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Abstract: We introduce a new class of distributions called the 

generalized odd generalized exponential family. Some of its 

mathematical properties including explicit expressions for the 

ordinary and incomplete moments, quantile and generating 

functions, R �́�nyi, Shannon and q-entropies, order statistics and 

probability weighted moments are derived. We also propose 

bivariate generalizations. We constructed a simple type Copula and 

intro-duced a useful stochastic property. The maximum likelihood 

method is used for estimating the model parameters. The importance 

and flexibility of the new family are illustrated by means of two 

applications to real data sets. We assess the performance of the 

maximum likelihood estimators in terms of biases and mean squared 

errors via a simulation study. 
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1. Introduction 

The statistical literature contains many new classes of distributions that have 

been constructed by extending the common families of continuous distributions 

providing more flexibility as far as applications is concerned. These new families 

have been used for modeling data in many applied areas such as engineering, 

economics, biological studies and environmental sciences. However, applied areas 

such as lifetime analysis, finance and insurance clearly require extended forms of 

these distributions. So, several classes of distributions have been constructed by 

extending common families of continuous distributions. These generalized 

distributions give more flexibility by adding new parameters to the baseline model. 

These methods were pioneered by Gupta et al. (1998) who proposed the 

exponentiated-G class, which consists of raising the cumulative distribution func-

tion (cdf) to a positive power parameter. Many other classes can be cited such as 

the Marshall-Olkin-G family by Marshall and Olkin (1997), beta generalized-G 

family by Eugene et al. (2002), exponentiated generalized-G family by Cordeiro et 

al. (2013), a new method for generating families of continuous distributions by 

Alzaatreh et al. (2013), transmuted exponentiated generalized-G by Yousof et al. 
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(2015), exponentiated transmuted-G by Merovc et al. (2016), Burr X-G by Yousof 

et al. (2016), Odd-Burr generalized family by Alizadeh et al (2016a) , transmuted 

Weibull G family by Alizadeh et al. (2016b), complementary generalized 

transmuted Poisson-G family by Alizadeh et al. (2016b), Kumaraswamy 

transmuted-G by Afify et al. (2016c), complementary geometric transmuted-G 

family Afify et al. (2016b), transmuted geometric-G by Afify et al. (2016a), 

generalized transmuted-G by Nofal et al. (2017), exponentiated generalized-G 

Poisson by Aryal and Yousof (2017), Marshall-Olkin generalized family by Yousof 

et al. (2017a), beta Weibull-G family of distributions by Yousof et al. (2017b), 

Topp-Leone odd log-logistic family by de Brito et al. (2017), Type I general expo-

nential class of distributions by Hamedani et al. (2017), exponentiated Weibull-H 

family Cordeiro et al. (2017a), Burr XII system of densities by Cordeiro et al. 

(2017b) and beta transmuted-H family by Afify et al. (2017), among others. In this 

paper, we propose and study a new generated family called the Generalized Odd 

Generalized Exponential-G (GOGE-G) family via the T-X family defined by 

Alzaatreh et al. (2013) and give a comprehensive description of its mathematical 

properties. In fact, the GOGE-G family is motivated by its flexibility in application. 

By means of two applications, it is shown that the GOGE-G class provides better 

fits than at least ten other families each having the same num-ber of parameters. 

The cumulative distribution function (cdf) and probability desity function (pdf) of 

GOGE-G class are given, respectively by 

 
where G(x;ψ) is the baseline cdf depending on a parameter vector ψ and g(x;ψ) 

is its corresponding pdf and α,β > 0 are two additional shape parameters. Hence-

forth, X ∼ GOGE-G(α,β,ψ) denotes a random variable having density function 

(2). The reliability function (rf), hazard rate function (hrf), reversed hazard rate 

(rhr) and cumulative hazard rate function (chrf) of X are given, respectively, by 

 
For simulating data from this family, if u~u(0,1), then 

 
has cdf (1). We omit sometimes the dependence on the parameters and simply 

use, g(x) = g(x;ψ) and G(x) = G(x;ψ). Now, we provide a useful representation for 

(2). Using the series expansion , which holds for |z| < 
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1 and b > 0 real non-integer and using the power series, the pdf of the GOGE-G 

family in (2) can be expressed as 

 
Using the series expansion again we arrive at 

 
where hγ(x) = γg (x)G(x)γ−1 represents the pdf of the exp-G family with power 

parameter γ and 

 
The cdf of the GOGE-G family can also be expressed as a mixture of exp-G cdfs. By 

integrating (4), we obtain the same mixture representation 

 
where Hγ(x) is the cdf of the exp-G family with power parameter γ. 

