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Abstract: In this article a new Bayesian regression model, called the Bayesian 

semi-parametric logistic regression model, is introduced. This model generalizes 

the semi-parametric logistic regression model (SLoRM) and improves its 

estimation process. The paper considers Bayesian and non-Bayesian estimation 

and inference for the parametric and semi-parametric logistic regression model 

with application to credit scoring data under the square error loss function. The 

paper introduces a new algorithm for estimating the SLoRM parameters using 

Bayesian theorem in more detail. Finally, the parametric logistic regression model 

(PLoRM), the SLoRM and the Bayesian SLoRM are used and compared using a 

real data set. 
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1.  Introduction  

Semi-parametric regression models include regression models that combine parametric and 

nonparametric components. Semi-parametric regression models are often used in situations 

where the fully nonparametric model may not perform well, or when the functional form of a 

subset of the regressors or the density of the errors is not known. Semi-parametric regression 

models are a particular type of semi-parametric models containing a parametric component. So, 

they rely on parametric assumptions and may be misspecified and inconsistent as in a fully 

parametric model. 

Semi-parametric models combine the flexibility of a nonparametric model with the 

advantages of a parametric model. A fully nonparametric model will be more robust than semi-

parametric and parametric models since it does not suffer from the risk of misspecification. 

However, nonparametric estimators suffer from low convergence rates, which deteriorate when 

considering higher order derivatives and multidimensional random variables. In contrast, the 

parametric models have the risk of misspecification, but if correctly specified they will 

normally enjoy √𝑛-consistency with no deterioration caused by derivatives and multivariate 

data. The basic idea of a semi-parametric model is to take the best of both models. 
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The semi-parametric generalized linear model, known as the generalized partial linear 

model (GPLM), is one of the semi-parametric regression models, see Powell (1994), Rupport et 

al. (2003), Sperlich et al. (2006), and Yousof and Gad (2015). 

Many authors have tried to introduce algorithms to estimate the parameters of the semi-

parametric regression models. Majumdar and Eubank (2009) have studied the Bayesian semi-

parametric sales projections for the Texas lottery. Meyer et al. (2011) have introduced Bayesian 

estimation and inference for generalized partial linear models using shape-restricted splines. 

Zhang et al. (2014) have studied estimation and variable selection in partial linear single index 

models with error-prone linear covariates. Guo et al. (2015) have studied the empirical 

likelihood for the single index model with missing covariates at random. Bouaziz et al. (2015) 

have studied semi-parametric inference for the recurrent events process by means of a single-

index model. Yousof and Gad (2015) have introduced Bayesian estimation and inference for 

generalized partial linear model using some multivariate conjugate prior distributions. Finucane 

et al. (2015) have introduced a semi-parametric Bayesian density estimation with disparate data 

sources. 

The aim of this paper is to propose a new method for estimating semi-parametric logistic 

regression model. This is Bayesian type algorithm of estimation. The rest of the paper is 

organized as follows. In Section 2, the generalized partial linear model (GPLM) is presented. 

Section 3, introduces the semi-parametric logistic regression model (SLoRM). In Section 4, the 

Bayesian estimation and inference for the SLoRM is presented. In Section 5, the proposed 

method is applied to credit scoring data. Finally, some concluding remarks are presented in 

Section 6. 

 

2.  The Generalized Partial Linear Model (GPLM) 

Consider the generalized linear model (GLM), 

                       E[Y|X] = G[XTβ],                                                                (1)                      

where G(.) is a known and monotone link function, and β is an unknown finite 

dimensional parameter. A semi-parametric generalized linear model known as 

generalized partial linear model is an extension of a generalized linear model defined in 

Eq. (1). The GPLM has the form 

E[Y|X, W] =  G[Xβ + m(W)]                                                 (2) 

where G(.) is a known link function. It is a semi-parametric model since it contains both 

parametric and nonparametric components.  For a unit link linear function, the model in 

Eq. (2) can be reduced to the model E[Y|X, W] = Xβ + m(W). This model is called partial 

linear model (PLM). 

In the generalized linear model (GLM) the nonlinear link function G(.) is fixed and 

monotone. In the generalized partial linear model (GPLM), a more complex 

relationship between the response and the regressors is defined by a non-monotone link 

function. 
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The generalized partial linear model (GPLM) is used by Burda et al. (1998), Chen 

(1995), Muller (2001), Peng (2003), Peng and Wang (2004), Severini and Staniswalis 

(1994), Yousof and Gad (2015). 

