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Abstract

Unit root tests that are in common use today tend to over-reject the stationarity of economic
ratios like the consumption-income ratio or rates like the average tax rate. The meaning of a
unit root in such bounded series is not very clear. We use a mixed-frequency regression technique
to develop a test for the null hypothesis that a series is stationary. The focus is on regression
relationships, not so much on individual series. What is noteworthy about this moving average
(MA) unit root test, denoted as z(MA) test, based on a variance-difference, is that, instead of
having to deal with non-standard distributions, it takes testing back to normal distribution and
offers a way to increase power without having to increase the sample size substantially. Monte
Carlo simulations show minimal size distortions even when the AR root is close to unity and the
test offers substantial gains in power relative to some popular tests against near-null alternatives
in moderate size samples. Applying this test to log of consumption-income ratio of 21 OECD
countries shows that the z(MA) test favors stationarity of 15 series, KPSS test 8 series, Johansen
test 6 series and ADF test 5 series.
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1 Introduction

Economic theory often requires ratios like consumption share of income, investment share of GDP
and the average tax rate to be stationary; see, for example, King et al. (1991), and references
therein. Even if these series appear to be non-stationary (Harvey, 1989), the meaning of a unit
root in them is not very clear. More generally, what is of interest is whether a regression provides
stable parameters with stationary residuals regardless of the nature of the non-stationarity of
the individual series. Although there are a number of tests that use the null of stationarity,
many test statistics for unit-roots and cointegration that are currently in use have non-standard
distributions and often have low power against autoregressive roots close to unity; see Maddala
and Kim (1998) for a survey of the unit root literature. Kim and Choi (2017) have questioned
the validity of previous unit root verdicts on many time series that have ignored the problem of
low power.

We revisit this old problem with the objective of presenting a test for the null of stationarity
of the deviations from a long-run relationship. This will allow us to test it against different
alternatives such as autoregressive (AR) unit roots, fractional integration, structural breaks and
policy interventions. Financial time series may also exhibit multiple non-stationaries (Reschen-
hofer, 2004) or explosive bubbles (Harsha and Ismail, 2017). In this exercise we consider only the
AR unit root alternative and defer the evaluation of other alternatives to future work. The test
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also brings the distribution back to normal distribution and at the same time offers a substantial
improvement in power.

The test presented here focuses on a moving average (MA) unit root. Although the idea
of testing for an MA unit root is not new (Tanaka, 1990), the importance of such tests needs
to be re-emphasized. Being a behavioral outcome, an AR unit root could be somewhat illusive,
see Hamilton (1994, Sec. 15.4) and Phillips (2010), whereas an MA unit root can be created by
over-differencing a stationary process, therefore, easier to pin down. The basic idea underlying
our test procedure emanated from a mixed-frequency regression presented in Abeysinghe (1998)
and temporal aggregation, systematic sampling and dynamic relationships studied in Rajaguru
(2004), Rajaguru and Abeysinghe (2008) and Rajaguru et al. (2018). The test procedure involves
a simple data transformation to obtain a mixed frequency regression and focuses on the difference
in error variances of the original model and the transformed model.

2 Methodology

Consider the following model that Leybourne and McCabe (1994) extended from Harvey (1989)
and Kwiatkowski et al. (1992) to test the null of stationarity against an alternative of difference
stationarity:

φ(L)yt = αt + βt+ εt,

αt = αt−1 + ηt, α0 = α,
(1)

where εt
i.i.d.∼ N(0, σ2ε), ηt

i.i.d.∼ N(0, σ2η), both of which are independent of each other, and φ(L) =
1 − φ1L − ... − φpLp with roots outside the unit circle. This has the following ARIMA(p,1,1)
representation:

∆yt = β + φ1∆yt−1 + ...+ φp∆yt−p + ut − θut−1, (2)

where ut
i.i.d.∼ N(0, σ2) with σ2 = σ2ε/θ, θ = (λ − (λ2 + 4λ)1/2 + 2)/2 and λ = σ2η/σ

2
ε is the

signal-to-noise ratio. If σ2η = λ = 0 and θ = 1, model (2) collapses to a stationary AR(p) process.
Alternatively, ∆yt in (2) has a non-invertible ARMA(p,1) representation. To test the null of
stationarity a number of researchers formulated tests based on H0 : σ2η = 0 vs H1 : σ2η > 0.
These are in effect tests of an MA unit root and the distributions involved are in general non-
standard (Kwiatkowski et al., 1992; Saikkonen and Luukkonen, 1993; Leybourne and McCabe,
1994; Choi, 1994; Breitung, 1995). As λ increases, θ approaches zero and we get a standard unit
root autoregression. In this exercise the ARIMA model in (2) forms the basis of our test.