The chief motivation of the generalized distributions for modelling life time 

data lies in the flexibility to model both monotonic and non-monotonic failure rates 

even though the baseline failure rate may be monotonic. The basic justification for 

generating a new distribution in practice are the following: 

• to produce a skewness for symmetrical models; 

• to define special models with all types of hrf; 

• to construct heavy-tailed distributions for modelling various real data sets; 

• to generate distributions with left-skewed, right-skewed, symmetric, or reversed-J 

shape; 

• to provide consistently better fits than other generated distributions with the same 

underlying model; 

The proposed distribution is clearly flexible to satisfy the above properties as 

demonstrated in Section 7. The rest of the paper is outlined as follows. In Section 

2, we define three special models and provide the plots of their pdf’s and hazard 

rate functions (hrf’s). In Section 3, we derive some of its mathematical properties 

including ordinary and incomplete moments, generating functions, probability 

weighted moments (PWMs), residual life and reversed residual life functions, 

R ényi, Shannon and q-entropies. Order statistics and their moments are 

investigated at the end of the section. Some characterizations results are pro-vided 

in Section 4. Maximum likelihood estimation of the model parameters is addressed 

in Section 5. Simple type Copula is constructed and a useful stochastic property is 

introduced in Section 6. In Section 7, we provide two applications to real data to 

illustrate the importance of the new family. In section 8, simulation results to assess 

the performance of the proposed maximum likelihood estimation procedure are 

discussed. Finally, some concluding remarks are presented in Section 9. 
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2. Special Models 

We consider the following: 

• Set G(x) = 1 −𝑒−ax
𝑏
, then f(x) will be GOGE-Weibull distribution. 

• Set G(x) = Φ(x;µ,σ), then f(x) will be GOGE-Normal distribution, where Φ is cdf 

of the standard normal distribution 

• Set G(x) =  1 − (1 − xa)b, then f (x) will be GOGE-Kumaraswamy 

distribution. 

The plots of pdf and hrf for some special cases of GOGE-G are given in Figuers 

1-4. 

 
Figure 1: Plot of GOGE-Weibull(α,β,a,b) density for selected values of the parameters. 

 

Figure 2: Plot of GOGE-Weibull(α,β,a,b) hazard rate for selected values of the parameters.
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Figure 3: Plot of GOGE-Normal(α,β,µ,σ) density for selected values of the parameters. 

                
Figure 4: Plot of GOGE-Kumaraswamy(α,β,a,b) density  

for selected values of the parameters. 

 

3. Mathematical properties 

Here, we investigate mathematical properties of the GOGE-G family of 

distributions including ordinary moments, generating function, residual life and 

reversed residual life functions, entropies and order statistics. 

 

3.1 Moments and generating function 

The rth ordinary moment of X is given by  . Then 

we obtain 

 
where, Yγ denotes the exp-G distribution with power parameter γ. Setting r = 

1 in (6), we have the mean of X. The last integration can be computed numerically 

for most parent distributions. The skewness and kurtosis measures can be 
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calculated from the ordinary moments using well-known relationships. The nth 

central moment of X, say Mn, follows as 

 

The cumulants (kn) of X follow recursively from ,where 

 , etc. The skewness and kurtosis 

measures also can be calculated from the ordinary moments using well-known 

relationships. The moment generating function (mgf) MX (t) = E(etX) of X can be 

derived from equation (4) as 

 
where Mδ (t) is the mgf of Yδ. Hence, MX (t) can be determined from the mgfs 

of the exp-G distributions. 