The estimation methods for the GPLM, in Eq. (2), are based on the idea that an 

estimator β̂  is obtained for a known  m(. ) , and an estimator m̂(. )  is obtained for 

known β. The estimation method that will be considered are based on kernel smoothing 

methods in the estimation of the nonparametric component of the model. This method 

is known as the profile-likelihood method.  

The profile likelihood method has been introduced by Severini and Wong (1992). It 

is based on assuming a parametric model for the conditional distribution of Y given X 

and W. The idea of this method is as follows: 

1. Assume the parametric component of the model, i.e. the parameters vector  β, β∗ 

say. 

2. Estimate the nonparametric component of the model depending on β∗, i.e. mβ(. ) 

using  a smoothing method to obtain the estimator m̂β(. ). 

3. Use the estimator m̂β(. )  to construct profile likelihood for the parametric 

component using either a true likelihood or quasi-likelihood function.  

4. The profile likelihood function is then used to obtain an estimator of the parametric 

component of the model using a maximum likelihood method. 

Thus the profile likelihood method aims to separate the estimation process into two 

parts; the parametric part which is estimated by a parametric method, and the 

nonparametric part which is estimated by a nonparametric method. 

Murphy and Vaart (2000) show that the full likelihood method is not a good choice 

for semi-parametric models. In semi-parametric models the observed information, if it 

exits, would be an infinite-dimensional operator. They use profile likelihood rather than 

a full likelihood to overcome this problem. The algorithm for profile likelihood method 

is derived as follows. 

 

2.1   Derivation of the likelihood functions 

 

For the parametric component of the model, the objective function is the parametric 

profile likelihood function which is maximized to obtain an estimator of  β . This 

function is given as 

ℓ(β) = ∑ ℓ(μi,β, yi)
n
i=1 = ∑ ℓi

n
i=1 ,                                       (3) 

where ℓ(. )  denotes the log-likelihood or quasi-likelihood function, μi,β = G[Xi
Tβ +

mβ(Wi)], and ℓi = ℓ(μi,β, yi). 

For the nonparametric component of the model, the objective function is a 

smoothed or a local likelihood function which is given as 
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ℓH[mβ(w)] = ∑ ℓ(μi,β(w), yi)
n
i=1 KH(w − Wi),                               (4) 

where μi,β(w) = G[Xi
Tβ + mβ(W)] = G(η) , and the local weight KH(w − Wi)  is the 

kernel weight with 𝒦  denoting a multidimensional kernel function and H is a 

bandwidth matrix. The function in Eq. (4) is maximized to obtain an estimator for the 

smooth function mβ(w) at a point w. 

 

2.2  Maximization of the likelihood functions 

The maximization of the local likelihood in Eq. (4) requires solving the equations 

 0 = ∑ ℓ. (G(η), yi)KH(w − Wi)
n
i−1                                              (5) 

with respect to mβ(t) and ℓ. (. ) denotes the first derivative of ℓ(. ). The maximization 

of the profile likelihood in Eq. (3) requires solving the equations      

             0 = ∑ ℓ. (G(η), yi) (Ui + ∇mβ
(Wi))n

i−1                                        (6) 

with respect to the coefficient vector β. The vector ∇mβ
(Wi) denotes the vector of all 

partial derivatives of mβ with respect to β. A further differentiation of Eq. (5) with 

respect to p leads to an explicit expression for ∇mβ
 as follows: 

∇mβ
(w) = −

∑ ℓ.. (G(η),yi)KH(w−Wi)Ui
n
i=1

∑ ℓ.. (G(η),yi)KH(w−Wi)n
i=1

                                                  (7) 

where ℓ..  denotes the second derivative of ℓ(G(η), yi) 

The Eq. (5) and Eq. (6) can only be solved iteratively. Severini and Saitniswalis 

(1994) presented a Newton-Raphson type algorithm for this maximization as follows. 