As stated earlier our test is based on a mixed frequency regression procedure that helps
in increasing the power of the test at a given sample size. Abeysinghe (1998, 2000) applied a
transformation to a dynamic regression to forecast quarterly GDP with monthly external trade
of Singapore without converting monthly data to quarterly frequency as is usually done. Basi-
cally, the procedure is developed for a situation where the dependent variable is observed at a
low frequency and the independent variable at a higher frequency. The standard practice in this
situation is to convert the high frequency variable into the low frequency by aggregating or aver-
aging, whichever is appropriate. Occasionally the low frequency variable may be converted to the
high frequency using some interpolation methods such as the Chow-Lin procedure (Abeysinghe
and Rajaguru, 2004). The mixed frequency procedures retain the data in their own frequencies.
This tends to improve forecasts and helps in deriving impulse responses at the higher frequency.
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We can easily adapt the mixed frequency procedure for the purpose of this exercise.To
illustrate the idea, (2) can be written as

ut = θut−1 − β + φ(L)∆yt. (3)

If ut is assumed to be observed at low frequency intervals t = m, 2m, ..., T , where m ≥ 2 is a
positive integer, and ∆yt is observed at high frequency intervals t = 1, 2, .., T , the basic idea of
the mixed frequency regression is to transform ut−1 in (3) to ut−m such that all the observations
of ∆yt are retained in the regression. This transformation is easily obtained by multiplying (3)
through by the polynomial θ(L) = 1 + θL + ... + θm−1Lm−1. The transformed model can be
written as

θ(L)φ(L)∆yt = θ(1)β + Vt, (4)

where Vt = θ(L)(1− θL)ut = ut − θmut−m.
Now note that under the null H0 : θ = 1, V ar(Vt) = 2σ2 and under the alternative H1 :

|θ| < 1, V ar(Vt) = (1 + θ2m)σ2 < 2σ2. Therefore, V ar(Vt) − 2σ2 forms the basis of our test.
By transforming the test of θ into a test of V ar(Vt) we can arbitrarily increase the distance
between the null and the alternative simply by increasing m whereby extra gains in power is
made possible. For example, a test of θ = 1 when θ = 0.9 translates into comparing 2σ2 against
V ar(Vt) = 1.43σ2 for m = 4 and V ar(Vt) = 1.08σ2 for m = 12. This transformation allows us
to formulate a number of test statistics that follow standard distributions.

We denote V ar(Vt) by σ2m to indicate its dependence on m. Given that we can obtain
consistent estimates of the parameters in (2), we can compute σ̂2 and σ̂2mand then form the
test statistic

√
T (σ̂2m − 2σ̂2) to test θ = 1 against |θ| < 1. Using the subscript T to indicate

the dependence on the sample size, we can define σ̂2T = (1/T )
∑T

t=1 û
2
t , V̂t = ût − θ̂mût−m and

σ̂2m,T = (1/T )
∑T

t=1 V̂
2
t . The following theorem establishes the asymptotic distribution of the

test statistic.

Theorem 1. Given that ut
i.i.d.∼ N(0, σ2) and assuming E(u4t ) = µ4 <∞, under the null hypoth-

esis of θ = 1,
√
T (σ̂2m,T − 2σ̂2T )

d−→ N(0, 4σ4).

Proof. see Appendix A.

The test procedure in practice is the following. Assuming p+ 1 pre-sample values y−p, ..., y0
are available, estimate the ARMA(p, 1) for ∆yt in (2) by maximum likelihood (ML) and obtain θ̂
and σ̂2 =

∑
t = 1T û2t /(T−p−2) (these are provided by standard computer software procedures).

Then obtain V̂t = ût − θ̂mût−m and σ̂2m =
∑T

t=m+1 V̂t −
¯̂
V )2/(Ta − 1), where Ta = T −m is the

effective sample size and ¯̂
V is the sample mean of V̂t. (Note that the subtraction of ¯̂

V is not
essential in large samples.) Then compute z =

√
T (σ̂2m−2σ̂2)/2σ̂2 and reject the null hypothesis

θ = 1 if z ≤ c where c is a left-hand critical value from the standard normal distribution.We
term this as z(MA) test to differentiate it from a z(AR) test that can be obtained by extending
our test procedure to the AR unit root case.We extended the test procedure to the AR unit root
case, which provides a generalization to the variance-ratio test developed by Lo and MacKinlay
(1988, 1989). Although the extension works very well (better power) in the AR(1) case, we still
need further work on the AR(p) case. See Wang et al. (2010) for an application of the variance
ratio test with a random walk null hypothesis to the index of Shanghai stock exchange.

One problem that we may encounter in estimating θ is the pile-up problem of the ML
estimator at the invertibility boundary (e.g., Breidt et al., 2006). This is an issue that is being
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addressed by a number of researchers. In particular, Davis and Dunsmuir (1996) have explored
the possibility of using a Laplace likelihood with a local maximizer to estimate an MA(1) model
with a unit root or a near unit root. It is very likely that an estimator of θ that will overcome the
pile-up problem will emerge in due course. From a practical point of view, the pile-up problem
of the Gaussian likelihood may not be a serious problem. Although over-differenced stationary
series produce θ = 1, AR unit-root series are likely to produce a θ well away from unity. Many
empirical estimates of θ from non-stationary series hardly exceed 0.9 and do not exhibit the
presence of the pile-up problem.

3 Monte Carlo Results

In this section we present the results of a Monte Carlo experiment to highlight the size and
power properties of the test under near unit root alternatives. Since our primary interest is in
cointegrating relationships we use the following model for the simulation exercise.

yt = δ0 + δ1xt + zt,

xt = xt−1 + εt.