 

3.2 Residual life and reversed residual life functions 

The nth moment of the residual life, say mn(t) = E[(X−t)n | X > t], n = 1,2,..., 

uniquely determine F(x). The nth moment of the residual life of X is given by 

. Therefore 

 

Where  . Another interesting function is the mean 

residual life (MRL) function or the life expectation at age t defined by m1(t) =E [(X 

− t) | X > t], which represents the expected additional life length for a unit which is 

alive at age t. The MRL of X can be obtained by setting n = 1 in the last equation. 

The nth moment of the reversed residual life, say Mn(t) =E [(t − X)n | X ≤ t] for t 

> 0 and n = 1,2,... uniquely determines F(x). We obtain  . 

Then, the nth moment of the reversed residual life of X becomes 

 

where  The mean inactivity time (MIT) or mean waiting 

time (MWT) also called the mean reversed residual life function is given by M1(t) 

= E[(t − X) | X ≤ t], and it represents the waiting time elapsed since the failure of 

an item on condition that this failure had occurred in (0,t). The MIT of the GOGE-

G family of distributions can be obtained easily by setting n = 1 in the above 

equation. 

 

3.3 Entropies 

The R�́�nyi entropy of a random variable X represents a measure of variation of 

the uncertainty. The R�́�nyi entropy is defined by 
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Using the pdf (6), we can write 

 

Where . Then,the Rényi entropy 

of the GOGE-G family is given by 

 
The q-entropy, say Hq (X), can be obtained as 

 

where .The Shan-non 

entropy of a random variable X, say SI, is defined by SI = E {−[logf (X)]}. 

It is the special case of the R´enyi entropy when θ ↑ 1. 

 

3.4 Order statistics 

Order statistics make their appearance in many areas of statistical theory and 

practice. Let X1,...,Xn be a random sample from the GOGE-G family of dis-

tributions and let X1:n,...,Xn:n be the corresponding order statistics. The pdf of the 

ith order statistic, say Xi:n, can be written as 

 
where B(·,·) is the beta function. Substituting (1) and (2) in equation (7) and 

using a power series expansion, we have 

 

where .Then, the pdf of Xi:n 

can be expressed as 

 
The density function of the GOGE-G order statistics is a mixture of exp-G den-

sities. Based on the last equation, we note that the properties of Xi:n follow from 

those of Yα(w+k+1). For example, the moments of Xi:n can be expressed as 
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The L-moments are analogous to the ordinary moments but can be estimated 

by linear combinations of order statistics. They exist whenever the mean of the 

distribution exists, even though some higher moments may not exist, and are rel-

atively robust to the eff ects of outliers. Based upon the moments in equation (8), 

we can derive explicit expressions for the L-moments of X as infinite weighted 

linear combinations of the means of suitable GOGE-G order statistics. 

 

4. Characterizations 

In this section we present certain characterizations of GOGE-G distribution. 

The first characterization is based on hazard function and the second one is based 

on the conditional expectation of certain functions of the random variable. 

 

4.1 Characterization based on hazard function 

It is known that the hazard function, hF , of a twice diff erentiable distribution 

function, F, satisfies the first order diff erential equation 

 
For many univariate continuous distributions, this is the only characterization 

available in terms of the hazard function. The following characterization establish 

a non-trivial characterization for GOGE-G distribution, with β = 1 , in terms of the 

hazard function , which is not of the above trivial form. 

 

Proposition 4.1.1. 

Let X : Ω → (0,∞) be a continuous random variable. The pdf of X is (6) if and 

only if its hazard function hF (x) satisfies the diff erential equation 

 
Proof. If X has pdf (6), then clearly the above diff erential equation holds. Now, 

if the diff erential equation holds, then 

 
or, equivalently, 

 
Integrating both sides of the above equation, we arrive at 

 
or 
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4.2 Characterization based on conditional expectation 

In this subsection, we first establish a characterization of a distribution based 

on the conditional expectation of the random variable. Then we apply our charac-

terization to the GOGE-G distribution. 

 

Proposition 4.2.1. 