Let mj = mβ(Wj), ηi = (Xi
Tβ + mi), ηij = (Xi

Tβ + mj), ℓi = ℓ(G(ηi), yi)    

and ℓij = ℓ(G(ηij), yi).  Also, let ℓi
. , ℓi

.. , ℓij
.  and ℓij

..  be the first and second 

derivatives of ℓi and ℓij with respect to their first argument, respectively. All the above 

values are calculated at the observations Wi instead of the free parameter w. Then Eq.(5) 

and Eq. (6) are transformed to 

0 = ∑ ℓij
. 𝒦H

n
i=1 (Wi − Wj),                                          (8) 

and 

0 = ∑ ℓi
.n

i=1 (Xi − ∇mi
),                                                (9) 

respectively. The estimator of ∇mj
= ∇mβ

(Wj) based on Eq. (7) is necessary to estimate 

β, where 

∇mj
= −

∑ ℓij
.. 𝒦H

n
i=1 (Wi−Wj)Ui

∑ ℓij
.. 𝒦H

n
i=1 (Wi−Wj)

.    

Eq. (8) and Eq. (9) imply the following iterative Newton-Raphson Type algorithm. 

First: Initial values 

Different strategies are presented to obtain starting values of the estimators. These 

include; 
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 Using β̂(o)  and m̂j
(o)

 obtained from fitting a parametric generalized linear model 

(GLM). 

 Using   β = 0   and mj = G−1[(Yj + Y̅)/2] with the adjustment for Binomial responses 

asmj = G−1[(Yj + 0.5)/2]. 

 Using β = 0 and mj = G−1[Yj] with the adjustment for binomial responses as mj =

G−1[(Yj + 0.5)/2]. (See Severini and Staniswalis, 1994). 

Second: The updating step for  β 

The  β can be updated as 

βnew = β − B−1 ∑ ℓi
. X̃i

n
i=1  , 

where B is a Hessian type matrix defined as B = ∑ ℓi
.. X̃i

n
i=1 X̃i

T  and 

 X̃j = Xj + ∇mj
= Xj −

∑ ℓij
.. 𝒦H

n
i=1 (Wi−Wj)Xi

∑ ℓij
.. 𝒦H

n
i=1 (Wi−Wj)

, j = 1, … n.  

The updating step for  p can be summarized in a closed matrix form as follows: 

βnew = (X̃TDX̃)
−1

X̃TDZ̃, where X̃ = (1 − Sp)U, Z̃=X̃β − D−1υ, X is the design matrix 

with rows  Xi
T , I is an (n × n) identity matrix, υ = ( ℓ1, … ,. ℓn

. ) , D =

diag( ℓ1, … ,.. ℓn
.. ),  and Sp  is a smoother matrix with elements (Sp)ij =

ℓij
.. 𝒦H(Wi−Wj)

∑ ℓij
.. 𝒦H

n
i=1 (Wi−Wj)

. . 

Third: The updating step for mj = mβ(wj) 

The function mj = mβ(wj)  is updated by m̂j
k+1 = m̂j

k ∑ ℓij
. 𝒦H

n
i=1 (Wi−Wj)

∑ ℓij
.. 𝒦H

n
i=1 (Wi−Wj)

.,  where 

k=0, l, 2,…is the number of iteration. It is noted that the function ℓij
.. (. ) can be 

replaced by its expectation with respect to Y to obtain a Fisher scoring type algorithm, 

Severini and Staniswalis (1994). 

For the above procedure we can note the following: 

1. The variable Z̃ is a set of adjusted dependent variable. 

2. The parameter β  is updated by a parametric method with a nonparametrically 

modified design matrix X̃. 

3. The function ℓi
..  can be replaced by its expectation, with respect to y, to obtain a 

Fisher scoring type procedure. 

4. The updating step for mj is of quite complex structure and can be simplified in 

some models for identity and exponential link functions G. 

 

3.  The semi-parametric logistic regression model (SLoRM) 

Consider the updating steps of estimating GPLM, using the profile-likelihood 

method which have considered in Section (2). The updated values of m𝑗 and 𝛽 are: 
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m̂j
k+1 = m̂j

k −
∑ ℓij

. 𝒦H
n
i=1 (Wi−Wj)

∑ ℓij
.. 𝒦H

n
i=1 (Wi−Wj)

,                                (13) 

and 

βnew = β − B−1 ∑ ℓi
. Ũi

n
i=1 .                                             (14) 

The estimators of the parametric component 𝛽 and the nonparametric component 

m(w) will be developed when the response variable Y belongs to a binomial 

distribution. This will be shown in the univariate case model using the profile 

likelihood method. The iterative procedure that will be used is a Newton-Raphson type 

algorithm. 