(1− φ1L)∆zt = β + (1− θL)ut,

(5)

where ut and εt are generated from independent N(0, 1) distributions. If δ1 is known then (5)
represents the case of testing for the stationarity of a known long run relationship. If δ0 and δ1
are estimated then (5) represents the case of testing for the stationarity of regression residuals.
The size of the test is obtained when θ = 1. For this we set φ1 = 0.5, 0.9, 0.95. For power, we
need near unit root alternatives. For this we use θ = 0.8 with φ1 = 0.5, 0.9, 0.95 and θ = 0.95
with φ1 = 0.5, 0.9. In the case of known zt, β = 1 and when zt is the estimated residuals
β = 0 and δ0 = δ1 = 1. Appendix B provides a comprehensive survey of power of various tests
available. Nevertheless, for comparison, we also compute power of three commonly used tests,
KPSS, ADF, and Johansen. The above same parameter setting is used for the KPSS test. For
the ADF and Johansen tests the alternative hypothesis is stationarity. This is obtained when
θ = 1 and equation (5) simply reduces to an AR(1) process for zt. Therefore, to have near unit
root alternatives that correspond to above θ values we set φ1 = 0.8 and 0.95.

Table 1 shows that some size distortions occur as m increases especially when regression
residuals are involved. Nevertheless, these distortions are rather minimal. Although the test
relies on the T-consistency of σ̂, the use of estimated θ tends to produce size distortions when m
increases. We observe that such size distortions do not occur if we set θ = 1 in the computation
of σ̂2m from residuals obtained from a pure AR fit. Careful examination of individual replications
showed that the problem emanates from non-convergence of θ̂ in some replications.

Table 2 shows power when testing a known long run relationship or a single series (Johansen
test is omitted in this table as it is not designed for single series) and Table Table 3 when the
long run relationship is estimated. To accommodate Johansen test results in the table and to
display the table in portrait layout on the page we have deleted results for m = 2. Improvement
in power from m = 2 to m = 4 is similar to that of Table 2. There are a number of points to note
in the tables. First, the power of the z(MA) test in sample sizes 100 and 200 is quite impressive
even when m = 2 relative to KPSS and ADF tests and those reported in Appendix B (5% values
are highlighted in the tables for easy comparison). However, the gain in power when m increases
beyond 4 is rather small. Therefore, based on both size and power properties an m = 4 seems to
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Table 1: Size of the z(MA) test for an MA unit root (2000 replications).

T m=2 m=4 m=6 m=8

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

Known long-run relation or single series
φ1 = 0.5, θ = 1

100 0.007 0.031 0.062 0.016 0.045 0.078 0.022 0.046 0.089 0.024 0.052 0.088
200 0.006 0.035 0.074 0.014 0.041 0.082 0.024 0.048 0.088 0.029 0.057 0.089
300 0.005 0.023 0.067 0.013 0.045 0.072 0.021 0.049 0.094 0.028 0.057 0.098
500 0.002 0.030 0.068 0.013 0.054 0.095 0.022 0.060 0.096 0.027 0.061 0.104

φ1 = 0.9, θ = 1
100 0.007 0.037 0.079 0.007 0.036 0.074 0.009 0.036 0.075 0.010 0.038 0.073
200 0.008 0.035 0.069 0.017 0.044 0.080 0.013 0.040 0.068 0.016 0.044 0.079
300 0.009 0.041 0.075 0.014 0.039 0.071 0.014 0.043 0.070 0.017 0.039 0.072
500 0.008 0.037 0.083 0.013 0.037 0.089 0.017 0.041 0.088 0.019 0.046 0.090

φ1 = 0.95, θ = 1
100 0.022 0.054 0.097 0.028 0.057 0.096 0.027 0.059 0.102 0.029 0.058 0.094
200 0.014 0.047 0.086 0.015 0.049 0.077 0.016 0.052 0.090 0.017 0.046 0.085
300 0.015 0.048 0.087 0.014 0.041 0.075 0.018 0.049 0.078 0.022 0.055 0.087
500 0.006 0.038 0.078 0.006 0.048 0.089 0.008 0.040 0.095 0.011 0.049 0.097

Regression residuals
φ1 = 0.5, θ = 1

100 0.014 0.065 0.129 0.023 0.073 0.136 0.021 0.074 0.133 0.028 0.081 0.139
200 0.009 0.049 0.103 0.015 0.066 0.129 0.022 0.079 0.133 0.025 0.075 0.134
300 0.016 0.053 0.102 0.017 0.059 0.111 0.0200 0.068 0.12 0.032 0.081 0.131
500 0.009 0.042 0.097 0.013 0.063 0.115 0.017 0.066 0.112 0.025 0.079 0.135

φ1 = 0.9, θ = 1
100 0.017 0.084 0.170 0.018 0.079 0.150 0.014 0.083 0.152 0.018 0.076 0.144
200 0.011 0.065 0.074 0.018 0.074 0.126 0.016 0.071 0.139 0.017 0.066 0.122
300 0.014 0.065 0.136 0.016 0.074 0.141 0.019 0.066 0.122 0.018 0.069 0.134
500 0.011 0.056 0.117 0.016 0.066 0.123 0.022 0.074 0.137 0.019 0.062 0.125

φ1 = 0.95, θ = 1
100 0.020 0.104 0.197 0.020 0.088 0.170 0.024 0.091 0.170 0.029 0.083 0.161
200 0.022 0.084 0.164 0.021 0.076 0.146 0.019 0.092 0.158 0.021 0.087 0.154
300 0.017 0.075 0.140 0.028 0.081 0.147 0.027 0.082 0.155 0.025 0.085 0.147
500 0.017 0.073 0.131 0.022 0.076 0.137 0.020 0.070 0.133 0.025 0.081 0.142

be a reasonable choice. We also examined the results by over-fitting the AR order upto p = 3;
the results remain very much unaffected by this over-fitting.

