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Figure 4: Cdf of MBIII BXII , MBIII, Burr XII distributions and empirical  data fitted on fracture toughness 

data of Alumina (Al2O3) 

The fit of the plot shows that MBIII BXII distribution outperforms other models to the 

empirical data.  

Hence we can say that the proposed distribution provides us best fit and is more flexible and 

has wider application in life time data sets. 

 

7. Concluding Remarks 

In this paper, we propose a new Modified Burr III G family of distributions. Modified Burr 

III is the generator wherein the random variable is replaced by the odd ratio of the baseline 

distribution. We study some of its special distributions. It is observed that the density function 

can be left-skewed, right-skewed, bell shaped, bathtub, J and reversed-J shaped. We derive some 

of the general properties of the family and maximum likelihood method is used to estimate its 

parameters. We fit two models of the new family to demonstrate usefulness and flexibility of the 

proposed family. We hope that the new family and its models will be useful for practitioners in 

various fields of applied sciences. 
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