 

3.1  Updates of the nonparametric component  

 

The Eq. (13) can be written as 

m̂j
(k+1)

= m̂j
(k)

−
∑ ℓi(U β̂(k)

i + m̂j
(k)

). 𝒦h
n
i=1 (Wi − Wj)

∑ ℓi (U β̂(k)
i + m̂j

(k)
).. 𝒦h(Wi − Wj)

n
i=1

, 

where 

ℓi(U β̂(k)
i + m̂j

(k)
). = [Yi −

exp(U β̂(k)
i + m̂j

(k)
)

1 + exp (U β̂(k)
i + m̂j

(k)
)

] 

 and 

ℓi(U β̂(k)
i + m̂j

(k)
).. = [Yi −

exp(U β̂(k)
i +m̂j

(k)
)

[1+exp(U β̂(k)
i +m̂j

(k)
)]

2]. 

 

3.2  Updates of the parametric component 

 

 Eq. (14) can be written as 

β̂(k+1) = β̂(k) −
1

B
∑ ℓi

. (U β̂(k)
i + m̂j

(k+1)
)Ũi

(k)
,

n

i=1

 

where 

ℓi
. (U β̂(k)

i + m̂j
(k+1)

) = [Yi −
exp(U β̂i + m̂i

(k+1)
)

1 + exp(U β̂i + m̂i
(k+1)

)
], 

Ũi
(k)

= Ui −
∑ ℓi(U β̂(k)

i + m̂j
(k+1)

). 𝒦h
n
i=1 (Wi − Wj)Ui

∑ ℓi (U β̂(k)
i + m̂j

(k+1)
).. 𝒦h

n
i=1 (Wi − Wj)

, 
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ℓi
.. (U β̂(k)

i + m̂j
(k+1)

) = [Yi −
exp(U β̂i + m̂i

(k+1)
)

[1 + exp(U β̂i + m̂i
(k+1)

)]
2], 

B = ∑ ℓi(U β̂(k)
i + m̂j

(k+1)
)..n

i=1 Ũi
(k)2, j=l,2, … ,n is the number of 

observations, and k=0, l, 2, is the iterations. The procedure will be iterated until 

convergence.  

For k=0, m̂j
(1)

= m̂j
(0)

−
∑ ℓi(U β̂(0)

i +m̂j
(0)

). 𝒦h
n
i=1 (Wi−Wj)

∑ ℓi(U β̂(0)
i +m̂j

(0)
).. 𝒦h(Wi−Wj)n

i=1

 and 

β̂(0) = β̂(0) −
1

B
∑ ℓi

. (U β̂(0)
i + m̂j

(1)
)Ũi

(0)n
i=1 , where  mj

(0)
 and  β(0)  are the initial 

values. 

 

4.  Bayesian estimation and inference for the SLoRM 

Bayesian inference derives the posterior distribution as a consequence of two 

antecedents; a prior probability and a likelihood function derived from a probability 

model for the data to be observed. In Bayesian inference the posterior probability can 

be obtained according to the Bayes theorem as  

P(β|y) ∝  π(β)L(y|β),                                                      (15) 

where P(β|y) is the posterior distribution, π(β) is the prior distribution, and L(y|β) is 

the likelihood function. 

 

 The proposed algorithm for estimating the SLoRM parameters as follows:  

1. Obtain the probability distribution of response variable 𝐘. 

2. Obtain the likelihood function of the probability distribution of response variable 𝐘. 
3. Choose a suitable prior distribution of 𝛃. 

4. Use Eq. (15) to obtain the posterior distribution. 

5. Obtain the Bayesian estimator under the square error loss function. 

6. Replace the initial value of 𝛃 by the Bayesian estimator. 

7. Use Profile likelihood method and the Newton-Raphson algorithm with the new 

initial value of 𝛃 to estimate the SLoRM. 

 Consider the SLoRM in Section (3) and suppose that yi~Binomial(m, β) , 

⇒P(Yi|m, β) ∝ βy(1 − β)m−y. We have four different cases, depending on the assumed 

prior distribution. These cases are  described below. 

Case 1: The general case 

Suppose that the conjugate prior distribution of β is as π(β)~Beta(ξ, τ). Using Eq. 

(15), the posterior distribution is Beta(∑ yi
n
i=1 + ξ , m − ∑ yi

n
i=1 + τ)  with expected 
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value 
∑ yi

n
i=1 +ξ

m+ξ+τ
 and variance 

(∑ yi
n
i=1 +ξ)(m−∑ yi

n
i=1 +τ)

[m+ξ+τ]2[m+ξ+τ+1]
. Then, the Bayesian estimator under 

the square error loss function is  

β̂Bayes =
∑ yi

n
i=1 +ξ

m+ξ+τ
. 