Second, when the AR parameter φ1 increases there is a substantial gain in power. This
feature is shared by the KPSS test as well. Increasing autoregressive persistence amplifies the
non-stationary behavior of the series locally and adds to the power of z(MA) and KPSS tests.
Third, although power drops when θ = 0.95 the z(MA) test retains high power relative to other
tests in sample sizes 100 and 200. Again, increasing autoregressive persistence is advantages to
the test. Many tests in use today do not perform well when the alternative is pushed closer to
the null value. Fourth, there is no systematic substantial drop in power when residual series are
used with the z(MA) test. Although the KPSS test also does not show a substantial drop in
power, it is not so with the ADF test.

It is worth making a comparison of the results in Table 1, Table 2 and Table 3 with the
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Table 2: Power of z(MA), KPSS, and ADF tests (2000 replications) for known long-run relation
or single series.

T z(MA): m=2 m=4 m=8 KPSS ADF

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

φ1 = 0.5, θ = 0.8 φ1 = 0.8
100 0.497 0.590 0.646 0.622 0.670 0.700 0.647 0.642 0.706 0.210 0.520 0.676 0.077 0.304 0.497
200 0.793 0.864 0.888 0.895 0.912 0.921 0.935 0.913 0.921 0.465 0.739 0.832 0.452 0.834 0.932
300 0.936 0.963 0.973 0.981 0.985 0.989 0.985 0.988 0.988 0.593 0.796 0.881 0.866 0.988 1.000
500 0.993 0.997 0.997 0.998 0.999 0.999 0.999 0.999 0.999 0.761 0.908 0.953 1.000 1.000 1.000

φ1 = 0.9, θ = 0.8
100 0.809 0.901 0.933 0.911 0.945 0.959 0.953 0.963 0.970 0.404 0.712 0.846
200 0.909 0.963 0.973 0.971 0.984 0.987 0.987 0.993 0.994 0.584 0.841 0.907
300 0.959 0.981 0.990 0.987 0.993 0.994 0.994 0.996 0.996 0.677 0.868 0.927
500 0.993 0.997 0.999 0.998 0.998 1.000 1.000 1.000 1.000 0.793 0.932 0.967

φ1 = 0.95, θ = 0.8
100 0.770 0.889 0.925 0.932 0.957 0.965 0.960 0.969 0.973 0.519 0.798 0.900
200 0.946 0.987 0.994 0.993 0.994 0.995 0.996 0.997 0.998 0.706 0.916 0.958
300 0.989 0.995 0.999 1.000 1.000 1.000 1.000 1.000 1.000 0.768 0.924 0.966
500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.857 0.960 0.982

φ1 = 0.5, θ = 0.95 φ1 = 0.95
100 0.119 0.250 0.358 0.227 0.434 0.521 0.491 0.592 0.641 0.035 0.175 0.294 0.023 0.109 0.209
200 0.173 0.372 0.508 0.473 0.637 0.704 0.733 0.806 0.834 0.167 0.390 0.512 0.085 0.303 0.490
300 0.245 0.452 0.591 0.612 0.761 0.825 0.856 0.897 0.909 0.311 0.558 0.671 0.210 0.581 0.783
500 0.390 0.619 0.753 0.823 0.910 0.941 0.958 0.973 0.978 0.563 0.766 0.844 0.706 0.959 0.992

φ1 = 0.9, θ = 0.95
100 0.758 0.819 0.849 0.850 0.893 0.911 0.897 0.915 0.927 0.166 0.474 0.636
200 0.755 0.819 0.857 0.856 0.892 0.914 0.905 0.929 0.940 0.360 0.637 0.758
300 0.735 0.804 0.845 0.848 0.893 0.912 0.912 0.931 0.945 0.435 0.696 0.796
500 0.684 0.775 0.824 0.841 0.883 0.910 0.915 0.934 0.951 0.648 0.847 0.901

variance-difference (VD) test that Breitung (1994) developed. This asymptotically normal VD
test, derived based on the assumption of an MA(q) process, produces desirable small-sample size
and power properties for finite order MA processes. However, when the process involved was an
ARMA(1,1) that needed to be approximated by a finite order MA process, Breitung observed
substantial size distortions. For example, when φ1 = 0.9 (θ = 1), T = 100, and α = 5%, Breitung
reported empirical size of 0.907 for MA(4) approximation and 0.215 for MA(12) approximation.
This problem does not arise in our test as we can see in Table 1. The tables also show that near
AR unit root cases which manifest with low power in AR unit root tests come under control in
this MA unit root test.

4 Is Consumption-Income Ratio Non-Stationary?

Economic theory posits that the consumption-income ratio or the average propensity to consume
(APC) is stationary. Nevertheless, popular unit root tests in use often render the verdict that
this ratio is non-stationary. We revisit this by testing the stationarity of log(APC) in 21 OECD
countries using the above three popular tests and the z(MA) test. Table 4 presents the results.
In the computation of the z(MA) statistic, as a check against the near common factor problem we
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Table 3: Power of z(MA), KPSS, ADF, and Johansen tests (2000 replications) for estimated
long-run relation or single series.