Let X : Ω → (a,b) be a continuous random variable with cdf F and 

corresponding pdf f . Let η be a diff erentiable function and greater than 1 on (a,b) 

such that limx→a+ η (x) = 1 and limx→b− η (x) = 1+c. Then, for 0 < c < 1, 

 
if and only if

 

 

 
Proof. If (9) holds, then 

 
Diff erentiating both sides of the above equation with respect to x and rearrang-

ing the terms, we arrive at 

 
Integrating both sides of  (11) from x to b and using the condition limx→b− η (x) =1+c , 

we arrive at (10). Conversely, if  (10) holds, then and 

 
which is (9). 

Remark 4.2.1.  

Taking  and c=1+β, Proposition 

4.2.1 provides a characterization of GOGE-G distribution. 

Remark 4.2.2.  

Further special cases which can be characterized via proposition 4.2.1 with 

simple choices of η (X) are: 

1. G(x;α,ψ) =  for which   

 

2. G(x;α) =  0 ≤ x ≤ 1, the power function distribution, for which F(x) = 

 
 

3. G(x) = x, the base line cdf is uniform on the unit interval, for which F(x) =  
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5. Estimation 

Several approaches for parameter estimation are proposed in the literature but 

the maximum likelihood method is the most commonly employed. The maxi-mum 

likelihood estimators (MLEs) enjoy desirable properties and can be used for 

constructing confidence intervals and regions and also in test statistics. The normal 

approximation for these estimators in large samples can be easily handled either 

analytically or numerically. So, we consider the estimation of the unknown 

parameters of this family from complete samples only by maximum likelihood 

method. Let x1,...,xn be a random sample from the GOGE-G distribution with 

parameters α,β and ψ. Let Θ =(α,β,ψ⊺)⊺ be the p × 1 parameter vector. For 

determining the MLE of Θ, we have the log-likelihood function 

 

where   and . The components of the score 

vector,  , are 

 
and 

 
 

where 

and mi = . Setting the nonlinear system of equations Uα =Uβ =0 

and Uψ = 0 and solving them simultaneously yields the MLE 

To solve these equations, it is usually more convenient to use nonlinear optimiza-

tion methods such as the quasi-Newton algorithm to numerically maximize ℓ. For 

interval estimation of the parameters, we obtain the p × p observed information 

matrix  (for r,s = α,β,ψ), whose elements can be computed 

numerically. Under standard regularity conditions when n → ∞, the distribution of 

Θ̂  can be approximated by a multivariate normal Np(0,J( Θ̂)−1) distribution to 

construct approximate confidence intervals for the parameters. Here, J(Θ̂) is the 

total observed information matrix evaluated at Θ̂. The method of the re-sampling 

bootstrap can be used for correcting the biases of the MLEs of the model parameters. 

Good interval estimates may also be obtained using the boot-strap percentile 

method. 
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6. Simple type Copula based construction 

We consider several diff erent approaches to construct bivariate and 

multivariate GOGE-G type distributions via copula (or even with straightforward 

bivariate cdf functions form, in which we just need to consider two diff erent 

GOGE-G cdfs). It must be mentioned here that in all our derivations, we have 

considered the same set of parameters ψ for the baseline cdf G. So, these derived 

models, depend a lot on the behavior of the baseline cdf. 

 

6.1 Via Morgenstern family 

First, we start with cdf for Morgenstern family of two random variables (X1,X2) 

which has the following form: 

 
where |λ| ≤  1. Now, if we set the following: 

 
then we have a (5+ψ) dimension parameter model. Needless to say, the estima-

tion will be a big issue here. Estimation via Bayesian paradigm may be done, but 

again, the choice of appropriate priors will be challenging. 

 

6.2 Via several type existing Copula models 

We consider the following inequel: 

 Via Clayton copula: Some might claim that this is a weighted version of the 

Clayton copula, which is of the form: 

 
This is indeed a valid copula. Next, let us assume that X∼GOGE−G(𝛼1, 𝛽1, 𝜓) 

and Y∼GOGE− G(𝛼2, 𝛽2, 𝜓). Then, setting u =  and v = F (y) = 

, the associated bivariate GOGE-G type distribution will be 

(the cdf) 

 
Note: Depending on the specific baseline cdf, one may construct various 

bivariate GOGE-G type models in which (δ1 + δ2) ≥ 0. 