Case 2:  

Suppose that the conjugate prior distribution of β  is as π(β)~Beta(1,1). Then the 

posterior distribution is Beta(∑ yi
n
i=1 + 1 , m − ∑ yi

n
i=1 + 1)  with expected value 

∑ yi
n
i=1 +1

 m+2
 and variance

(∑ 𝐲𝐢
𝐧
𝐢=𝟏 +𝟏)(𝐦−∑ 𝐲𝐢

𝐧
𝐢=𝟏 +𝟏)

[𝐦+𝟐]𝟐[𝐦+𝟑]
. Then, the Bayesian estimator under the 

square error loss function is 

β̂Bayes =
∑ yi

n
i=1 +1

 m+2
. 

Case 3: 

Suppose that we have no information aboutβ, then c Ignorance (Noninformative) 

prior distribution of β will be as follows 

π(β) = 1 

 

Then the posterior distribution is Beta(∑ yi
n
i=1 + 1 , m − ∑ yi

n
i=1 + 1) with expected 

value 

∑ yi
n
i=1 + 1

 m + 2
 

and variance 
(∑ 𝐲𝐢

𝐧
𝐢=𝟏 +𝟏)(𝐦−∑ 𝐲𝐢

𝐧
𝐢=𝟏 +𝟏)

[𝐦+𝟐]𝟐[𝐦+𝟑]
. 

Then, the Bayesian estimator under the square error loss function  

�̂�𝐁𝐚𝐲𝐞𝐬 =
∑ 𝐲𝐢

𝐧
𝐢=𝟏 +𝟏

 𝐦+𝟐
. 

 

Case 4: 

Using the Jeffrey's Prior for the Binomial distribution, that the conjugate prior 

distribution of β  is as π(β)~Beta (
1

2
,

1

2
). Then the posterior distribution is 

Beta (∑ yi
n
i=1 +

1

2
, m − ∑ yi

n
i=1 +

1

2
)  with expected value 

∑ yi
n
i=1 +

1

2

m+1
 and variance 

(∑ 𝐲𝐢
𝐧
𝐢=𝟏 +

𝟏

𝟐
)(𝐦−∑ 𝐲𝐢

𝐧
𝐢=𝟏 +

𝟏

𝟐
)

[𝐦+𝟏]𝟐[𝐦+𝟐]
. Then, the Bayesian estimator under the square error loss 

function is β̂Bayes =
∑ yi

n
i=1 +0.5

 m+1
. 

The proposed algorithm can be generalized for different types of semi-parametric 

regression models. For instance, Yousof and Gad (2015) used a similar algorithm for 

estimating the generalized partial linear model using a Bayesian approach. We consider 
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the Wald statistic to show the significance of the parameters  β̂i. Also, we will use the 

odds  ratio for facilitating the selection of the significant variables. 

In case of the SLoRM, the proposed algorithm is appropriate if the profile 

likelihood method and the Newton-Raphson algorithm are applied. The SLoRM can be 

used if  the response variable has only two values and if the explanatory variables are 

divided into two groups: the first group, the non-metric (categorical) covatiates and the 

second group, the metric (quantitative) covatiates. 

 

5.  Application: Credit Scoring Data 

The credit cards industry has been growing rapidly recently. Thus, consumer credit 

data are collected by the credit department of banks. The credit scoring manager often 

evaluates the consumer’s credit with intuitive experience. However, with the support of 

the credit classification model, the manager can accurately evaluate the applicant’s 

credit score. Credit scoring represents a set of common techniques to decide whether a 

bank should grant a loan to an applicant (borrower) or not. Many authors have tried to 

use Credit scoring data for example West (2000), Baesens et al. (2003), Huang et al. 

(2007),  Haggag (2008), Brown, I. and Mues, C. (2011), Tu et al. (2014) and Sohn et al. 

(2016).  

Credit scoring data have metric  and non-metric covariates; hence the SLoRM 

algorithm is very convenient to this data type. Also, all the parametric and 

nonparametric models cannot be used for the credit scoring data for the above reason. 