T z(MA): m=4 m=8 KPSS ADF Johansen

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

φ1 = 0.5, θ = 0.8 φ1 = 0.8
100 0.668 0.738 0.772 0.756 0.800 0.828 0.149 0.433 0.595 0.077 0.304 0.497 0.037 0.163 0.276
200 0.912 0.933 0.944 0.937 0.949 0.957 0.397 0.675 0.797 0.452 0.834 0.932 0.145 0.435 0.625
300 0.974 0.981 0.985 0.983 0.986 0.987 0.497 0.753 0.846 0.866 0.988 1.000 0.474 0.786 0.901
500 0.999 1.000 1.000 1.000 1.000 1.000 0.685 0.876 0.935 1.000 1.000 1.000 1.000 1.000 1.000

φ1 = 0.9, θ = 0.8
100 0.913 0.938 0.946 0.938 0.955 0.961 0.283 0.598 0.770
200 0.960 0.974 0.979 0.975 0.980 0.983 0.497 0.771 0.865
300 0.984 0.990 0.992 0.991 0.992 0.993 0.576 0.811 0.896
500 0.976 0.995 0.997 0.997 0.997 0.999 0.772 0.887 0.937

φ1 = 0.95, θ = 0.8
100 0.921 0.943 0.955 0.950 0.959 0.963 0.371 0.667 0.806
200 0.957 0.976 0.982 0.981 0.983 0.986 0.591 0.835 0.907
300 0.977 0.985 0.988 0.988 0.991 0.991 0.629 0.854 0.925
500 0.986 0.991 0.996 0.997 0.998 0.998 0.778 0.925 0.960

φ1 = 0.5, θ = 0.95 φ1 = 0.95
100 0.212 0.314 0.373 0.326 0.415 0.467 0.027 0.147 0.273 0.019 0.082 0.196 0.017 0.071 0.152
200 0.337 0.464 0.544 0.519 0.588 0.642 0.116 0.308 0.437 0.037 0.197 0.361 0.035 0.156 0.272
300 0.521 0.669 0.732 0.723 0.775 0.808 0.263 0.514 0.634 0.109 0.383 0.603 0.076 0.242 0.400
500 0.763 0.861 0.902 0.907 0.931 0.942 0.507 0.715 0.811 0.465 0.845 0.964 0.223 0.616 0.786

φ1 = 0.9, θ = 0.95
100 0.736 0.786 0.817 0.797 0.818 0.836 0.139 0.411 0.580
200 0.784 0.814 0.841 0.836 0.866 0.874 0.308 0.599 0.728
300 0.800 0.838 0.858 0.849 0.866 0.884 0.377 0.638 0.757
500 0.777 0.827 0.850 0.842 0.870 0.885 0.569 0.806 0.878

advise fitting an AR(p) model to yt first and then an ARMA(p, 1) to ∆yt. It is instructive to use
a dedicated ARIMA software procedure for estimation. We used SAS PROC ARIMA procedure
for model estimation by removing the default boundary constraint and trying different starting
values for θ including θ = 0.99. Table 4 shows close correspondence between AR(p) coefficients
and ARMA(p, 1) coefficients except for cases where an AR unit root is likely to be present. In
stationary cases θ̂ turns out to be almost unity. This means that the size distortion we noticed in
the Monte Carlo experiment resulting from under estimation of θ may not be a serious problem
in practice.

The cases where an AR unit root is likely to be present are marked with a * under z(MA)
column in Table 4. In these cases there is no close correspondence between the coefficients es-
timated from models fitted to yt and ∆yt. In fact, the coefficients from ∆yt are less precisely
estimated because of the possible common factor problem arising from unit roots in AR and MA
polynomials. For this reason, we also report the estimates from ARMA(p − 1, 1) models after
eliminating the AR unit root and insignificant coefficients. These are given in rows immediately
below these AR unit root cases. Although the coefficient estimates are very different the con-
clusion remains the same that these series are non-stationary. It is also worth noting that when
an AR unit root is present, θ̂ lies well below unity as is observed in many other studies. This
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Table 4: Stationarity test on APC. Quarterly data ending in 2013 are from IFS and OECD
databases. Tests are based on log(APC) = log(C/Y ) , where C is real consumption expenditure
and Y is real GDP, seasonally adjusted. For the Johansen test no means rejection of cointegration
between log(C) and log(Y) with the cointegrating vector (1,−1). The VAR lag order was selected
based on BIC. The null for ADF and Johansen is non-stationarity of log(APC) and that for
KPSS and z(MA) is stationarity. A * means significant at the 5% level. For these cases under
z(MA), results are reported by fitting both ARMA(p, 1) and ARMA(p − 1, 1) models. Number
of stationary series according to: ADF: 5, Johansen: 6, KPSS: 8; z(MA): 15 including German
APC which is stationary at the 1% level.