Multivariate extension: A straightforward d-dimensional extension from 

the above will be
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 Via a special type of Copula to start with this type of copula, first we will 

mention one theorem and the corresponding corollary. 

Theorem 6.2.1: Let Fi, i = 1,...,n be absolutely continuous one dimensional 

marginal cumulative distribution functions with domain I of an absolutely 

continuous n-dimensional cumulative distribution F with domain In. If F 

maximizes Renyi’s entropy by rescaling (or maiming Tsallis entropy) when the 

entropy index equals 2, then F will be 

F(𝑥1, … , 𝑥𝑛) =∑𝐹𝑖(𝑥𝑖)

𝑛

𝑖=1

∏ 𝑥𝑗 + (1 − 𝑛)∏𝑥𝑖

𝑛

𝑖=1

𝑛

𝑗=1(≠𝑖)

 

Note that I = [0,1]. For the proof in the bivariate case and the extension to the 

multivariate case see Pougaza et al. (2011). 

Corollary 6.2.1: Let Fi, for i=1,2,··· ,n be as in Theorem 6.2.1, and let 𝐹𝑖
−1 be quasi-

inverse (see page 21 of Nelsen, R.B. (1999)) of Fi. 

Then, for any u in In, 

 
is a copula. It appears that one can use Theorem 6.2.1 as a constructive method for 

determining a joint multivariate distribution from the only knowledge of its 

marginals and the Corollary 6.2.1 as a tool for creating families of copula just by 

specifying marginals. In the bivariate case , we have C(u,v)=vϕ(u)+uδ(v)−ϕ(u)δ(v), 

where  𝐹1
−1 (u1) ≡ ϕ and  𝐹2

−1 (u2) ≡ δ, for any univariate functions ϕ and δ, with 

the following properties: 

 
where ϕ, δ are absolutely continuous distributions on [0,1] and their derivatives are 

bounded for almost every values taken in [0,1]. Now, from our GOGE-G cdf, we 

can write, for any u ∈ (0,1), 

 
So, a reasonable choice of bivariate copula for GOGE-G model may be considered 

as follows: 

 
If G is a proper cdf, then C(u1,u2) will be a valid copula. Assuming G is a valid cdf, 

one can easily verify the following: 



 
 

 Morad Alizadeh, Indranil Ghosh, Haitham M. Yousof, Mahdi Rasekhi,G.G.Hamedani     455 
 

 

 
Hence, it is indeed a valid bivariate GOGE-G type copula. Hence, the associated 

bivariate cdf (using Theorem 6.2.1) will be 

 
Let’s just call this bivariate GOGE-G copula (Type I). One may obtain the 

multivariate extension of the following form: 

1. Multivariate GOGE-G copula (Type I) 

 

where , (assuming fixed α  and β.) 

2. Multivariate GOGE-G copula (Type II, based on bivariate F-G-M copula) 

 
where A(.) is defined earlier and |δ| ≤  1. 

 

6.3 Stochastic property 

Theorem 6.3.1: Suppose X1∼GOEG−G(α1,β1) and X2∼GOEG−G(α2,β2). Then X1 

is stochastically smaller than X2 if α1 > α2 and β1 > β2. 

Note that for any α1 > α2 

 

This is true for both integer and fractional values of α1 and α2. After some algebra, 

we get the following: 

Since for α1 > α2 

 

Rest of the proof follows immediately from here
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This completes the proof. 