The current data include 400 cases taken from the National Bank of Egypt in the 

period 2005 – 2010. These data consist of 15 variables; 14 independent variables X's 

(covariates) and one dependent variable (Y).  Each independent variable represents a 

question to the applicant. The first three covariates X1 , X2  and X3  are quantitative 

variables whereas the remaining variables are categorical variables. The dependent 

variable Y is the credibility which takes two values; 1 means "credit-worthy" and 0 

means "not credit-worthy". The variables and their values are presented in Table (1). 

 
Table (1): The description of the study covariates  

Covariates Symbol Description 

 

Age in years X1 Quantitative variable 

Amount of loan X2 Quantitative variable 

Duration in months X3 Quantitative variable 

Savings X4 Categorical variable: Yes (1) / No (0) 

Credit card X5 Categorical variable: Yes (1) / No (0) 

Reputation X6 Categorical variable: Yes (1) / No (0) 

Repayments 

of earlier credits 

X7 Categorical variable: Yes (1) / No (0) / having no previous credits  (2) 
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Experience X8 Categorical variable: Yes (1) / No (0) / having no previous experience 

(2) 

Relationship with partner X9 Categorical variable: Good (1) / bad (0) / having no partner (2) 

Guarantees X10 Categorical variable: Person (1) / real estate (2) / goods (3) /nothing 

(0) 

Marital Status X11 Categorical variable: Married (1) / divorced (2) / widow (3) / Single 

(0) 

Educational level X12 Categorical variable: PhD (1) / Master (2) / Bachelor (3) / Medium 

(4)/  not educated (0) 

Project Type X13 Categorical variable: Manufacturing (1) / commercial (2) / 

professional (3)/ agricultural (4) /  others (0) 

Purpose of credit X14 Categorical variable: Project construction (1) / Project developing (2) 

/ Buying goods (3) / Buying a land (4) /  Others (0) 

 
The PLoRM, the SLoRM and the Bayesian SLoRM are applied to the data. The 

PLoRM model is as follows 

Pr(Yi = 1|Xi) =G(Xi
Tβ) =

exp(Xi
Tβ)

1+exp(Xi
Tβ)

. 

The model gives the probability that the response variable takes the value 1. The 

parameter estimates of PLoRM using maximum likelihood are presented in Table (2). 

To test hypothesis about the parameters are H0: βi= 0 vs. H1: βi ≠ 0. The Wald test 

statistic is  Wald = {
β̂i

SE (β̂i)
}

2

. 

The null hypothesis is rejected if the P-value (Significance) of  β̂i  < (∝= 0.05) 

 
Table (2): The results of the PLoRM model 

 

df 

 

Wald 

 

Odds Ratio 

 

P-value 

 

SE 

 

β̂ 

 

 

1 3.07 0.96 0.06 0.0232 -0.04 X1 

1 5.66 0.01 0.10 2.2017 -5.24 X2 

1 2.30 0.64 0.10 0. 2935 -0.44 X3 

1 57.92 2.67 0.01 0.1292 0.98 X4 

1 101.6 20.36 0.01 0.2989 3.01 X5 

1 1.98 16.95 0.34 2.0120 2.83 X6 

1 0.09 1.31 0.22 0.8767 0.27 X7 

1 0.03 1.48 0.43 2.3204 0.39 X8 

1 1.00 2.15 0.52 0.7643 0.76 X9 

1 25.34 2.39 0.03 0.1731 0.87 X10 

1 16.32 54.36 0.63 0.9891 3.99 X11 

1 0.00 0.98 0.93 0.3665 -0.01 X12 

1 0.16 1.13 0.07 0.3476 0.12 X13 

1 22.21 0.54 0.03 0.1301 -0.61 X14 

1 2.75 22.25 0.44 1.8712 3.10 Const. 
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Depending on these results there are four significant independent variables. These 

variables are saving (X4); whether the applicant has saving, credit card (X5); whether 

the applicant has a credit card, Guarantees (X10); the guarantees to the applicant, and 

Purpose of credit (X14). These variables influence the credit worthiness, according to 

our data. The remaining variables are insignificant. The three metric variables, age of  

the borrower, amount, and duration of the loan, are insignificant in all models. 

 The goodness of fit for the whole model is tested using the loglikelihood ratio test; 

the p-value is 0.046 which means that the model is significant at 5% significance level. 