Country T AR Lags AR(p) fit to yt:
Coefficients

ARMA(p,1) fit to ∆yt:
Coefficients ADF Johansen KPSS z(MA)

m=4

Australia 216 1 0.94 0.95, 1.00 −2.65 yes 0.19 0.60
Austria 196 1, 2, 3 0.61, 0.17, 0.11 0.62, 0.18, 0.12, 0.99 −3.21* no 0.15 −1.16
Belgium 136 1 0.98 −0.45, −0.36 −1.31 no 0.94* −6.25*

0.04 - - - −6.17*
Canada 228 1 0.98 0.98, 1.00 −1.95 no 0.62* −0.17
Denmark 148 1 0.96 0.97, 1.00 −2.83 no 0.68* −1.28
Finland 176 1, 4 0.79, 0.16 0.82, 0.19, 1.00 −2.00 no 0.44 −0.80
France 148 1 0.97 0.98, 0.99 −1.54 no 0.22 −0.16
Germany 216 1, 3 0.74, 0.18 0.74, 0.18, 1.00 −2.32 yes 1.05* −1.71*
Italy 176 1, 4 0.82, 0.10 0.78, 0.07, 1.00 −3.09* yes 1.14* −0.02
Japan 216 1 0.96 0.98, 1.00 −1.84 no 0.40 −0.04
Korea, South 196 1, 2 0.83, 0.17 0.12, 0.02, 0.32 −1.90 no 1.56* −7.38*

0.20 - - - −7.30*
Mexico 132 1 0.90 0.89, 1.00 −2.5 no 0.41 −0.21
Netherlands 148 1, 2 0.55, 0.45 0.41, 0.39, 0.92 −1.5 no 1.17* −2.33*

−0.41, 0.06 - - - −6.66*
New Zealand 108 1 0.78 0.77, 0.98 −2.90* yes 0.33 −0.56
Norway 212 1, 2 0.75, 0.23 0.15, 0.11, 0.93 −1.49 no 1.47* −7.24*

0.22 - - - −7.23*
Spain 176 1, 4 0.85, 0.14 0.71, 0.10, 0.88 −0.35 no 1.62* −4.51*

0.61, 0.83 - - - −6,00*
Sweden 136 1, 2, 4 0.70, 0.33, −0.18 0.67, 0.33, −0.21, 1.00 −2.89* no 0.73* −0.41
Switzerland 176 1, 2, 3 0.64, 0.49, −0.21 0.65, 0.49, −0.20, 1.00 −2.5 no 0.22 −0.73
Turkey 108 1 0.66 0.60, 1.00 −4.54* yes 0.66* 0.47
UK 228 1, 2, 3 0.70, 0.13.0.15 0.70, 0.13, 0.15, 1.00 −1.51 yes 0.56* 1.19
US 228 1 1.00 0.60, 0.70 −0.58 no 1.84* −7.21*

0.13 - - - −7.85*

renders more power to the test.
Table 4 shows that the sum of the AR coefficients is above 0.9 in 16 of the 21 cases. The ADF

test renders I(1) verdict to all these 16 log(APC) series. The Johansen test and the KPSS test fair
better, recognizing six and eight cases respectively as cointegrating relationships. However, these
cases do not necessarily overlap. The z(MA) test, on the other hand, takes 14 of the 21 log(APC)
series to be stationary. At the 1% level German APC is also stationary, thus giving a total of 15
stationary cases. It rejected stationarity only when the sum of the AR coefficients is very close
to unity (

∑
≥ 0.98) and when a local trend dominated the series (Belgium, South Korea, the

Netherlands, Norway, Spain and the USA). For these six cases the other three tests also lead to
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Figure 1: APC of selected countries to highlight the influence of local trends on test outcomes.
The US log(APC) is non-stationary by all four tests and the other three are stationary by
Johansen and z(MA) tests.

the same conclusion. When a local trend is not dominant the z(MA) test renders I(0) verdict
even when the sum of the AR coefficients is large. To highlight these points Figure 1 shows four
APC series (Germany, Italy, the UK and the USA). The US series has a dominant local trend
component that leads all the tests to reject the stationarity hypothesis. In the other three cases
there are local trend components including a jump in APC as a result of falling incomes after the
global financial crisis in 2008. Despite the presence of these local trends the Johansen and z(MA)
tests support the stationarity of these log(APC) series. The ADF test supports the stationarity
of the Italian series. In general, local trends seem to affect the ADF, Johansen and KPSS tests
more than the z(MA) test. Rejecting the null of stationarity of important ratios like APC is an
indication of the interplay of other variables that need to be considered instead of taking such
ratios to be I(1) processes.

5 Conclusion

This exercise addresses three important issues. First, it highlights the importance of formulating
tests based on the null of stationarity. What is of general importance is whether a regression
relationship produces stationary residuals regardless of the nature of non-stationarities of the
individual series. Moreover, an AR unit root in an individual series is hard to pin down because
an apparent unit root could be a manifestation of some other forms of non-stationarity. We
present an MA unit root test based on the null of stationarity. Unlike the AR unit root which
is a behavioral outcome, the MA unit root is created by over-differencing and therefore easier to
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pin down.
Although testing for an MA unit root is not new to the literature, the existing tests require

non-standard distributions. The second important aspect of the exercise is that the proposed
test brings us back to the normal distribution and makes specifications searches easier.