 

7. Applications 

In this section, we provide two applications to illustrate the importance of the 

GOGEW and GOGEE distributions presented in Section 2. The MLEs of the model 

parameters are computed and goodness-of-fit statistics for these distributions are 

compared with other competing distributions. The first real data set is a subset of 

data reported by Bekker et al. (2000) which corresponds to the survival times (in 

years) of a group of patients given chemotherapy treatment alone. The second real 

data set was originally reported by Nadarajah and Kotz (2007), which represents 

the fracture toughness MPa m1/2 data from the mate-rial Alumina. In the 

applications, the information about the hazard shape can help in selecting a 

particular model. For this porpose, a device called the total time on test (TTT) plot 

(Aarset, 1987) is useful. The TTT plot is obtained by plotting 

  and 

are the order statistics of the sample, against r/n. If the shape is a straight diagonal, 

the hazard is constant. It is convex shape for decreasing hazards and concave shape 

for increasing hazards. The bathtub-shaped hazard is obtained when the first 

convex and then concave and for bimodal shape hazard, the TTT plot is first 

concave and then convex. The TTT plot for both datasets presented in Figure 2. 

These figures indicate that first and second dataset have constant and increasing 

failure rate functions. 

In the first application, we shall compare the GOGEW model with other 

comparative models: the beta Weibull (BW) (Famoye et al., 2005), the 

Kumaraswamy Weibull (KwW) (Cordeiro et al., 2010), the exponentiated Weibull 

(EW) (Mud-holkar et al., 1993) and the Weibull Geometric (WG) (Barreto-Souza 

et al., 2011) distributions. In the second application, we compare the GOGEE 

model with other comparative models: the beta-exponential(BE) (Nadarajah and 

Kotz, 2006), the gamma exponentiated exponential (GEE) (Ristic and Balakrishnan, 

2012), exponentiated exponential geometric (EEG) (Louzada et al., 2012) and the 

exponentiated exponential Poisson (EEP)( Ristic and Nadarajah, 2012) models. 

The MLEs are computed using the Limited-Memory Quasi-Newton Code for 

Bound-Constrained Optimization (L-BFGS-B) as well as the measures of 

goodness-of-fit including the log-likelihood function evaluated at the MLEs. The 

measures of goodness-of-fit including the Akaike information criterion (AIC), 

consistent Akaike information criterion (CAIC) ( Burnham and Anderson, 2002), 

Hannan-Quinn information criterion (HQIC), Anderson-Darling (A∗), Cramer-von 

Mises (W∗) statistics are computed to compare the fitted models. The statistics A∗ 
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and W∗ are described in Evans et al. (2008). They showed W∗ and A∗ can be 

calculated as 

 
And 

 
In general, the smaller values of these statistics show the better fit to the data 

sets. The numerical values of the AIC, AICc, HQIC, A∗ and W∗ statistics are listed 

in Tables 5 and 6, whereas Tables 3 and 4 list the MLEs and their corresponding 

standard errors (in parentheses) of the model parameters. In Table 3, we compare 

the fits of the GOGEW distribution with the BW, KW, WG and EW models. We 

note that the GOGEW model gives the lowest values for the AIC, AICc, HQIC, A∗ 

and W∗ statistics (for the survival times of cancer patients data) among the fitted 

models. So, the GOGEW distribution could be chosen as the best distribution. The 

emprical cdf (each dot show a step of it) with fitted GOGEW and rivals cdfs (curves 

plot on the dots) are displayed in Figure 3. In Table 4, we compare the fits of the 

GOGEE distribution with the BE, GEE, EEG and EEP distributions. We note that 

the GOGEE distribution gives the lowest values for the AIC, AICc, HQIC, A∗ and 

W∗ statistics (for the fracture toughness data) among all fitted distributions. So, the 

GOGEE model can be chosen as the best model. The emprical cdf (each dot shows 

a step of it) with fitted GOGEE and rivals cdfs (curves plot on the dots) are 

displayed in Figure 4. It is very clear from Tables 3 and 4, and Figures 6 and 7 that 

the GOGEW and GOGEE models provide the best fits to the histogram of these 

data sets. 

 
Figure 5: TTT-plot for the first dataset (left figure) and for the second dataset (right figure). 

 

Table 1: Parameters estimates and standard deviation in parenthesis for first dataset 
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Figure 8 shows that GOGEW distribution is a good model for right skew heavy 

tail data sets and GOGEE distribution is suitable model for Leptokurtic data sets. 