The second fitted model is the SLoRM which assumes that the probability of a good 

loan is given by 

Pr(Yi = 1|Xi, Wi) =G(Xi
Tβ + m(Wi)) =

exp(Xi
Tβ+m(Wi))

1+exp(Xi
Tβ+m(Wi))

, 

where G (. )  is the cumulative logistic function, Xi   is a vector of the variables 

X4 , X5 , … , X14 and Wi is a vector of the variables X1 , X2  X3. The parameter estimates 

and their standard errors are displayed in Table (2). 

 
Table (3): The results of the SLoRM Model 

 

Wald  

 

Odds Ratio 

 

 

P-value 

 

 

S.E 

 

β̂ 

 

78.72 2.42 0.01 0.0994 0.88 X4 

344.25 7.49 0.01 0.1084 2.01 X5 

2.72 6.29 0.71 1.1129 1.83 X6 

0.37 1.54 0.36 0.7061 0.43 X7 

0.02 1.58 0.74 2.8779 0.46 X8 

0.57 1.65 082 0.6639 0.50 X9 

55.26 2.61 0.02 0.1293 0.96 X10 

11.98 15.37 0.69 0.7895 2.73 X11 

0.19 0.89 0.66 0.2615 -0.11 X12 

16.32 2.68 0.05 0.2439 0.98 X13 

27.63 0.47 0.03 0.1418 -0.74 X14 

 
From the results we can conclude that 5 variables are significant. These variables 

are X5, X4, X10, X14, and X13 . The three metric variables, age of  the borrower, amount, 

and duration of the loan, are insignificant in all models. 

The third fitted model is SLoRM using Bayesian approach. As we presented in 

Section 4 there are 4 cases. Here we use the second case where we use the conjugate 

prior distribution and 𝑌~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝛱),π(β)~Beta(1,1) . The other cases have been 

tried but we display results of case (2) in Table (4) for the sake of parsimony.    

  
Table (4): The results of the Bayesian SLoRM; Case (2) 

 Conjugate Prior Distribution  π(β)~Beta(1,1) 
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 β̂ S.E P-value 

 

Odd Ratio 

 

Wald 

 

X4 0.90 0.0942 0.02 2.45 90.57 

X5 2.13 0.1059 0.01 8.44 405.69 

X6 1.85 1.1292 0.44 6.39 2.70 

X7 0.44 0.5231 0.13 1.59 0.70 

X8 0.45 2.2129 0.36 1.58 0.04 

X9 0.51 0.5734 0.31 1.67 0.80 

X10 0.96 0.1166 0.02 2.60 67.71 

X11 2.74 0.6929 0.59 15.54 15.68 

X12 -0.10 0.1967 0.52 0.90 0.29 

X13 0.10 0.1847 0.04 2.70 29.17 

X14 -0.89 0.1314 0.03 0.41 46.28 

 

It is found that the five categorical variables X5, X4, X10, X14 and X13 are the only 

significant variables, which influence the credit worthiness, according to our data.Three 

metric variables, age of  the borrower, amount, and duration of the loan, are 

insignificant in all models. 

The three models are compared and the results are displayed in Table (5). In general, 

SLoRM estimators are efficient than PLoRM estimators with small standard errors and 

deviance.  The Bayesian SLoRM  estimators are efficient than the PLoRM and the 

SLoRM estimators with small standard errors and deviance.  Estimating credit 

worthiness using Bayesian SLoRM gives estimators with less deviance. 
 

Table (5): The -2loglikelihood of the three models 

Bayesian ( SLRM) SLRM PLORM 

 

 

Case(4) Case(3) Case(2) 

128.87 126.48 126.48 130.12 140.25 Deviance 

           

6.  Conclusions 

 According to the PLoRM, it is found that the five categorical variables X5, X4, X10 

and X14  are the only significant variables, which influence the credit worthiness, 

according to the current data. According to the SLoRM and the Bayesian SLoRM, it is 

found that the five categorical variables X5, X4, X10X14and X13 are the only significant 

variables, which influence the credit worthiness, according to the current data. The 

three metric variables; the age of  the borrower, the amount of the loan, and the 

duration of the loan are insignificant in all models.  

The SLoRM estimators are efficient than the PLoRM estimators in sense they have 

smaller standard errors, deviance and smallest number of iterations. The Bayesian 

SLoRM estimators are efficient comparable to the PLoRM and the SLoRM estimators 

with smaller standard errors, deviance and mallest number of iterations. Estimating 
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credit worthiness using Bayesian SLoRM gives estimations with less deviance and with 

smallest number of iterations. 
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