The third aspect of the exercise is that the test procedure entails a mechanism to increase
power without necessarily having to increase the sample size. This addresses the problem of low
power at near null alternatives of many AR unit root tests that are currently available. All this
is evident in the application; the z(MA) test favors stationarity of 15 out of 21 log(APC) series
whereas the other three tests examined are mostly in favor of non-stationarity. The empirical
results in general highlight that when an AR unit root is present the MA parameter θ in the first
difference model is likely to lie well below unity. This renders more power to the test.
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Appendix A

Proof of the Theorem

Proof. Here we derive the asymptotic distribution of
√
T (σ̂2m,T − 2σ̂2T ) under the null hypothesis

θ = 1. Assuming (p + m) pre-sample values are available we can run the model in (2) to
obtain consistent estimates of the parameters, obtain the estimated residuals ût, and compute
σ̂2T = (1/T )

∑T
t=1 û

2
t , V̂t = ût − θ̂mût−m, σ̂2m,T = (1/T )

∑T
t=1 V̂

2
t . We have to work on the

expression: √
T (σ̂2m,T − 2σ̂2T ) =

√
T
[
(σ̂2m,T − 2σ2)− 2(σ̂2T − σ2)

]
. (6)

It is well established that
√
T (σ̂2T − σ2)

d−→ N(0, (µ4 − σ4)). (See, for example, Hamilton,
1994, p.212.) We can establish a similar result for

√
T (σ̂2m,T − 2σ2). However, since our interest

is in the difference in (6) we can derive its asymptotic distribution in a direct manner.
Given the T-consistency of θ̂ under the null θ = 1, in large samples the aggregation poly-

nomial θ(L) can be written as θ(L) = (1 + L+, ..., Lm−1) and model (4) can be written as

∆myt = mβ + φ1∆myt−1 + ...+ φp∆myp + Vt, (7)

where ∆mzt = zt − zt−m and Vt = ut − ut−m. Now defining xt = (1,∆yt−1, ...,∆yt−p)
T,

xat = (1,∆myt−1, ...,∆myt−p)
T and β = (β+, φ1, ..., φp)

T, where β+ = mβ, we can write (5) as
∆myt = xT

atβ + Vt or in full observation matrix format as

ya = Xaβ + V, (8)
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where ya is the observation vector of ∆myt and the other terms defined conformably. Now we
can obtain

V̂ = V −Xa(β̂ − β), (9)

and using the subscript T to indicate the dependence on sample size we get

σ̂2m,T = (1/T )V̂T
T V̂T = (1/T )VT

TVT − (2/T )(β̂T − β)TXT
aTVT

+ (β̂T − β)T(XT
aTXaT /T )(β̂T − β)

p−→ 2σ2.

(10)

This result holds because (βT − β)
p−→ 0 and it is assumed that (XT

aTXaT /T )
p−→ Qa,

a finite positive definite matrix, and as shown below XT
aTVT /T

p−→ c, a ((p + 1) × 1) vec-
tor of constants. This vector can be derived easily by noting XT

aTVT /T = T−1
∑

xatVt =
−T−1

∑
xatut−m + op(1) and ∆myt = φ(L)−1Vt = ψ(L)Vt, where φ(L)−1 = ψ(L) = 1 + ψ1L +

ψ2L
2 + .... The first term of T−1

∑
xatut−m leads to T−1

∑
ut−m

p−→ 0. The pth term of
T−1
a

∑
xatut−m is T−1

∑
∆myt−put−m = T−1

∑
ψ(L)(ut−1 − ut−m−1)ut−m = T−1

∑
ψm−pu

2
t−m+

op(1)
p−→ σ2ψm−p. If p > m, ψ−p = 0.

Now consider
√
T (σ̂2m,T − 2σ2). Multiplying (A4) through by

√
T shows that the last term

of (10) converges in probability zero and provides
√
T (σ̂2m,T − 2σ2) =

√
T (VT

TVT /T − 2σ2)− 2
√
T (β̂T − β)T(XT

aTVT /T )

=
√
T (VT

TVT /T − 2σ2) + op(1).
(11)

Note that β̂T − β is op(1) and XT
aTVT /

√
T is Op(1). In a similar way we get

√
T (σ̂2T − σ2) =

√
T (uT

TuT /T − 2σ2)− 2
√
T (β̂T − β)T(XT

TuT /T )

=
√
T (uT

TuT /T − 2σ2) + op(1).
(12)

Now from (11) and (12) we get
√
T (σ̂2m,T − 2σ̂2T ) = (1/

√
T )
(∑

(ut − ut−m)2 −
∑

u2t

)
+ op(1)

= (1/
√
T )
∑

(−u2t − 2utut−m + u2t−m) + op(1)
(13)

It is easily seen from (13) that
√
T (σ̂2m,T − 2σ̂2T )

p−→ 0. To derive its variance, let ξt = −u2t −
2utut−m + u2t−m and obtain

V ar
{

(1/
√
T )
∑

ξt

}
= (1/T )[E

(∑
ξt

)2
]

= (1/T )

[
T∑
t=1

E(ξ2t ) + 2
T∑
t=1

t−1∑
k=1

E(ξtξt−k)

]
,

(14)

E(ξ2t ) = E[(−u2t − 2utut−m + u2t−m)(−u2t − 2utut−m + u2t−m)]

= 2µ4 + 2σ4,
(15)

E(ξtξt−k) = E[(−u2t − 2utut−m + u2t−m)(−u2t−m − 2ut−mut−2m + u2t−2m)]

=

{
−µ4 + σ4, k = m,

0, k 6= m.

(16)
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and
V ar

{
(1/
√
T )
∑

ξt

}
= (1/T )

[
2T (µ4 + σ4) + 2T (−µ4 + σ4)

]
= 4σ4.