The GOGEE can better model data sets with wider range of kurtosis among other 

generalized exponential distributions. 

 

Table 2: Parameters estimates, standard deviation in parenthesis and log-likelihood for 

second dataset 

 

Table 3: Formal goodness-of-fit tests for the first data set 

 

 
Figure 6: Emprical cdf with cdf of fitted distributions for the first data set.
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Table 4: Formal goodness-of-fit tests for the second data set 

 
 

 
Figure 7: Emprical cdf with cdf of fitted distributions for the second data set. 

 

 
Figure 8: Fitted special cases of proposed model on histogram of data:(left) first data set, 

(right) second edata set. 
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8. Simulation study 

In this section, we consider the maximum likelihood estimation of parameters 

for the two models derived in the preceding sections. The maximum likelihood 

estimators can be obtained by direct maximization of the likelihood functions given 

below. In simulations and real life data applications described later on, we 

maximized the log-likelihood function using SAS PROC NLMIXED. For each 

maximization, the SAS PROC NLMIXED function was executed for a wide range 

of initial values and the maximum likelihood estimates were determined as the ones 

that corresponds to the largest of the maxima. 

 

8.1 Simulation study for GOGE-Normal distribution  

In this case, the log likelihood function is given by (from (2) 

 
Next, to demonstrate the feasibility of the suggested estimation strategy, a 

small simulation study was undertaken. The simulation study was carried out with 

(α,β,µ,σ) =(1.7,2.5,3.2,0.8), respectively and the process was repeated 30,000 times. 

Three diff erent sample sizes n = 50, 100 and 200 were considered. The bias (actual-

estimate) and the standard deviation of the parameter estimates for the maximum 

likelihood estimates were determined from this simulation study and are presented 

in Table 5. 
 

Table 5. Bias and standard deviation of the parameter estimates. 

Parameter Sample size (n=50) Sample size (n=100) Sample size (n=200) 

α  0.1348(0.3548) 0.0769(0.2271) 0.0651(0.1718) 

β 0.2805(0.5673) 0.1743(0.3496) 0.0927(0.1154) 

µ 0.0163(0.03534) -0.0134(0.02723) 0.0135(0.01263) 

σ 0.0962(0.0452) 0.08782(0.0389) 0.0545(0.0217) 

 

8.2 Simulation for GOGE -Kumaraswamy distribution 

In this case the log-likelihood function is (from (6)) 
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Next, to illustrate the feasibility of the suggested estimation strategy, a small 

simulation study was undertaken. The simulation study was carried out for one 

representative set of parameters (α,β,a,b) =(1.7,2.5,1.8,1.6) and the process was 

repeated 30,000 times. Three diff erent sample sizes n = 50, 100 and 200 were 

considered. The bias (actual-estimate) and the standard deviation of the parameter 

estimates for the maximum likelihood estimates were determined from this 

simulation study and are presented in Table 6. 

 

Table 6.Bias and standard deviation of the parameter estimates. 

Parameter Sample size (n=50) Sample size (n=100) Sample size (n=200) 

α  0.1108(0.5382) 0.0614(0.2345) 0.0437(0.1139) 

β 0.1678(0.4628) -0.1321(0.1894) 0.0672(0.0933) 

a 0.0268(0.4321) 0.1483(0.2467) 0.0946(0.1264) 

b 0.0825(0.0667) 0.0779(0.0627) 0.0621(0.0358) 

 
9. Conclusions 

A new class of distributions called the GOGE-G with two extra positive 

parameters has been introduced and studied, We provide some mathematical 

properties of the new family including entropies, probability weighted moments, 

residual life and reversed residual life functions, ordinary and incomplete moments, 

generating function and order statistics. Characterizations based on hazard function 

and as well as based on conditional expectation are presented. The maximum 

likelihood method is used for estimating the model parameters. A simple type 

Copula is constructed and a useful stochastic property is introduced . We assess the 

performance of the maximum likelihood estimators in terms of biases and mean 

squared errors by means of a simulation study. Finally, the usefulness of the family 

is illustrated using two real data sets. 
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