(17)

Therefore, from (13) and (17) we can see that V ar(
√
T (σ̂2m,T − 2σ̂2T ))

p−→ 4σ4. Furthermore,
above results show that

√
T (σ̂2m,T −2σ̂2T ) is a stationary ergodic process with covariance converg-

ing to −µ4 + σ4 at lag m and to zero at other lags. Therefore, by the central limit theorem for
stationary stochastic processes (Hamilton, 1994, Proposition 7.11 and White, 2001, Section 5.3),
we can establish that

√
T (σ̂2m,T − 2σ̂2T )

d−→ N(0, 4σ4).

Appendix B

Table 5: Power of unit root tests at the 5% level and T=100. Reference model: yt = α + βt +

ρyt−1 + εt − θεt−1, εt
i.i.d.∼ N(0, σ2). When T=100 is not available, 200 is used and marked with

an asterisk against author’s name.

Name of
Authors Year Model Type Test Type ρ =

0.80
ρ =
0.85

ρ =
0.90

ρ =
0.95

ρ =
0.975 Remarks

(a) Non-stationary null (ρ = 1)

Dicky &
Fuller 1979 θ = 0, β = 0 ρ̂ 0.86 0.30 0.10

DF test, AR(1) processθ = 0, β = 0 t 0.73 0.18 0.06

Bhargava 1986 θ = 0, β = 0 DW 0.73 0.49 0.25 0.10

Phillips &
Perron 1988

θ = 0, β = 0 t 0.47 ADF, Said & Dicky 1984
θ = 0.8, β = 0 t 0.30 ADF
θ = 0, β = 0 Z(t) 0.69 PP
θ = 0.8, β = 0 Z(t) 0.35 PP

Pantula &
Hall* 1991

θ = 0, β = 0 IV 0.09-
0.33 Range of IV estimates. In

general power > 0.05
θ = 0.8, β = 0 IV 0.01-

0.35

DeJong,
Nankervis &
Savin

1992 θ = 0, β 6= 0
τ(ρ) 0.75 0.49 0.24 0.10 For starting value 0. Power

drops slightly as starting
value increases.

F(β, ρ) 0.65 0.39 0.19 0.08

Blough 1992 θ = 0, β = 0 ADF, IV
Graphical presentation.
Power drops
to 5% for r>0.5.

Schmidt
& Phillips 1992 θ = 0, β 6= 0 LM 0.27 0.11 Reported is highest power

under different specifications

Choi 1992 θ = 0, β 6= 0 DH 0.97 0.84 0.54 0.24 Durbin-Hausman

Lee &
Schimidt 1994 θ = 0.8, β = 0 IV 0.22 Compares Hall-IV

with SP-IV
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Pantula,
Gonzalez-
Farias
& Fuller

1994 θ = 0, β = 0 WS 0.60 0.26 Compares OLS,
MLE as well.

Yap &
Reinsel* 1995 θ = 0, β = 0 LR 1.00 0.82 0.33

θ = 0.8, β = 0 LR - 0.74 0.56

Leybourne 1995 θ = 0, β = 0 DFmax 0.88 0.34

Perron
& Ng* 1996 θ = 0.8, β = 0

MZ(ρ) 0.75 0.42
Modified PPMSB 0.79 0.46

MZ(t) 0.63 0.30

Elliot,
Rothenberg
& Stock

1996 θ = 0.8, β = 0 t 0.51 0.30 0.15
Power at ρ=0.95
not very different
across models

Hwang
& Schmidt 1996 θ = 0, β 6= 0 GLS 0.28 0.18

Power is roughly
similar across different
tests reported

Non-stationary null: Structural breaks

Lanne &
Lutkepohl 2002

Perron 0.21 Known break, level shift.
Power is very similar for
slope change. See the article
for model specification.

Perron & Vogelsang 0.14
Amsler & Lee 0.12

Schmidt & Phillips 0.09
Lanne & Lutkepohl 0.23

Lanne,
Lutkepohl &
Saikonen

2003

Test 1, drift 0.28 Unknown break, level shift.
Power is very similar for
slope change. See the article
for model specification.

Test 2, drift 0.20
Test 3, trend 0.23
Test 3, trend 0.18

Costantini
& Sen 2016 Three tests 0.1-0.5 Level shift

and slope change

(b) Stationary null (ρ = 1 , θ = 1 )

Park 1990 J1 test No simulation results

Kwiatkowski,
Phillips,
Schmidt &
Shin

1992

β = 0 η(µ)l0 0.59 0.17
KPSS test. The test
basically involves testing
σ2
η = 0 in model (1) in

Section 3.

β = 0 η(µ)l4 0.51 0.15
β = 0 η(µ)l12 0.38 0.10
β 6= 0 η(µ)l0 0.35 0.05
β 6= 0 η(µ)l4 0.28 0.05
β 6= 0 η(µ)l12 0.17 0.04

Saikkonen
& Luukkonen1993 β = 0 R2 0.81 0.71 0.56 0.32 Authors also consider

non-white errors.

Breitung 1994 β = 0
Spectral 0.04 0.03 0.03
Var diff 0.87 0.43 0.16
Tanaka 0.86 0.62 0.32

Leybourne
and McCabe 1994 Extended KPSS

s(α)p = 1 0.61 0.17 Show that KPSS is subject
to severe size distortions in
general ARIMA cases.

s(α)p = 2 0.59 0.17
s(α)p = 3 0.56 0.16
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Choi 1994 β = 0

w1l = 2 0.47
w1l = 3 0.38

Power remains low for other
lags on w2 test

w1l = 4 0.27
w1l = 5 0.06

β 6= 0 w2l = 1 0.08
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